
GENERATING PHOTOMOSAICS: AN EMPIRICAL STUDY

Nicholas TTan*

Keywords: photomosaics, dynamic programming, string
matching.

Abstract

Photomosaics are images obtained from assembling a large
number of small photographs called tiles. They were in-
vented in 1995 by Rob Silvers while working on his ma+
ter’s thesis under Michael Hawley [7]. Besides their obvi-
ous values in art and entertainment, photomosaics could
potentially be useful in digital copyrighting, compression,
and complexity theory. This paper proposes to measure i)
the effectiveness of algorithms for generating photomosaics
in terms of similarity to the original image, granularity of
the individual tiles, and variety of the selected tiles; and ii)
the costs of these algorithms in terms of running time and
tile library size. The effectiveness and costs of two photo
mosaic algorithms based on string matching techniques are
studied. Results suggest various direct and inverse linear re-
lationships between similarity, granularity, variety, and the
library size.

1 introduction

A photomosaic of an image is obtained by assembling a large
number of smaller unrelated photographs called tiles, so that
each tile approximates a small block of the image. A good
photomosaic is striking, because it cleverly puts together
otherwise ordinary and unrelated features of the individual
tiles into a coherent larger framework. Generating a photo-
mosaic requires more effort than assembling a large number
of plain black and white tiles to obtain a typical newspaper
photograph. Photomosaics were invented by Rob Silvers,
then a graduate student at the MIT Media Lab working on
his master’s thesis. A nice collection of photomosaics has
appeared in [7], as well as on the covers of recent issues of
many magazines, ad campaigns, and movie posters (61. See
Figures 7 and 8 for an example of photomosaics.

‘Department of Computer Science, Wichita State University, Wi-
chita, KS 67260-0083. Email: tranQcs .twu. edu.

Permission to nuke digital or hard copies of all or part of this W~C

for personal oc classroom use is ganted without fee ptovided that
copies are not made or distributed for profit o(commaciai
advantage and that copies bear this notice and the full citalion on
the first page. To copy otherwise, to republish, to post on servers
or IO redistribute to lists, requires prior specific permission and/a a
fee.
SAC ‘99, San Antonio, Texas
01998 ACM 148113-0864/99/0001 SS.00

The introduction of (71 outlines a brief history of ideas
leading to photomosaics. Making pictures using a restricted
set of building blocks is an idea dated back to the works of
the painter Giuseppe Arcimboldo in the 16th century (he
particularly liked vegetables, games, and fish as building
blocks). More recent literary works by Lewis Carroll [l] and
John Hollander [2] contained shapes of animals assembled
from English words, presumably by hand. The idea of us-
ing a computer to help in the decomposition of a picture
into building blocks was introduced by Ken Knowlton in his
software DominoPix [3], which allows constructing portraits
out of sets of dominoes (see also [4]). Silvers’ idea of us-
ing photographs as building blocks took advantage of recent
advances in semiconductor and storage technologies result-
ing in powerful graphics workstations and vast databases of
pictures.

Besides their obvious applications in art and entertain-
ment, photomosaics could potentially be useful in protecting
digital copyrighted materials. For example, preview sam-
ples of a proprietary picture can be prepared by making
a photomosaic of it using a set of building blocks bearing
the owner’s identification. This would give enough informa-
tion about the picture and the owner and yet not enough
for the picture to be used in other purposes. When viewed
as a method of organizing information, photomosaics could
have applications in compression and database technology.
Photomosaics are also good exarnplea of the diagonalization
technique in complexity theory (a photomosaic has some-
thing in common with each tile) and may have further ap-
plications in this field.

The problem of generating good photomosaics has not
been studied in a formal setting. One reaSOn is because the
area is so new; not many implementations of photomosaics
exist, and in fact, not much is known even about Silvers’ pro-
prietary implementation. Another reason is that the quality
of photomosaics depends in part on properties of the human
visual system and thus must be studied empirically. For
example, how closely must each tile approximate the corre-
sponding block of the original image ? How large can each
tile be before details in the original image are lost ? How
many tiles must the library have ? How many times can a
tile be used before the photomosaic becomes monotonous ?

This paper proposes a quantitative method for studying
algorithms for generating photomosaics by focusing on their
effectiveness and costs, where

0 effectiveness is measured in three aspects: similarity
between the photomosaic and the original image, gran-
da&y of details in each individual tile, and variety

105

of the selected tiles. Intuitively, a good photomosaic
should resemble the original image and yet consists
of tiles that are large enough and different enough to
make the decomposition nonmonotonous;

l costs are measured in two aspects: mnning time of
the generation, and library size, the number of tiles
available for selection.

