Image Restoration using Multiresolution Texture Synthesis and Image Inpainting

CGI 2003

Hitoshi Yamauchi, Jörg Haber, and Hans-Peter Seidel

{hitoshi, haberj, hpseidel}@mpi-sb.mpg.de

Max-Planck-Institut für Informatik, Saarbrücken, Germany
Introduction : Motivation

Motivation
Introduction : Motivation

Motivation

- Repairing damaged images
 - scratches on pictures or old films
Introduction : Motivation

Motivation

- Repairing damaged images
 - scratches on pictures or old films
- Fill in missing part of images
 - Images synthesized by IBR, etc.
Introduction : Motivation

Motivation

- Repairing damaged images
 - scratches on pictures or old films
- Fill in missing part of images
 - Images synthesized by IBR, etc.
- Delete unwanted objects on an image
 - subtitles, logos, microphones, ...
Intro: Repairing damages

Repairing damaged images

- scratches on pictures or old films

Photo from:
“Image Inpainting,”
M. Bertalmío, et al.,
SIGGRAPH 2000.

http://www.ece.umn.edu/users/marcelo/restoration.html
Intro: Fill-in hole

Fill in missing part of images

- Images synthesized by IBR, etc.

White triangles:

- occlusions
- registration errors
- etc..
Intro : Delete objects

Delete unwanted objects on an image

- subtitles, logos, microphones, ...

When defects are only thin lines. The restoration is easy.

This is such an example.
Damaged pixels

What are damaged pixels? / How to detect them?
Damaged pixels

What are damaged pixels? / How to detect them?

- Image sequences: Assuming temporal coherence
Damaged pixels

What are damaged pixels? / How to detect them?

- Image sequences: Assuming temporal coherence

- One image: Hard to say
Damaged pixels

What are damaged pixels? / How to detect them?

• Image sequences: Assuming temporal coherence

• One image: Hard to say
 • Unwanted object can not be detected automatically
Damaged pixels

What are damaged pixels? / How to detect them?

- Image sequences: Assuming temporal coherence
- One image: Hard to say
 - Unwanted object cannot be detected automatically
- Here, we should manually specify restoration area
Image Restoration

- **Solving PDE:**
 - diffuses intensity from boundary pixels
 - can keep smoothness of image
 - can not reconstruct details

- **Texture synthesis:**
 - searches similar patterns and arranges them
 - can reconstruct details
 - can not reconstruct smoothness of image

Question

Can we combine both advantages without including disadvantages?
Image Restoration

- **Solving PDE:**
 - diffuses intensity from boundary pixels
 - can keep smoothness of image
 - can not reconstruct details

- **Texture synthesis:**
 - searches similar patterns and arranges them
 - can reconstruct details
 - can not reconstruct smoothness of image

Question

Can we combine both advantages without including disadvantages?
PDE method

- Anisotropic diffusion
 - *M. Bertalmío, et al.*, “Image Inpainting”, *SIGGRAPH 2000*
- Isotropic diffusion
- Interpolating height field with bicubic B-spline surface

\[\downarrow\]

Assuming image height field continuity
PDE method : Example (1)

Input Image

When defects are only thin lines. The restoration is easy.

This is such an example.
PDE method: Example (1)

Mask Image

When defects are only thin lines. The restoration is easy.

This is such an example.
PDE method : Example (1)

Image with Mask

When defects are only thin lines, the restoration is easy.

This is such an example.
PDE method : Example (1)

Fast Digital Image Inpainting : Gaussian diffusion
PDE method : Example (1)

Image Inpainting : Anisotropic diffusion
PDE method : Example (2)

Input Image
PDE method : Example (2)

Image with Mask
PDE method : Example (2)

Fast Digital Image Inpainting : Gaussian diffusion
PDE method : Example (2)

Image Inpainting : Anisotropic diffusion
PDE method : Hard case

Input Image
PDE method: Hard case

Image with Mask
PDE method : Hard case

Fast Digital Image Inpainting : Gaussian diffusion
PDE method : Hard case
Image Inpainting : Anisotropic diffusion
PDE method: Pros & Cons

PDE based methods

- Advantages:
 - Keeping boundary conditions
 - Keeping inside area's continuity
PDE method: Pros & Cons

PDE based methods

- Advantages:
 - Keeping boundary conditions
PDE method: Pros & Cons

PDE based methods

- Advantages:
 - Keeping boundary conditions
 - Keeping inside area’s continuity

- Disadvantages:
 - Too much smoothing inside the masked area
 - High frequency component is hard to reconstruct

Anisotropic diffusion tries to reconstruct high frequency part, but it is limited.
PDE method : Pros & Cons

PDE based methods

- Advantages :
 - Keeping boundary conditions
 - Keeping inside area’s continuity

