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Abstract 

Photomosaics are images obtained from assembling a large 
number of small photographs called tiles. They were in- 
vented in 1995 by Rob Silvers while working on his ma+ 
ter’s thesis under Michael Hawley [7]. Besides their obvi- 
ous values in art and entertainment, photomosaics could 
potentially be useful in digital copyrighting, compression, 
and complexity theory. This paper proposes to measure i) 
the effectiveness of algorithms for generating photomosaics 
in terms of similarity to the original image, granularity of 
the individual tiles, and variety of the selected tiles; and ii) 
the costs of these algorithms in terms of running time and 
tile library size. The effectiveness and costs of two photo 
mosaic algorithms based on string matching techniques are 
studied. Results suggest various direct and inverse linear re- 
lationships between similarity, granularity, variety, and the 
library size. 

1 introduction 

A photomosaic of an image is obtained by assembling a large 
number of smaller unrelated photographs called tiles, so that 
each tile approximates a small block of the image. A good 
photomosaic is striking, because it cleverly puts together 
otherwise ordinary and unrelated features of the individual 
tiles into a coherent larger framework. Generating a photo- 
mosaic requires more effort than assembling a large number 
of plain black and white tiles to obtain a typical newspaper 
photograph. Photomosaics were invented by Rob Silvers, 
then a graduate student at the MIT Media Lab working on 
his master’s thesis. A nice collection of photomosaics has 
appeared in [7], as well as on the covers of recent issues of 
many magazines, ad campaigns, and movie posters (61. See 
Figures 7 and 8 for an example of photomosaics. 
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The introduction of (71 outlines a brief history of ideas 
leading to photomosaics. Making pictures using a restricted 
set of building blocks is an idea dated back to the works of 
the painter Giuseppe Arcimboldo in the 16th century (he 
particularly liked vegetables, games, and fish as building 
blocks). More recent literary works by Lewis Carroll [l] and 
John Hollander [2] contained shapes of animals assembled 
from English words, presumably by hand. The idea of us- 
ing a computer to help in the decomposition of a picture 
into building blocks was introduced by Ken Knowlton in his 
software DominoPix [3], which allows constructing portraits 
out of sets of dominoes (see also [4]). Silvers’ idea of us- 
ing photographs as building blocks took advantage of recent 
advances in semiconductor and storage technologies result- 
ing in powerful graphics workstations and vast databases of 
pictures. 

Besides their obvious applications in art and entertain- 
ment, photomosaics could potentially be useful in protecting 
digital copyrighted materials. For example, preview sam- 
ples of a proprietary picture can be prepared by making 
a photomosaic of it using a set of building blocks bearing 
the owner’s identification. This would give enough informa- 
tion about the picture and the owner and yet not enough 
for the picture to be used in other purposes. When viewed 
as a method of organizing information, photomosaics could 
have applications in compression and database technology. 
Photomosaics are also good exarnplea of the diagonalization 
technique in complexity theory (a photomosaic has some- 
thing in common with each tile) and may have further ap- 
plications in this field. 

The problem of generating good photomosaics has not 
been studied in a formal setting. One reaSOn is because the 
area is so new; not many implementations of photomosaics 
exist, and in fact, not much is known even about Silvers’ pro- 
prietary implementation. Another reason is that the quality 
of photomosaics depends in part on properties of the human 
visual system and thus must be studied empirically. For 
example, how closely must each tile approximate the corre- 
sponding block of the original image ? How large can each 
tile be before details in the original image are lost ? How 
many tiles must the library have ? How many times can a 
tile be used before the photomosaic becomes monotonous ? 

This paper proposes a quantitative method for studying 
algorithms for generating photomosaics by focusing on their 
effectiveness and costs, where 

0 effectiveness is measured in three aspects: similarity 
between the photomosaic and the original image, gran- 
da&y of details in each individual tile, and variety 
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of the selected tiles. Intuitively, a good photomosaic 
should resemble the original image and yet consists 
of tiles that are large enough and different enough to 
make the decomposition nonmonotonous; 

l costs are measured in two aspects: mnning time of 
the generation, and library size, the number of tiles 
available for selection. 

This framework is then used to study two photomosaic 
algorithms that are based on string matching techniques. 
Both algorithms seek to minimize a distance measure based 
on pixel values between a block of the original image and 
the selected tile. The first method treats the comparison as 
an exact matching problem. It computes for each tile the 
sum of all absolute differences in pixel values and selects the 
tile with the minimum sum. In contrast, the second method 
treats the comparison as an inexact matching problem. It 
treats each row of pixels in a tile as a string and performs a 
string alignment algorithm [8] to find the optimal alignment 
score between this row and the corresponding row in the 
original image. The selected tile has the maximum sum of 
the optimal scores for all rows. 