This framework is then used to study two photomosaic
algorithms that are based on string matching techniques.
Both algorithms seek to minimize a distance measure based
on pixel values between a block of the original image and
the selected tile. The first method treats the comparison as
an exact matching problem. It computes for each tile the
sum of all absolute differences in pixel values and selects the
tile with the minimum sum. In contrast, the second method
treats the comparison as an inexact matching problem. It
treats each row of pixels in a tile as a string and performs a
string alignment algorithm [8] to find the optimal alignment
score between this row and the corresponding row in the
original image. The selected tile has the maximum sum of
the optimal scores for all rows.

The two algorithms were used to generate photomosaics
of a picture of Wushock, the Wichita State University mas-
cot, using different tile dimensions and tile library sizes, and
the running times, variety, and similarity were recorded. Va-
riety was measured as the number of tiles actually used to
create the photomosaic. Similarity was measured as the
minimum distance in feet at which no significant difference
could be perceived by the author between the original and
the photomosaic. The LUG library was used to facilitate
handling of graphics files in various formats [5]. Original
images and tiles were in JPEG or GIF formats. Output
photomosaics were generated in PBM format.

The results obtained indicate that the minimum distance
increases proportionally to the square root of the tile area,
and that the minimum distance roughly decreases propor-
tionally to the number of tiles used. The performance of
the two algorithms was compared, and it was found that
the first method has a faster running time, which is pro-
portional to product of the area of the original image and
the library size. In contrast, the running time of the sec-
ond method is proportional to the product of the area of
the original image, the library size, and the width of a tile.
Moreover, photomosaics produced by the first method were
more similar to the original image, but those produced by
the second had more variety.

The rest of this paper is organized as follows. Section
2 describes the details of the two algorithms, Section 3 de-
scribes the experiment setup and the results obtained, and
Section 4 discusses the implications of this empirical study.

2 Algorithms

\ve describe in this section two algorithms for generating
photomosaics based on string matching techniques. Neither
algorithm attempts shape or edge analysis. Rather, each
seeks to minimize a distance measure based purely on dif-
ferences of pixel values. Recall that each pixel value is a
triple of eight-bit binary numbers representing the intensity
of its red, green, and blue components. The original image
is divided into rectangular blocks of the same dimensions as
the tiles; the leftover strips on the right and bottom edges
are ignored. Both algorithms scan the blocks of the original
image from left to right and top to bottom, replacing each
block by a tile before considering the next.

In the following we will denote the width and height of
the original image as W and H, the width and height of a
tile as w and h, and the number of tiles as T.

2.1 Algorithm I: ~51 distance

Perhaps the simplest method possible, this algorithm in its
basic form replaces a rectangular block of the original image
with the tile whose ~51 distance to the block is minimum.
More precisely, denote a rectangular block of the ori inal

5 image by the matrix Awxh, a tile k by the matrix TWX,,,
and the red, green, and blue components of pixel A(i, j) by
&(i,j), A,(i,j), and Ab(i,j) respectively. Then the algo-
rithm seeks to minimize the following distance over all tiles
in the library: d = mink ~~=, cj”=, IA,(i,j) - T,!(i,j)l +

I-%(i,j) - Ti(i,j)l + IAb(i,j) - Tt(i,j)l.
To increase the variety measure of the generated photo-

mosaics, two modifications are made to the basic algorithm.
First, a limit is imposed on the number of times a tile can be
selected. Second, a minimum distance is required between
any two copies of a tile. To implement these changes, the
count and last selected position is maintained for each tile.

Given an image of size WH and a library of T tiles of
size wh, there are 0(wh u) blocks, and selecting the tile to
replace each block takes O(Twh) time, so the total running
time of this algorithm is 0(#Twh) = O(WHT).

2.2 Algorithm II: Alignment

This method treats the rows of a block of the original im-
age as strings and computes the optimal alignment score
between them and the corresponding rows of each tile. An
alignment of two strings s and t (of possibly different lengths)
is obtained inserting spaces in the strings so that their lengths
become the same. Note that there are many possible align-
ments. For example, two alignments of the strings “mas-
tery” and “mars” are

masters masters
ma rs m ars

The score of an alignment is computed by considering the
pairs of characters given by the alignment: a match scores
m, a mismatch scores d, and a gap scores g, where m, d,
and g are some chosen values. For the above example, if
m=l,d=-l,andg= -2, then the alignment scores are
-2 and -4. Alignment scores are related to edit distances
and are used to measure similarity between two almost iden-
tical objects. Alignment is well suited for inexact matching
and is used extensively in computational biology to detect
relationships between DNA strands [8].