- Disadvantages :
PDE method: Pros & Cons

PDE based methods

- Advantages:
 - Keeping boundary conditions
 - Keeping inside area’s continuity

- Disadvantages:
 - Too much smoothing inside the masked area
PDE method : Pros & Cons

PDE based methods

• Advantages :
 • Keeping boundary conditions
 • Keeping inside area’s continuity

• Disadvantages :
 • Too much smoothing inside the masked area
 • High frequency component is hard to reconstruct
PDE method : Pros & Cons

PDE based methods

- Advantages:
 - Keeping boundary conditions
 - Keeping inside area’s continuity

- Disadvantages:
 - Too much smoothing inside the masked area
 - High frequency component is hard to reconstruct
 → Anisotropic diffusion tries to reconstruct high frequency part, but it is limited
Texture synthesis (1)

What is a texture?
Texture synthesis (1)

What is a texture?
Texture synthesis (1)

What is a texture?

Texture: An image that exhibits spatial homogeneity
Texture synthesis (2)

Using spatial homogeneity for synthesis

Input
Texture synthesis (2)

Using spatial homogeneity for synthesis
Texture synthesis: Classification

- Procedure based
 - Fractal, Cellular textures (Fleischer 1995), Reaction diffusion (Turk 1991)
Texture synthesis: Classification

- Procedure based
 - Fractal, Cellular textures (Fleischer 1995), Reaction diffusion (Turk 1991)
- Statistics analysis and synthesis
 - Pyramid-Based Texture Analysis/Synthesis (Heeger 1995)
 - Texture Mixing and Texture Movie Synthesis Using Statistical Learning (Bar-Joseph 2001)
Texture synthesis: Classification

- Procedure based
 - Fractal, Cellular textures (Fleischer 1995), Reaction diffusion (Turk 1991)
- Statistics analysis and synthesis
 - Pyramid-Based Texture Analysis/Synthesis (Heeger 1995)
 - Texture Mixing and Texture Movie Movie Synthesis Using Statistical Learning (Bar-Joseph 2001)
- Non-parametric Sampling
 - Texture Synthesis by Non-parametric Sampling (Efros 1999)
 - Fast Texture Synthesis Using Tree-Structured Vector Quantization (Wei 2000)
Non-parametric Sampling (1)

Initialize target image with random color pixels
Non-parametric Sampling (1)

Search similar kernel (red shape) on seed image
transfer a pixel
Non-parametric Sampling (1)

Search similar kernel (red shape) on seed image
transfer a pixel
Non-parametric Sampling (1)

Search similar kernel (red shape) on seed image
transfer a pixel
Non-parametric Sampling (1)

Search similar kernel (red shape) on seed image transfer a pixel
Non-parametric Sampling (2)

- Advantage:

- Disadvantages:
 - Does not care about continuity/global structure
 - Not suitable for non-homogeneous textures
 - Many improvements
 - Multiresolution synthesis (Wei 2000, ...)
 - Coherent match method (Ashikhmin 2001)
 - Image Analogies (Hertzmann 2001)

...
Non-parametric Sampling (2)

- Advantage:
 - Can deal with high frequency components
Non-parametric Sampling (2)

- Advantage:
 - Can deal with high frequency components
- Disadvantages:
Non-parametric Sampling (2)

- **Advantage:**
 - Can deal with high frequency components

- **Disadvantages:**
 - Does not care about continuity/global structure
 - Not suitable for non-homogeneous textures
Non-parametric Sampling (2)

- Advantage:
 - Can deal with high frequency components

- Disadvantages:
 - Does not care about continuity/global structure
 - Not suitable for non-homogeneous textures

- Many improvements
 - Multiresolution synthesis (Wei 2000, ...)
 - Coherent match method (Ashikhmin 2001)
 - Image Analogies (Hertzmann 2001)
 - ...
Our method

Can we combine both advantages without including disadvantages?
Our method

Can we combine both advantages without including disadvantages?

- Low frequency part:
 Global structure/large gradient area
 ⇒ Solving PDE
Our method

Can we combine both advantages without including disadvantages?

- Low frequency part:
 Global structure/large gradient area
 ⇒ Solving PDE

- High frequency part:
 Texture/detail structure
 ⇒ Non-parametric Sampling
Can we combine both advantages without including disadvantages?

