
1

CSC212

Data Structure

Lecture 4

Container Classes

Instructor: George Wolberg

Department of Computer Science

City College of New York

2

Outline

Bag class definition/implementation details

Inline functions

constructor, size

Other basic functions

insert, erase_one, erase, count

More advanced functions

operators +, +=, -

Time Analysis

Big-O

Introduction to sequence

3

A container class is a data

type that is capable of

holding a collection of

items.

In C++, container classes

can be implemented as a

class, along with member

functions to add, remove,

and examine items.

Container Classes

Data Structures

and Other Objects

Using C++

4

Bags

For the first example,

think about a bag.

5

Bags

For the first example,

think about a bag.

Inside the bag are

some numbers.

6

Initial State of a Bag

When you first begin

to use a bag, the bag

will be empty.

We count on this to be

the initial state of any

bag that we use.

THIS BAG

IS

EMPTY.

7

Inserting Numbers into a Bag

Numbers may be

inserted into a bag.

I AM

PUTTING THE

NUMBER 4

INTO THE

BAG.

8

Inserting Numbers into a Bag

Numbers may be

inserted into a bag.

THE 4 IS

IN THE

BAG.

9

Inserting Numbers into a Bag

Numbers may be

inserted into a bag.

The bag can hold

many numbers.

NOW I'M

PUTTING

ANOTHER

NUMBER IN

THE BAG --

AN 8.

10

Inserting Numbers into a Bag

Numbers may be

inserted into a bag.

The bag can hold

many numbers.

THE 8 IS

ALSO IN

THE BAG.

11

Inserting Numbers into a Bag

Numbers may be

inserted into a bag.

The bag can hold

many numbers.

We can even insert

the same number

more than once.
NOW I'M

PUTTING A

SECOND 4

IN THE

BAG.

12

Inserting Numbers into a Bag

Numbers may be

inserted into a bag.

The bag can hold

many numbers.

We can even insert

the same number

more than once.

NOW THE

BAG HAS

TWO 4'S

AND AN 8..

13

Examining a Bag

We may ask about

the contents of the

bag.

HAVE

YOU GOT

ANY 4's

?

YES,

I HAVE

TWO OF

THEM.

14

Removing a Number from a Bag

We may remove a

number from a bag.

THIS

4 IS

OUTTA

HERE!

15

Removing a Number from a Bag

We may remove a

number from a bag.

But we remove only

one number at a

time.

ONE 4 IS

GONE, BUT

THE OTHER

4 REMAINS.

16

How Many Numbers

Another operation is

to determine how

many numbers are in a

bag.

IN MY OPINION,

THERE ARE

TOO MANY

NUMBERS.

17

Summary of the Bag Operations

A bag can be put in its initial state,
which is an empty bag.

Numbers can be inserted into the bag.

You may count how many occurrence of
a certain number are in the bag.

Numbers can be erased from the bag.

You can check the size of the bag (i.e.
how many numbers are in the bag).

18

The bag Class

C++ classes (introduced in
Chapter 2) can be used to
implement a container class
such as a bag.

The class definition includes:

class bag

The heading of the definition

19

The bag Class

C++ classes (introduced in
Chapter 2) can be used to
implement a container class
such as a bag.

The class definition includes:

class bag

{

public:

bag();

The heading of the definition

A constructor prototype

20

The bag Class

C++ classes (introduced in

Chapter 2) can be used to

implement a container class

such as a bag.

The class definition includes:

class bag

{

public:

bag();

void insert(...

void erase(...

...and so onThe heading of the definition

A constructor prototype

Prototypes for public

member functions

21

The bag Class

C++ classes (introduced in

Chapter 2) can be used to

implement a container class

such as a bag.

The class definition includes:

class bag

{

public:

bag();

void insert(...

void erase(...

...and so on

private:

};

The heading of the definition

A constructor prototype

Prototypes for public

member functions

Private member variables

We’ll look at private

members later.

22

The bag’s Default Constructor

Places a bag in the initial state (an empty bag)

bag::bag()

// Postcondition: The bag has been initialized

// and it is now empty.

{

. . .

}

23

The insert Function

Inserts a new number in the bag

void bag::insert(const int& new_entry)

// Precondition: The bag is not full.

// Postcondition: A new copy of new_entry has

// been added to the bag.

{

. . .

}

24

The size Function

Checks how many integers are in the bag.

int bag::size() const

// Postcondition: The return value is the number

// of integers in the bag.

{

. . .

}

25

The size Function

Checks how many integers are in the bag.

size_t bag::size() const

// Postcondition: The return value is the number

// of integers in the bag.

{

. . .

}

26

The count Function

Counts how many copies of a number occur

size_t bag::count(const int& target) const

// Postcondition: The return value is the number

// of copies of target in the bag.

{

. . .

