
George Wolberg, 2020 1

Lecture 1: Introduction

Instructor: George Wolberg

Department of Computer Science

City College of New York

CSC212

Data Structures

George Wolberg, 2020 2

Outline of this lecture

Course Objectives and Schedule

WHAT (Topics)

WHY (Importance)

WHERE (Goals)

HOW (Information and Schedule)

The Phase of Software Development

Basic design strategy

Pre-conditions and post-conditions

Running time analysis

George Wolberg, 2020 3

Topics (WHAT)

Data Structures

specification, design, implementation and use of

basic data types (arrays, lists, queues, stacks, trees…)

OOP and C++

C++ classes, container classes , Big Three

Standard Template Library (STL)

templates, iterators

ADTs in our DS course cut-down version of STL

Recursion, Searching and Sorting Algorithms

important techniques in many applications

George Wolberg, 2020 4

Importance (WHY)

Data Structures (how to organize data) and

Algorithms (how to manipulate data) are the cores of

today’s computer programming

The behavior of Abstract Data Types (ADTs) in our

Date Structures course is a cut-down version of

Standard Template Library (STL) in C++

Lay a foundation for other aspects of “real

programming” – OOP, Recursion, Sorting, Searching

George Wolberg, 2020 5

Goals (WHERE)

Implement these data structures as classes in C++

Determine which structures are appropriate in
various situations

Confidently learn new structures beyond what are
presented in this class

also learn part of the OOP and software
development methodology

understand the data types inside out

George Wolberg, 2020 6

Course Information (HOW)

Objectives

Data Structures, with C++ and Software Engineering

Textbook and References

Texbook: Data Structures and Other Objects Using C++ , by Michael Main

and Walter Savitch, 4th Ed., 2011.

Reference: C++ How to Program by Dietel & Dietel, 8th Ed., Prentice Hall 2011

Prerequisites
CSc103 C++ (Intro to Computing), CSc 104 (Discrete Math Structure I)

Assignments and Grading
6-7 programming assignments roughly every 2 weeks (50%)

2 in-class writing exams (50%)

Computing Facilities
PCs: Microsoft Visual C++ ; Unix / Linux : g++

also publicly accessible at Computer Science labs

http://www.cs.colorado.edu/~main/
http://cseng.awl.com/authordetail.qry?AuthorID=355
http://vig.prenhall.com/catalog/academic/product/1,4096,0130895717,00.html

George Wolberg, 2020 7

Tentative Schedule (HOW)
(14 weeks = 28 classes = 23 lectures + 3 reviews + 2 exams, 6-7 assignments)

Week 1. The Phase of Software Development (Ch 1)

Week 2. ADT and C++ Classes (Ch 2)

Week 3. Container Classes (Ch 3)

Week 4. Pointers and Dynamic Arrays (Ch 4)

Reviews and the 1st exam (Ch. 1-4)

Week 5. Linked Lists (Ch. 5)

Week 6 Template and STL (Ch 6)

Week 7. Stacks (Ch 7) and Queues (Ch 8)

Week 8. Recursion (Ch 9)

Reviews and the 2nd exam (Ch. 5-9)

Week 9/10. Trees (Ch 10, Ch 11)

Week 11. Searching and Hashing (Ch 12)

Week 12. Sorting (Ch 13)

Week 13. Graphs (Ch 15)

Reviews and the 3rd exam (mainly Ch. 10-13)

George Wolberg, 2020 8

Course Web Page

You can find all the information at

http://www-cs.ccny.cuny.edu/~wolberg/cs212/index.html

or via my web page:

http://www-cs.ccny.cuny.edu/~wolberg

-Come back frequently for the updating of lecture

schedule, programming assignments and exam schedule

- Reading assignments & programming assignments

http://www-cs.ccny.cuny.edu/~wolberg/cs212/index.html
http://www-cs.engr.ccny.cuny.edu/~wolberg

George Wolberg, 2020 9

Piazza

• All class-related discussion will be done on Piazza.

• Ask questions on Piazza (rather than via emails)

• Benefit from collective knowledge of classmates

• Ask questions when struggling to understand a concept.

• You can even do so anonymously.