The two algorithms were used to generate photomosaics 
of a picture of Wushock, the Wichita State University mas- 
cot, using different tile dimensions and tile library sizes, and 
the running times, variety, and similarity were recorded. Va- 
riety was measured as the number of tiles actually used to 
create the photomosaic. Similarity was measured as the 
minimum distance in feet at which no significant difference 
could be perceived by the author between the original and 
the photomosaic. The LUG library was used to facilitate 
handling of graphics files in various formats [5]. Original 
images and tiles were in JPEG or GIF formats. Output 
photomosaics were generated in PBM format. 

The results obtained indicate that the minimum distance 
increases proportionally to the square root of the tile area, 
and that the minimum distance roughly decreases propor- 
tionally to the number of tiles used. The performance of 
the two algorithms was compared, and it was found that 
the first method has a faster running time, which is pro- 
portional to product of the area of the original image and 
the library size. In contrast, the running time of the sec- 
ond method is proportional to the product of the area of 
the original image, the library size, and the width of a tile. 
Moreover, photomosaics produced by the first method were 
more similar to the original image, but those produced by 
the second had more variety. 

The rest of this paper is organized as follows. Section 
2 describes the details of the two algorithms, Section 3 de- 
scribes the experiment setup and the results obtained, and 
Section 4 discusses the implications of this empirical study. 

2 Algorithms 

\ve describe in this section two algorithms for generating 
photomosaics based on string matching techniques. Neither 
algorithm attempts shape or edge analysis. Rather, each 
seeks to minimize a distance measure based purely on dif- 
ferences of pixel values. Recall that each pixel value is a 
triple of eight-bit binary numbers representing the intensity 
of its red, green, and blue components. The original image 
is divided into rectangular blocks of the same dimensions as 
the tiles; the leftover strips on the right and bottom edges 
are ignored. Both algorithms scan the blocks of the original 
image from left to right and top to bottom, replacing each 
block by a tile before considering the next. 

In the following we will denote the width and height of 
the original image as W and H, the width and height of a 
tile as w and h, and the number of tiles as T. 

2.1 Algorithm I: ~51 distance 

Perhaps the simplest method possible, this algorithm in its 
basic form replaces a rectangular block of the original image 
with the tile whose ~51 distance to the block is minimum. 
More precisely, denote a rectangular block of the ori inal 

5 image by the matrix Awxh, a tile k by the matrix TWX,,, 
and the red, green, and blue components of pixel A(i, j) by 
&(i,j), A,(i,j), and Ab(i,j) respectively. Then the algo- 
rithm seeks to minimize the following distance over all tiles 
in the library: d = mink ~~=, cj”=, IA,(i,j) - T,!(i,j)l + 

I-%(i,j) - Ti(i,j)l + IAb(i,j) - Tt(i,j)l. 
To increase the variety measure of the generated photo- 

mosaics, two modifications are made to the basic algorithm. 
First, a limit is imposed on the number of times a tile can be 
selected. Second, a minimum distance is required between 
any two copies of a tile. To implement these changes, the 
count and last selected position is maintained for each tile. 

Given an image of size WH and a library of T tiles of 
size wh, there are 0( wh u) blocks, and selecting the tile to 
replace each block takes O(Twh) time, so the total running 
time of this algorithm is 0( #Twh) = O(WHT). 

2.2 Algorithm II: Alignment 

This method treats the rows of a block of the original im- 
age as strings and computes the optimal alignment score 
between them and the corresponding rows of each tile. An 
alignment of two strings s and t (of possibly different lengths) 
is obtained inserting spaces in the strings so that their lengths 
become the same. Note that there are many possible align- 
ments. For example, two alignments of the strings “mas- 
tery” and “mars” are 

masters masters 
ma rs m ars 

The score of an alignment is computed by considering the 
pairs of characters given by the alignment: a match scores 
m, a mismatch scores d, and a gap scores g, where m, d, 
and g are some chosen values. For the above example, if 
m=l,d=-l,andg= -2, then the alignment scores are 
-2 and -4. Alignment scores are related to edit distances 
and are used to measure similarity between two almost iden- 
tical objects. Alignment is well suited for inexact matching 
and is used extensively in computational biology to detect 
relationships between DNA strands [8]. 

