
George Wolberg, 2020 1

CSC212

Data Structure

Lecture 2

ADT and C++ Classes (I)

Instructor: George Wolberg

Department of Computer Science

City College of New York

George Wolberg, 2020 2

Outline

A Review of C++ Classes (Lecture 2)

OOP, ADTs and Classes

Class Definition, Implementation and Use

Constructors and Value Semantics

More on Classes (Lecture 3)

Namespace and Documentation

Classes and Parameters

Operator Overloading

George Wolberg, 2020 3

Chapter 2 introduces Object Oriented Programming.

OOP is the typical approach to programming which

supports the creation of new data types and operations

to manipulate those types.

This lecture gives a review of C++ Classes and

introduces ADTs.

Object Oriented Programming

George Wolberg, 2020 4

C++ Classes and ADTs

Class

Mechanism to create objects and member
functions

Support information hiding

Abstract Date Types (ADTs)

mathematical data type

Class as an ADT that programmers can use
without knowing how the member functions are
implemented - i.e. with information hiding

George Wolberg, 2020 5

A point ADT

A data type to store

and manipulate a

single point on a plane

Manipulations

Initialize

Retrieval

Shift

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

p1

George Wolberg, 2020 6

A point ADT

A data type to store

and manipulate a

single point on a plane

Manipulations

Initialize

Retrieval coordinates

Shift

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

p1

(-1, 0.8)

George Wolberg, 2020 7

A point ADT

A data type to store

and manipulate a

single point on a plane

Manipulations

Initialize

Retrieval coordinates

Shift

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

0.8

-1.0

p1

George Wolberg, 2020 8

A point ADT

A data type to store

and manipulate a

single point on a plane

Manipulations

Initialize

Retrieval coordinates

Shift by

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

(0.3, -0.6)

(1.3, -1.4)

p2

p1

George Wolberg, 2020 9

Outline

A Review of C++ Classes (Lecture 2)

OOP, ADTs and Classes

Class Definition, Implementation and Use

Constructors and Value Semantics

More on Classes (Lecture 3)

Namespace and Documentation

Classes and Parameters

Operator Overloading

George Wolberg, 2020 10

point Definition

We can implement the

point object using a

data type called a

class.

class point

{

. . .

};

Don’t forget the

semicolon at the end

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 11

point Definition

The class will have

two components called

m_x and m_y. These

components are the x

and y coordinates of

this point.

Using a class permits

two new features . . .

class point

{

. . .

double m_x;

double m_y;

};

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 12

point Definition

The two components

will be private

member variables.

This ensures that

nobody can directly

access this

information. The

only access is through

functions that we

provide for the class.

class point

{

. . .

private:

double m_x;

double m_y;

};

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 13

point Definition

In a class, the

functions which

manipulate the class

are also listed.

class point

{

public:

. . .

private:

double m_x;

double m_y;

};Prototypes for the point

functions go here,

after the word public:

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 14

point Definition

In a class, the

functions which

manipulate the class

are also listed.

class point

{

public:

. . .

private:

double m_x;

double m_y;

};
Prototypes for the point

member functions go

here

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 15

point Definition

class point

{

public:

void setPosition(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

Our point has at least four member functions:

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 16

point Definition

class point

{

public:

void setPosition(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

The keyword const appears after two prototypes:

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 17

Files for the point ADT

The point class definition, which

we have just seen, is placed with

documentation in a file called

point.h, outlined here.

The implementations of the

four member functions will be

placed in a separate file called

point.cpp, which we will examine

in a few minutes

Use .cpp suffix instead of .cxx for

C++ implementation files..

Documentation:

(Preconditions and

Postconditions)

Class definition:

•point class

definition which we

have already seen

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 18

Outline

A Review of C++ Classes (Lecture 2)

OOP, ADTs and Classes

Class Definition, Implementation and Use

Constructors and Value Semantics

More on Classes (Lecture 3)

Namespace and Documentation

Classes and Parameters

Operator Overloading

George Wolberg, 2020 19

Using the point ADT

A program that
wants to use the
point ADT must
include the
point.h header
file (along with
its other header
inclusions).