Signup: piazza.com/ccny.cuny/fall2020/csc212kl

Class link: piazza.com/ccny.cuny/fall2020/csc212kl/home

George Wolberg, 2020 10

Outline

Course Objectives and Schedule

Information

Topics

Schedule

The Phase of Software Development

Basic design strategy

Pre-conditions and post-conditions

Running time analysis

George Wolberg, 2020 11

Phase of Software Development

Basic Design Strategy – four steps (Reading: Ch.1)

Specify the problem - Input/Output (I/O)

Design data structures and algorithms (pseudo code)

Implement in a language such as C++

Test and debug the program (Reading Ch 1.3)

Design Technique

Decomposing the problem

Two Important Issues (along with design and Implement)

Pre-Conditions and Post-Conditions

Running Time Analysis

George Wolberg, 2020 12

Preconditions and Postconditions

An important topic: preconditions and postconditions.

They are a method of specifying what a function

accomplishes.

Precondition and Postcondition Presentation copyright 1997, Addison Wesley Longman

For use with Data Structures and Other Objects Using C++ by Michael Main and Walter Savitch.

George Wolberg, 2020 13

Preconditions and Postconditions

Frequently a programmer must communicate

precisely what a function accomplishes,

without any indication of how the function

does its work.

Can you think of a situation

where this would occur ?

George Wolberg, 2020 14

Example

You are the head of a

programming team

and you want one of

your programmers to

write a function for

part of a project.

HERE ARE

THE REQUIREMENTS

FOR A FUNCTION THAT I

WANT YOU TO

WRITE.

I DON'T CARE

WHAT METHOD THE

FUNCTION USES,

AS LONG AS THESE

REQUIREMENTS

ARE MET.

George Wolberg, 2020 15

What are Preconditions and

Postconditions?

One way to specify such requirements is

with a pair of statements about the function.

The precondition statement indicates what

must be true before the function is called.

The postcondition statement indicates what

will be true when the function finishes its

work.

George Wolberg, 2020 16

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

George Wolberg, 2020 17

Example

The precondition and postcondition appear as comments in

your program.

They are usually placed after the function’s parameter list.

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

George Wolberg, 2020 18

Example

In this example, the precondition requires that

x >= 0

be true whenever the function is called.

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

George Wolberg, 2020 19

Example

write_sqrt(-10);

write_sqrt(0);

write_sqrt(5.6);

Which of these function calls

meet the precondition ?

George Wolberg, 2020 20

Example

Which of these function calls

meet the precondition ?

The second and third calls are fine, since

the argument is greater than or equal to zero.

write_sqrt(-10);

write_sqrt(0);

write_sqrt(5.6);

George Wolberg, 2020 21

Example

Which of these function calls

meet the precondition ?

But the first call violates the precondition,

since the argument is less than zero.

write_sqrt(-10);

write_sqrt(0);

write_sqrt(5.6);

George Wolberg, 2020 22

Example

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

George Wolberg, 2020 23

Another Example

bool is_vowel(char letter)

// Precondition: letter is an uppercase or

// lowercase letter (in the range 'A' ... 'Z' or 'a' ... 'z') .

// Postcondition: The value returned by the

// function is true if letter is a vowel;

// otherwise the value returned by the function is

// false.

George Wolberg, 2020 24

Another Example

is_vowel('A');

is_vowel(' Z');

is_vowel('?');

What values will be returned

by these function calls ?

George Wolberg, 2020 25

Another Example

is_vowel('A');

is_vowel(' Z');

is_vowel('?');

What values will be returned

by these function calls ?
true

false

Nobody knows, because the

precondition has been violated.

George Wolberg, 2020 26

Consequence of Violation

write_sqrt(-10.0);

is_vowel('?');

Who is responsible for the crash ?

Violating the precondition

might even crash the computer.

George Wolberg, 2020 27

Always make sure the

precondition is valid . . .

The programmer who calls the function is

responsible for ensuring that the precondition

is valid when the function is called.

AT THIS POINT, MY

PROGRAM CALLS YOUR

FUNCTION, AND I MAKE

SURE THAT THE

PRECONDITION IS

VALID.

George Wolberg, 2020 28

. . . so the postcondition becomes

true at the function’s end.

The programmer who

writes the function counts

on the precondition being

valid, and ensures that the

postcondition becomes

true at the function’s end.

The precondition is

enforced in C++ through

use of assert() function.