Back to the algorithm, where the strings are actually two 
rows of pixel values, the values of m, d, and g are chosen 
as 0, -(l&(i) - t,(j)1 + Is,(i) -t&)1 + tss(i) - tb(j)l), ad 
-30, respectively. Note that -3 * 2 < d < 0, and so the 
more negative values of g enforce more exact matching. 

The optimal alignment score between two rows of pixel 
values is the maximum score among all alignments. This 
value can be computed using dynamic programming. For- 
mally, given two rows s and t, define D(i, j) to be the optimal 
alignment score between the two subrows s[l..i] and t[l..j]. 
D(w, W) is the value we are looking for (recall that w is the 
width of the tiles). The following recurrence relation gives 
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us a method to compute the solution: 

I D(i,j - ij -30: 

The boundary conditions are given by D(1, i) = -i * 30 
and O(j, 1) = -j * 30. The elements of the matrix D can be 
computed by initializing the first row and column with the 
boundary conditions and then evaluating the elements from 
left to right and top to bottom. This is possible since the 
value of D(i, j) depends only on D(i - 1, j - l), D(i - 1, j), 
and D(i,j - 1). The running time of evaluating D(w, w) is 
O(w2). 

For each tile, the optimal alignment score is found for 
each row, and their sum computed. The tile having the 
largest sum is selected to replace the block of the original 
image under consideration. Again, to increase the variety 
measure, a limit is imposed on the number of times a tile 
can be used, as well as a minimal distance between any two 
copies of a tile. 

Given an original image of size WH and a library of 
T tiles of size wh, there are O(s) blocks, and select- 
ing the tile to replace each block takes O(Tw2h) time, so 
the total running time of this algorithm is O($fTw2h) = 
O(WHTw). 

3 Setup and Results 

The two algorithms were implemented in C in about 500 
lines of code. Support for handling different graphics file 
formats and for common graphics operations was provided 
by the LUG and JPEG libraries. The program received the 
names of the original image and tiles on its command line. 
The tiles were preprocessed and grouped into libraries of 
predetermined dimensions from raw photographs (in JPEG 
or GIF format) collected from webpages on the World Wide 
Web. Before the raw photographs were compressed, crop- 
ping was performed if necessary at the bottom edge and 
equally at the left and right edges to preserve the original 
aspect ratio. The program displayed the original image and 
successively replaced each block with the selected tile from 
left to right and top to bottom. At the end, the program 
output the photomosaic in PBM format and statistics such 
as number of blocks, and number of tiles used. The CPU 
time was measured with the built-in tcsh shell command 
time. 

The program was run on a Pentium 2 233MHz worksta- 
tion running Deb&r/GNU Linux 1.2 using a fixed original 
GIF image of Wushock, the Wichita University mascot (970 
pixels wide by 864 pixels high). Algorithms I and II were run 
on tile libraries of dimensions 16x12, 20x15, 24x18, 28x21, 
32x24, 40x30, 48x36, and 60x45. Each library contained 
2170 tiles obtained from the same set of photographs. Al- 
gorithm I was also run on tile libraries of dimensions 32x24. 
The sizes of these libraries were 128, 357, 739, 1162, and 
1642. The output photomosaics were then compressed us- 
ing xv to 50% of its original size (to fit on a 8.5x11 sheet) 
and printed with a Postscript printer. Each such printed 
copy was placed side by side with a copy of the original, 
and, the minimum distance at which no significant differ- 
ence between the two could be perceived by the author was 
recorded. The measurements are summarized in Figures 1, 
2, and 3. A selection of these photomosaics, compressed to 
12% of their original size, appears in Figures 4, 5, and 6. 

Tile Size CPU (sec.) Blocks Tiles Used Dist. (ft.) 
16x12 967 4320 1017 12 
20x15 1001 2736 704 17 
24x18 1040 1920 25 

Figure 1: Algorithm I on various tile dimensions (library 
size = 2170) 

0 Tile Size ( CPU (sec.) ) Blocks 1 Tiles Used 1 Dist. (ft.) 0 
n 16x12 I 7758 I 4320 I 1948 I 28 II 

Figure 2: Algorithm II on various tile dimensions (Library 
size = 2170) 

Library Size 1 CPU Time (see.) 1 Tiles Used 1 Dist. (ft.) ] 
n 128 I 47 I 128 I 52 1 

357 148 255 38 
739 333 293 37 
1162 536 332 36 
1642 765 362 31 

Figure 3: Algorithm I on various library sizes (tile dimen- 
sions = 32x24, 1080 blocks) 
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