Back to the algorithm, where the strings are actually two
rows of pixel values, the values of m, d, and g are chosen
as 0, -(l&(i) - t,(j)1 + Is,(i) -t&)1 + tss(i) - tb(j)l), ad
-30, respectively. Note that -3 * 2 < d < 0, and so the
more negative values of g enforce more exact matching.

The optimal alignment score between two rows of pixel
values is the maximum score among all alignments. This
value can be computed using dynamic programming. For-
mally, given two rows s and t, define D(i, j) to be the optimal
alignment score between the two subrows s[l..i] and t[l..j].
D(w, W) is the value we are looking for (recall that w is the
width of the tiles). The following recurrence relation gives

106

us a method to compute the solution:

I D(i,j - ij -30:

The boundary conditions are given by D(1, i) = -i * 30
and O(j, 1) = -j * 30. The elements of the matrix D can be
computed by initializing the first row and column with the
boundary conditions and then evaluating the elements from
left to right and top to bottom. This is possible since the
value of D(i, j) depends only on D(i - 1, j - l), D(i - 1, j),
and D(i,j - 1). The running time of evaluating D(w, w) is
O(w2).

For each tile, the optimal alignment score is found for
each row, and their sum computed. The tile having the
largest sum is selected to replace the block of the original
image under consideration. Again, to increase the variety
measure, a limit is imposed on the number of times a tile
can be used, as well as a minimal distance between any two
copies of a tile.

Given an original image of size WH and a library of
T tiles of size wh, there are O(s) blocks, and select-
ing the tile to replace each block takes O(Tw2h) time, so
the total running time of this algorithm is O($fTw2h) =
O(WHTw).

3 Setup and Results

The two algorithms were implemented in C in about 500
lines of code. Support for handling different graphics file
formats and for common graphics operations was provided
by the LUG and JPEG libraries. The program received the
names of the original image and tiles on its command line.
The tiles were preprocessed and grouped into libraries of
predetermined dimensions from raw photographs (in JPEG
or GIF format) collected from webpages on the World Wide
Web. Before the raw photographs were compressed, crop-
ping was performed if necessary at the bottom edge and
equally at the left and right edges to preserve the original
aspect ratio. The program displayed the original image and
successively replaced each block with the selected tile from
left to right and top to bottom. At the end, the program
output the photomosaic in PBM format and statistics such
as number of blocks, and number of tiles used. The CPU
time was measured with the built-in tcsh shell command
time.

The program was run on a Pentium 2 233MHz worksta-
tion running Deb&r/GNU Linux 1.2 using a fixed original
GIF image of Wushock, the Wichita University mascot (970
pixels wide by 864 pixels high). Algorithms I and II were run
on tile libraries of dimensions 16x12, 20x15, 24x18, 28x21,
32x24, 40x30, 48x36, and 60x45. Each library contained
2170 tiles obtained from the same set of photographs. Al-
gorithm I was also run on tile libraries of dimensions 32x24.
The sizes of these libraries were 128, 357, 739, 1162, and
1642. The output photomosaics were then compressed us-
ing xv to 50% of its original size (to fit on a 8.5x11 sheet)
and printed with a Postscript printer. Each such printed
copy was placed side by side with a copy of the original,
and, the minimum distance at which no significant differ-
ence between the two could be perceived by the author was
recorded. The measurements are summarized in Figures 1,
2, and 3. A selection of these photomosaics, compressed to
12% of their original size, appears in Figures 4, 5, and 6.

Tile Size CPU (sec.) Blocks Tiles Used Dist. (ft.)
16x12 967 4320 1017 12
20x15 1001 2736 704 17
24x18 1040 1920 25

Figure 1: Algorithm I on various tile dimensions (library
size = 2170)

0 Tile Size (CPU (sec.)) Blocks 1 Tiles Used 1 Dist. (ft.) 0
n 16x12 I 7758 I 4320 I 1948 I 28 II

Figure 2: Algorithm II on various tile dimensions (Library
size = 2170)

Library Size 1 CPU Time (see.) 1 Tiles Used 1 Dist. (ft.)]
n 128 I 47 I 128 I 52 1

357 148 255 38
739 333 293 37
1162 536 332 36
1642 765 362 31

Figure 3: Algorithm I on various library sizes (tile dimen-
sions = 32x24, 1080 blocks)

107

109