THEN MY FUNCTION

WILL EXECUTE, AND WHEN

IT IS DONE, THE

POSTCONDITION WILL BE

TRUE.

I GUARANTEE IT.

George Wolberg, 2020 29

A Quiz

You

The programmer who

wrote that Power

Supply function

Mayor Bloomberg

Suppose that you call a

function, and you neglect to

make sure that the precondition

is valid.

Who is responsible if this

inadvertently causes a 1-day

long blackout in NYC or other

disaster?

Out of Penn Station

The famous skyline was

dark on Aug 14th, 2003.

George Wolberg, 2020 30

A Quiz

You

The programmer who

calls a function is

responsible for

ensuring that the

precondition is valid.

Suppose that you call a

function, and you neglect to

make sure that the precondition

is valid.

Who is responsible if this

inadvertently causes a 1-day

long blackout in NYC or other

disaster?

Out of Penn Station

George Wolberg, 2020 31

On the other hand, careful

programmers also follow these rules:

When you write a function, you should

make every effort to detect when a

precondition has been violated.

If you detect that a precondition has been

violated, then print an error message and

halt the program.

George Wolberg, 2020 32

On the other hand, careful

programmers also follow these rules:

When you write a function, you should

make every effort to detect when a

precondition has been violated.

If you detect that a precondition has been

violated, then print an error message and

halt the program...

...rather than causing

a chaos.
The famous skyline was

dark on Aug 14th, 2003.

George Wolberg, 2020 33

Example

The assert function
(described in Section 1.1) is
useful for detecting violations
of a precondition.

void write_sqrt(double x)

// Precondition: x >= 0.

// Postcondition: The square root of x has

// been written to the standard output.

{

assert(x >= 0);

...

George Wolberg, 2020 34

Advantages of Using Pre- and Post-conditions

Concisely describes the behavior of a
function...

... without cluttering up your thinking with
details of how the function works.

At a later point, you may reimplement the
function in a new way ...

... but programs (which only depend on the
precondition/postcondition) will still work
with no changes.

George Wolberg, 2020 35

Summary of pre- and post-conditions

Precondition

The programmer who calls a

function ensures that the

precondition is valid.

The programmer who writes a

function can bank on the

precondition being true when

the function begins execution.

Careful programmers enforce

this anyway!

Postcondition

The programmer

who writes a

function ensures

that the

postcondition is

true when the

function finishes

executing.

George Wolberg, 2020 36

Phase of Software Development

Basic Design Strategy – four steps (Reading: Ch.1)

Specify Input/Output (I/O)

Design data structures and algorithms

Implement in a language such as C++

Test and debug the program (Reading Ch 1.3)

Design Technique

Decomposing the problem

Two Important Issues (along with design and
Implement)

Pre-Conditions and Post-Conditions

Running Time Analysis

George Wolberg, 2020 37

Running Time Analysis – Big O

Time Analysis

Fast enough?

How much longer if input gets larger?

Which among several is the fastest?

George Wolberg, 2020 38

Example : Stair Counting Problem

How many steps ?

Find it out yourself !

Eiffel Tower

1789 (Birnbaum)

1671 (Joseph Harriss)

1652 (others)

1665 (Official Eiffel Tower Website)

http://www.tour-eiffel.fr/teiffel/tour_uk/histodoc/page/pg_identite.html

George Wolberg, 2020 39

Example : Stair Counting Problem

Find it out yourself !

Method 1: Walk down and keep

a tally

Method 2 : Walk down, but let

Judy keep the tally

Method 3: Jervis to the rescue

Eiffel Tower

II y a

2689

marches

dan cet

escalier

vraiment!

共有

2689

级台阶

千真万确!

Down+1, hat, back, Judy make a mark

Each time a step down, make a mark

One mark per digit

There are

2689

steps in

this

stairway

(really!)

George Wolberg, 2020 40

Example : Stair Counting Problem

How to measure the time?

Just measure the actual time

vary from person to person

depending on many factors

Count certain operations

each time walk up/down, 1

operation

each time mark a symbol, 1

operation

Eiffel Tower

George Wolberg, 2020 41

Example : Stair Counting Problem

Find it out yourself !