}

27

The erase_one Function

Removes (erase) one copy of a number

void bag::erase_one(const int& target)

// Postcondition: If target was in the bag, then

// one copy of target has been removed from the

// bag; otherwise the bag is unchanged.

{

. . .

}

28

The Header File and

Implementation File

The programmer who writes

the new bag class must write

two files:

bag1.h, a header file that

contains documentation and

the class definition

bag1.cpp, an implementation

file that contains the

implementations of the bag ’s

member functions

bag’s documentation

bag’s class definition

Implementations of the

bag’s member functions

29

Documentation for the bag Class

The documentation gives

prototypes and

specifications for the bag

member functions.

Specifications are written as

precondition/postcondition

contracts.

Everything needed to use the

bag class is included in this

comment.

bag’s documentation

bag’s class definition

Implementations of the

bag’s member functions

30

The bag ’s Class Definition

After the documentation,

the header file has the class

definition that we’ve seen

before:

bag’s documentation

bag’s class definition

Implementations of the

bag’s member functions

class bag
{
public:

bag();
void insert(...
void erase(...
...and so on

private:
…
};

31

The Implementation File

As with any class, the

actual definitions of the

member functions are

placed in a separate

implementation file.

The implementations of

the bag’s member

functions are in bag1.cpp.

bag’s documentation

bag’s class definition

Implementations of the

bag’s member functions

32

A Quiz

Suppose that a Mysterious

Benefactor provides you

with the bag class, but you

are only permitted to read

the documentation in the

header file. You cannot

read the class definition or

implementation file. Can

you write a program that

uses the bag data type ?

Yes I can.

No. Not unless I see the

class definition for the

bag .

No. I need to see the

class definition for the

bag , and also see the

implementation file.

33

A Quiz

Suppose that a Mysterious

Benefactor provides you

with the Bag class, but you

are only permitted to read

the documentation in the

header file. You cannot

read the class definition or

implementation file. Can

you write a program that

uses the bag data type ?

Yes I can.

You know the name of the

new data type, which is

enough for you to declare

bag variables. You also

know the headings and

specifications of each of

the operations.

34

Using the bag in a Program

Here is typical code from a

program that uses the new

bag class:

bag ages;

// Record the ages of three children:

ages.insert(4);

ages.insert(8);

ages.insert(4);

35

Implementation Details

The entries of a bag

will be stored in the

front part of an array,

as shown in this

example.

[0] [1] [2] [3] [4] [5] . . .

An array of integers

4 8 4

We don't care what's in

this part of the array.

36

Implementation Details

The entries may

appear in any order.

This represents the

same bag as the

previous one. . .

An array of integers

4 4 8

We don't care what's in

this part of the array.

[0] [1] [2] [3] [4] [5] . . .

37

Implementation Details

. . . and this also

represents the same

bag.

An array of integers
We don't care what's in

this part of the array.

[0] [1] [2] [3] [4] [5] . . .

8 4 4

38

Implementation Details

We also need to keep track of how

many numbers are in the bag.

An array of integers

8 4 4

We don't care what's in

this part of the array.

An integer to keep

track of the bag's size
3

[0] [1] [2] [3] [4] [5] . . .

39

An Exercise

Use these ideas to write a

list of private member

variables that could

implement the bag class.

You should have two

member variables. Make

the bag capable of holding

up to 20 integers.

You have 60 seconds

to write the declaration.

40

An Exercise

class bag

{

public:

...

private:

int data[20];

size_t used;

};

One solution:

41

An Exercise

A more flexible solution:

class bag

{

public:

static const size_t CAPACITY = 20;

...

private:

int data[CAPACITY];

size_t used;

};

42

An Example of Calling insert

void bag::insert(const int& new_entry)

Before calling insert, we

might have this bag b:

2

[0] [1] [2] . . .

8 4
b.data

b.used

43

An Example of Calling insert

void Bag::insert(int new_entry)

b.data

b.used

We make a function call

b.insert(17)

What values will be in

b.data and b.count

after the member

function finishes ?

2

[0] [1] [2] . . .

8 4

void bag::insert(const int& new_entry)

44

An Example of Calling insert

void Bag::insert(int new_entry)

After calling b.insert(17),

we will have this bag b:

3

[0] [1] [2] . . .

8 4 17

void bag::insert(const int& new_entry)

b.data

b.used
2

[0] [1] [2] . . .

8 4

45

Pseudocode for bag::insert

assert(size() < CAPACITY);

Place new_entry in the appropriate location

of the data array.

Add one to the member variable count.

What is the “appropriate

location” of the data array ?

46

Pseudocode for bag::insert

assert(size() < CAPACITY);

Place new_entry in the appropriate location

of the data array.

Add one to the member variable count.

data[used] = new_entry;

used++;

47

Pseudocode for bag::insert

assert(size() < CAPACITY);

Place new_entry in the appropriate location

of the data array.

Add one to the member variable count.

data[used++] = new_entry;

48

The Other bag Operations

Read Section 3.1 for the implementations of the
other bag member functions

such as operators append (+=) and union (+)

Remember: If you are just using the bag class

then you don’t need to know how the operations are
implemented.

Later we will reimplement the bag using more
efficient techniques.

We’ll also have a few other operations to
manipulate bags.

49

Append Operator +=

void bag::operator+=(const bag& addend)
// Precondition: size() + addend.size() <= CAPACITY.
// Postcondition: Each item in addend has been added to this bag.
// Library facilities used: cassert
{

size_t i;
assert(size() + addend.size() <= CAPACITY);
for (i = 0; i< addend.used; ++i)
{

data[used] = addend.data[i];
++used;

}
}

// calling program: a += b; (OKAY)
// Question : What will happen if you call: b += b;

50

Append Operator +=

void bag::operator+=(const bag& addend)

// Precondition: size() + addend.size() <= CAPACITY.

// Postcondition: Each item in addend has been added to this bag.

// Library facilities used: cassert

{

assert(size() + addend.size() <= CAPACITY);

copy(addend.data, addend.data + addend.used, data + used);

used += addend.used;

}

// copy (<beginning location>, <ending location>, <destination>);

// Question : Can you fix the bug in the previous slide without using copy ?

51

Union Operator +

// NONMEMBER FUNCTION for the bag class:
bag operator+(const bag& b1, const bag& b2)
// Precondition: b1.size() + b2.size() <= bag::CAPACITY.
// Postcondition: The bag returned is the union of b1 and b2.
// Library facilities used: cassert
{

bag answer;

assert(b1.size() + b2.size() <= bag::CAPACITY);

answer += b1;
answer += b2;
return answer;

}

// calling program: c =a+b;
// Question : what happens if you call a =a+b ?

52

Subtract Operator -

// Prototype: NONMEMBER friend FUNCTION for the bag class:

// bag operator-(const bag& b1, const bag& b2);

// Postcondition: For two bags b1 and b2, the bag x-y contains all the

items of x, with any items from y removed

// Write your implementation

// HINTS:

// 1. A friend function can access private member variables of a bag

// 2. You cannot change constant reference parameters

// 3. You may use any member functions of the bag class such as

// b1.count(target); // how many target is in bag b1?

// b1.erase_one(target); // target is an integer item

// b2.size(); // size of the bag b2;

// bag b3(b2); // automatic copy constructor

//

53

Subtract Operator -

// NONMEMBER friend FUNCTION for the bag class:
bag operator-(const bag& b1, const bag& b2)
// Postcondition: For two bags b1 and b2, the bag x-y contains all the

items of x, with any items from y removed
{

size_t index;
bag answer(b1); // copy constructor
size_t size2 = b2.size(); // use member function size
for (index = 0; index < size2; ++index)
{

int target = b2.data[index]; // use private member variable
if (answer.count(target)) // use function count

answer.erase_one(target); // use function erase_one
}
return answer;

}

54

Other Kinds of Bags

In this example, we have implemented a

bag containing integers.

But we could have had a bag of float

numbers, a bag of characters, a bag of

strings . . .

Suppose you wanted one of these other

bags. How much would you need to change

in the implementation ?

Section 3.1 gives a simple solution using

the C++ typedef statement.

55

Time Analysis of the Bag Class

count – the number of occurrence

erase_one – remove one from the bag

erase – remove all

+= – append

b1+b2 – union

insert – add one item

size – number of items in the bag

56

What’s the most important, then?

Concept of Container Classes

the bag class is not particularly important

Other kinds of container classes

sequence – similar to a bag, both contain a bunch of
items. But unlike a bag, the items in a sequence is
arranged in order.

will be the topic of our second assignment– paying
attention to the differences

index – have current, next, last, etc

member functions and their implementation (e.g. insert, attach)

time analysis (insert)

57

After Class…

Assignment 2 (online now)

Reading: Chapter 3, Section 3.2-3.3

especially the sequence code

Self-Test Exercises

1,3, 5,10,11,14,18-24

Reading for next lecture

Chapter 4, Section 4.1-4.2

bag-ppt.html

58

A container class is a class that holds a collection of items.

Container classes can be implemented with a C++ class.

The class is implemented with

a header file (containing documentation and the class definition)
bag1.h and

an implementation file (containing the implementations of the
member functions) bag1.cpp.

Other details are given in Section 3.1, which you should
read, especially the real bag code

Summary

bag-ppt.html
bag-ppt.html
bag-ppt.html

59

THE END

Presentation copyright 1997, Addison Wesley Longman

For use with Data Structures and Other Objects Using C++

by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club

Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are

welcome to use this presentation however they see fit, so long as this copyright notice

remains intact.