- Low frequency part:
 Global structure/large gradient area
 \[\Rightarrow\text{Solving PDE}\]

- High frequency part:
 Texture/detail structure
 \[\Rightarrow\text{Non-parametric Sampling}\]

- To combine both methods:
 \[\Rightarrow\text{Frequency decomposition}\]
The Algorithm

Input Image

- Red part will be reconstructed
The Algorithm

Fill in hole region with diffusion

- Scratch and Text region is well reconstructed
- Large area: Problematic
The Algorithm

Frequency Decomposition

- Using FFT (DCT)
The Algorithm

Extract High Frequency Part

- (High frequency image is gamma corrected)
The Algorithm

Multiresolution Analysis
The Algorithm

Reconstruct by Non-Parametric Sampling (Level 2)
The Algorithm

Reconstruct by Non-Parametric Sampling (Level 1)
The Algorithm

Reconstruct by Non-Parametric Sampling (Level 0)
The Algorithm

High Frequency part is reconstructed

Some Text

⇒

+

CGI 2003 – p. 19
The Algorithm

Combine them together
Comparison

input texture

Some Text

Some Text
Comparison

input texture
non-parametric sampling (texture synthesis)
Comparison

- **input texture**
- **non-parametric sampling (texture synthesis)**
- **image inpainting**
Comparison

input texture

non-parametric sampling (texture synthesis)

image inpainting

our method

Some Text

Some Text
Decomposition parameter (1)

- **Question**
 - What frequency is the low/high frequency?
 - How can we choose the frequency decomposition parameter?
- Frequency decomposition parameter: κ
 - Upper bound for the low frequencies
Decomposition parameter (1)

- **Question**
 - What frequency is the low/high frequency?
 - How can we choose the frequency decomposition parameter?
- Frequency decomposition parameter: κ
 Upper bound for the low frequencies

\[\kappa = 2 \quad \kappa = 4 \quad \kappa = 8 \quad \kappa = 16 \]
Decomposition parameter (2)

- Hypothesis
 1. If the low frequency part is sufficiently removed, the rest part is more like a texture
 2. Spatial homogeneity can be measured by autocorrelation
Decomposition parameter (2)

- **Hypothesis**
 1. If the low frequency part is sufficiently removed, the rest part is more like a texture
 2. Spatial homogeneity can be measured by autocorrelation

- **Method**
 - Calculate the autocorrelation matrices of each κ
 - Compute the SD (standard deviation) of the matrices
 - Experimentally, we choose κ at SD ≤ 0.001
Correlation between κ and SD

- Four example images (images will be shown up)
- SD is small when κ is large
Results : Painting

HELLO WORLD

BYE
Results : Painting
Results : Posters
Results : Posters
Results : Wall
Results: Wall
Results : Tables
Results: Tables
Results : Excursion 1
Results : Excursion 1
Results: Excursion 1
Results: Cablecar
Results: Cablecar
Results : Excursion 2

image
Results : Excursion 2

input
Results : Excursion 2

image inpainting
Results: Excursion 2

multiresolution texture synthesis
Results : Excursion 2

our method
Conclusion

- Propose a new image restoration method
 → Frequency decomposition for combining image inpainting and texture synthesis
 → A criterion for deciding the decomposition parameter κ
Conclusion

• Propose a new image restoration method
 → Frequency decomposition for combining image inpainting and texture synthesis
 → A criterion for deciding the decomposition parameter κ

• Future Work
Conclusion

• Propose a new image restoration method
 → Frequency decomposition for combining image inpainting and texture synthesis
 → A criterion for deciding the decomposition parameter κ

• Future Work
 • Fuzzy mask
 • Image inpainting guided texture synthesis
 → using image inpainting to suggest the transfer region
Conclusion

- Propose a new image restoration method
 → Frequency decomposition for combining image inpainting and texture synthesis
 → A criterion for deciding the decomposition parameter κ

- Future Work
 - Fuzzy mask
 - Image inpainting guided texture synthesis
 → using image inpainting to suggest the transfer region
 - Expand to 3D
Conclusion

- Propose a new image restoration method
 - Frequency decomposition for combining image inpainting and texture synthesis
 - A criterion for deciding the decomposition parameter κ
- Future Work
 - Fuzzy mask
 - Image inpainting guided texture synthesis
 - using image inpainting to suggest the transfer region
 - Expand to 3D
 - Image sequences
Conclusion

• Propose a new image restoration method
 → Frequency decomposition for combining image inpainting and texture synthesis
 → A criterion for deciding the decomposition parameter κ

• Future Work
 • Fuzzy mask
 • Image inpainting guided texture synthesis
 → using image inpainting to suggest the transfer region
 • Expand to 3D
 • Image sequences
 • Fill in 3D holes
Acknowledgements

- Source of some images (textures) are from:
 - Li-Yi Wei’s web page
 http://graphics.stanford.edu/~liyiwei/
 - David Heeger’s web page
 http://www.cns.nyu.edu/~david/
 - VisTex database
 http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
 - Cablecar photo by Goshima, Kazuhiro

Thank you and Questions?