File
pointmain1.cpp

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

...

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 20

Using the point ADT

Just for illustration,

the example

program will

declare two point

variables named p1

and p2.

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1;

point p2;

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 21

Using the point ADT

Just for illustration,

the example

program will

declare two point

objects named p1

and p2.

In OOP we call

these two variables

objects of the point

class

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1;

point p2;

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 22

Using the point ADT

The program starts

by calling the

setPosition()

member function

for p1.

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 23

Using the point ADT

The program

starts by

activating the

setPosition()

member function

for p1.

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1:

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 24

Using the point ADT

The member

function

activation

consists of four

parts, starting

with the object

name.

int main()

{

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 25

Using the point ADT

The instance

(object) name is

followed by a

period.

int main()

{

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 26

Using the point ADT

After the period

is the name of

the member

function that you

are activating.

int main() {

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 27

Using the point ADT

Finally, the
arguments for
the member
function. In this
example the first
argument (x
coordinate) and
the second
argument (y
coordinate)

int main() {

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 28

A Quiz

How would you

activate p1's x()

member function ?

What would be the

output of p1's x()

member function

at this point in the

program ?

int main()

{

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 29

A Quiz

Notice that the x()

member function has
no arguments.

At this point,
activating p1.x() will
return a double value

-1.0.

int main() {

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

cout << p1.x() <<endl;

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 30

A Quiz

Trace through this

program, and tell

me the complete

output.

int main()

{

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

cout << p1.x() << p1.y() << endl;

p2.setPosition(p1.x(), p1.y());

cout << p2.x() << p2.y() << endl;

p2.shift(1.3, -1.4);

cout << p2.x() << p2.y() << endl;

. . .

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 31

A Quiz

-1.0 0.8

-1.0 0.8

0.3 -0.6

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

int main()

{

point p1;

point p2;

p1.setPosition(-1.0, 0.8);

cout << p1.x() << p1.y() << endl;

p2.setPosition(p1.x(), p1.y());

cout << p2.x() << p2.y() << endl;

p2.shift(1.3, -1.4);

cout << p2.x() << p2.y() << endl;

. . .

George Wolberg, 2020 32

What you know about Objects

Class = Data + Member Functions.

You know how to define a new class type, and place

the definition in a header file.

You know how to use the header file in a program

which declares instances of the class type.

You know how to activate member functions.

But you still need to learn how to write the bodies of

a class’s member functions.

George Wolberg, 2020 33

Outline

A Review of C++ Classes (Lecture 2)

OOP, ADTs and Classes

Class Definition, Implementation and Use

Constructors and Value Semantics

More on Classes (Lecture 3)

Namespace and Documentation

Classes and Parameters

Operator Overloading

George Wolberg, 2020 34

point Implementation

Remember that the member function’s bodies

generally appear in a separate point.cpp file.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

class point

{

public:

void setPosition(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

George Wolberg, 2020 35

point Implementation

We will look at the body of setPosition(), which must

assign its two arguments to the two private member

variables.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

class point

{

public:

void setPosition(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

George Wolberg, 2020 36

point Implementation

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

For the most part, the function’s body is no different

than any other function body.

But there are two special features about a
member function’s body . . .

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 37

point Implementation

In the heading, the function's name is preceded by the

class name and :: - otherwise C++ won't realize this

is a class’s member function.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

George Wolberg, 2020 38

point Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

George Wolberg, 2020 39

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

point Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

But, whose member

variables are

these? Are they

p1.m_x

p1.m_y

p2.m_x

p2.m_y
?

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 40

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

point Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

If we activate

p1.setPosition:

p1.m_x

p1.m_y

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 41

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

point Implementation

Within the body of the function, the class’s member

variables and other member functions may all be

accessed.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

If we activate

p2.setPosition:

p2.m_x

p2.m_y

George Wolberg, 2020 42

point Implementation

double point::x() const

{

return m_x;

}

Here is the implementation of the x member
function, which returns the x coordinate:

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 43

point Implementation

Here is the implementation of the x member
function, which returns the x coordinate:

Notice how this member function implementation

uses the member variable m_x of the point object.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

double point::x() const

{

return m_x;

}

George Wolberg, 2020 44

point Implementation

Member functions may activate other member functions

Notice this member function implementation still

directly assign the member variables m_x and m_y.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

void point::origin()

{

m_x = 0.0;

m_y = 0.0;

}

George Wolberg, 2020 45

point Implementation

Member functions may activate other member functions

Notice how this member function implementation

uses the member function setPosition().