Method 1: Walk down and keep a tally

Method 2 : Walk down, let Judy keep tally

Method 3: Jervis to the rescue

Eiffel Toweronly 4 marks !

2689 (down) + 2689 (up) + 2689 (marks)

= 8067

Down: 3,616,705 = 1+2+…+2689

Up: 3,616,705 = 1+2+…+2689

Marks: 2,689 = 1+1+…+1

7,236,099 !

George Wolberg, 2020 42

Example : Stair Counting Problem

Size of the Input : n

Method 1: Walk down and keep a tally

Method 2 : Walk down, let Judy keep tally

Trick: Compute twice the amount

and then divided by two

Method 3: Jervis to the rescue

Eiffel TowerThe number of digits in n = [log10 n]+1

3n

n+2(1+2+…+n) = n+(n+1)n = n2+2n

George Wolberg, 2020 43

Example : Stair Counting Problem

Big-O Notation – the order of the algorithm

Use the largest term in a formula

Ignore the multiplicative constant

Method 1: Linear time

Method 2 : Quadratic time

Method 3: Logarithmic time

Eiffel Tower

[log10 n]+1 => O(log n)

3n => O(n)

n2+2n => O(n2)

George Wolberg, 2020 44

A Quiz

Big-O notation

O(n2)

O(n2)

O(n2)

O(n)

O(log n)

Number of operations

n2+5n

100n+n2

(n+7)(n-2)

n+100

number of digits in 2n

George Wolberg, 2020 45

Big-O Notation

The order of an algorithm generally is more

important than the speed of the processor

Input size: n O(log n) O (n) O (n2)

of stairs: n [log10n]+1 3n n2+2n

10 2 30 120

100 3 300 10,200

1000 4 3000 1,002,000

George Wolberg, 2020 46

Time Analysis of C++ Functions

Example- Quiz (5 minutes)

Printout all item in an integer array of size N

Frequent linear pattern

A loop that does a fixed amount of operations N times
requires O(N) time

for (i=0; i< N; i++)

{

val = a[i];

cout << val;

}

2 C++

operations or

more?

George Wolberg, 2020 47

Time Analysis of C++ Functions

Another example

Printout char one by one in a string of length N

What is a single operation?

If the function calls do complex things, then count the
operation carried out there

Put a function call outside the loop if you can!

for (i=0; i< strlen(str); i++)

{

c = str[i];

cout << c;

}

O(N2)!

George Wolberg, 2020 48

Time Analysis of C++ Functions

Another example

Printout char one by one in a string of length N

What is a single operation?

If the function calls do complex things, then count the
operation carried out there

Put a function call outside the loop if you can!

N = strlen(str);

for (i=0; i<N; i++)

{

c = str[i];

cout << c;

}

O(N)!

George Wolberg, 2020 49

Time Analysis of C++ Functions

Worst case, average case and best case

search a number x in an integer array a of size N

Can you provide an exact number of operations?

Best case: 1+2+1

Worst case: 1+3N+1

Average case: 1+3N/2+1

for (i=0; (i< N) && (a[i] != x); i++);

if (i < N) cout << “Number ” << x << “is at location ” << i << endl;

else cout << “Not Found!” << endl;

George Wolberg, 2020 50

Testing and Debugging

Test: run a program and observe its behavior

input -> expected output?

how long ?

software engineering issues

Choosing Test Data : two techniques

boundary values

fully exercising code (tool: profiler)

Debugging… find the bug after an error is found

rule: never change if you are not sure what’s the error

tool: debugger

George Wolberg, 2020 51

Summary

Often ask yourselves FOUR questions

WHAT, WHY, WHERE & HOW

Topics – DSs, C++, STL, basic algorithms

Data Structure experts

Schedule – 23 lectures, 7 assignments, 2 exams

some credits (10) for attending the class

Information – website

Remember and apply two things (Ch 1)

Basic design strategy

Pre-conditions and post-conditions

Running time analysis

Testing and Debugging (reading 1.3)

George Wolberg, 2020 52

Reminder …

Lecture 2: ADT and C++ Classes

Reading Assignment before the next lecture:

Chapter 1

Chapter 2, Sections 2.1-2.3

Office Hours:

Tuesdays 12:00 pm - 1:00 pm

(Location: NAC 8/202N)

check website for details

George Wolberg, 2020 53

THE END