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

void point::origin()

{

setPosition(0.0, 0.0);

}

George Wolberg, 2020 46

class point

{

public:

void setPosition(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

A Common Pattern

Often, one or more member functions will

place data in the member variables...

...so that other member functions may use that data.

setPosition & shift m_x & m_y

George Wolberg, 2020 47

Classes have member variables and member
functions. An object is a variable where the data
type is a class.

You should know how to declare a new class type,
how to implement its member functions, how to use
the class type.

Frequently, the member functions of a class type
place information in the member variables, or use
information that's already in the member variables.

Next we will see more features of OOP and classes.

Summary of classes

George Wolberg, 2020 48

Assignments

Reading:

Chapter 2.3-2.5

Programming assignment 1

Need all of chapter 2 to finish, but you can start doing it
now

Requirements and guidelines have been posted on the
course web site

C++ Installation Guide online

Linux Users: See the assignment #1 guidelines

Mac/Win Users: Check the class web page

George Wolberg, 2020 49

Outline

A Review of C++ Classes (Lecture 2)

OOP, ADTs and Classes

Class Definition, Implementation and Use

Constructors and Value Semantics

More on Classes (Lecture 3)

Namespace and Documentation

Classes and Parameters

Operator Overloading

George Wolberg, 2020 50

Constructors: point Initialization

The program

starts by

activating the

setPosition

member function

for p1.

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1:

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

First improvement: automatic initialization

without activating the setPosition function

George Wolberg, 2020 51

Constructors: point Initialization

class point

{

public:

void setPosition(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

We can provide a normal member function setPosition

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 52

Constructors: point Initialization

class point

{

public:

point(double x, double y);

void shift(double dx, double dy);

double x() const;

double y() const;

private:

double m_x;

double m_y;

};

Or use a constructor that is automatically called

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

-function name same as class name

- no return type, even no “void” !

George Wolberg, 2020 53

Constructors: Implementation

void point::setPosition(double x, double y)

{

m_x = x;

m_y = y;

}

For the most part, the constructor is no different

than any other member functions.

We only need to replace setPosition with point

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 54

Constructors: Implementation

point::point(double x, double y)

{

m_x = x;

m_y = y;

}

For the most part, the constructor is no different

than any other member functions.

But there are three special features about constructors . .
.

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

George Wolberg, 2020 55

Constructors

Constructor is a member function in which

the name must be the same as the class name

automatically called whenever a variable of the
class is declared

arguments must be given after the variable
name (when declared in user file)

A way to improve the setPosition function

by providing an initialization function that is
guaranteed to be called

George Wolberg, 2020 56

Constructors: point Initialization

Automatically

called when

declared.

Parameters after

the object names

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1:

point p2;

p1.setPosition(-1.0, 0.8);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

First improvement: automatic initialization without

explicitly activating a setPosition function

George Wolberg, 2020 57

Constructors: point Initialization

Automatically

called when

declared.

Parameters after

the object names

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1(-1.0, 0.8);

point p2(0.3, 0.6);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

First improvement: automatic initialization without

explicitly activating a setPosition function

George Wolberg, 2020 58

Default Constructors

Automatically

called when

declared.

Parameters after

the object names

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1(-1.0, 0.8);

point p2(0.3, 0.6);

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

Sometimes we want to define an object

with no parameters…

George Wolberg, 2020 59

Default Constructors

Automatically

called when

declared.

NO parameters

after the object

name p2

#include <iostream.h>

#include <stdlib.h>

#include “point.h"

int main()

{

point p1(-1.0, 0.8);

point p2;

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

…not even a pair of parentheses

George Wolberg, 2020 60

Default Constructors

class point

{

public:

point();

point(double x, double y);

…

private:

double m_x;

double m_y;

};

We could provide a second constructor with no parameters

x

-2 -1 0 1 2

2

1

0

-1

-2

y

p

Implementation

point::point()

{

x = 0.0;

y = 0.0;

}

George Wolberg, 2020 61

Constructors: Function Overloading

You may declare as many constructors as you
like – one for each different way of initializing
an object

Each constructor must have a distinct parameter
list so that the compiler can tell them part

Question: How many default constructors are
allowed?

George Wolberg, 2020 62

Constructors: automatic default constructor

What happens if you write a class without any

constructors?

The compiler automatically creates a simple default

constructor

which only calls the default constructors for the member

variables that are objects of some other classes

Programming Tip :Always provide your own

constructors, and better with a default constructor

George Wolberg, 2020 63

Value Semantics of a Class

Value semantics determines how values are

copied from one object to another

Consists of two operations in C++

The assignment operator

The copy constructor

Document the value semantics

When you implement an ADT, the document should

include a comment indicating that the value semantics

is safe to use.

George Wolberg, 2020 64

Value Semantics: assignment operator

Automatic assignment operator

For a new class, C++ normally carries out assignment
by simply copying each variable from the object on the
right to that on the left

our new class point can use automatic assignment
operator

When automatic assignment fails

we will see examples in Lecture 4 (pointers and
dynamic arrays)

point p1(-1.0, 0.8), p2;

p2 = p1;

cout << p2.x() <<“ “ << p2.y();

George Wolberg, 2020 65

Value Semantics: copy constructor

A copy constructor

is a constructor with exactly one parameter whose

data type is the same as the constructor’s class

is to initialize a new object as an exact copy of an

existing object

An example

point p1(-1.0, 0.8);

point p2 (p1);

cout << p2.x() << “ “ << p2.y();

George Wolberg, 2020 66

Value Semantics: copy constructor

A copy constructor

is a constructor with exactly one parameter whose

data type is the same as the constructor’s class

is to initialize a new object as an exact copy of an

existing object

An alternative syntax

point p1(-1.0, 0.8);

point p2 = p1;

cout << p2.x() << “ “ << p2.y();

George Wolberg, 2020 67

Value Semantics: discussion

point p2 = p1; versus p2 = p1;
The assignment p2 = p1; merely copies p1 to the
already existing object p2 using the assignment
operator.

The syntax point p2 = p1; looks like an assignment
statement, but actually a declaration that both declare a
new object, and calls the copy constructor to initialize
p2 as a copy of p1.

p2 will be the same iff the assignment operator
and the copy constructor do the same things

George Wolberg, 2020 68

Copy Constructor: Implementation

You may write a copy constructor much like any

other constructor

Lecture 4 and later

Take advantage of a C++ feature

automatic copy constructor

similar to assignment, the automatic copy constructor

initializes a new object by merely copy all the member

variables from the existing object.

Automatic versions may fail!

Point Demo

point-ppt.html

George Wolberg, 2020 69

Constructors, etc.– a summary

Constructor is a member function

define your own constructors (including a default)

automatic default constructor

inline member functions (Ch 2.2)

Place a function definition inside the class definition

for time efficiency

value semantics of a class

assignment operators and copy constructor

automatic assignment op and copy constructor

George Wolberg, 2020 70

Outline

A Review of C++ Classes (Lecture 2)

OOP, ADTs and Classes

Class Definition, Implementation and Use

Constructors and Value Semantics

More on Classes (Lecture 3)

Namespace and Documentation

Classes and Parameters

Operator Overloading

George Wolberg, 2020 71

Assignments

Reading:

Chapter 2.3-2.5

Programming assignment 1

Need all of chapter 2 to finish, but you can

start doing it now

Requirements and guidelines have been posted

on the course web site

George Wolberg, 2020 72

THE END

Presentation copyright 1997, Addison Wesley Longman

For use with Data Structures and Other Objects Using C++

by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright

Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club

Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are

welcome to use this presentation however they see fit, so long as this copyright notice

remains intact.

The first part (p.3-47) of this lecture was adapted from:

