A Toeplitz matrix is an \(n \times n \) matrix \(A = (a_{ij}) \) such that \(a_{ij} = a_{i-1,j-1} \) for \(i = 2, 3, \ldots, n \) and \(j = 2, 3, \ldots, n \) (in other words, entries remain constant along each diagonal of the matrix).

Give an algorithm that multiplies an \(n \times n \) Toeplitz matrix by a vector of size \(n \) in \(O(n \log n) \) time. To achieve this, you need to think of an efficient way to represent the matrix, and you will have to use the FFT algorithm.

Write a program that implements the "generic" \(O(n^2) \) matrix-vector multiplication, and a program that implements your algorithm above. Run your code on random samples of size \(n = 10^k \) for \(k = 2, 3, 4, 5, 6 \). Write a report describing the results of your experiments.

You are strongly encouraged to code the entire assignment from scratch. However, you are allowed to use "off-the-shelf" implementations of the FFT algorithm, provided you disclose any source you use for the solution of this assignment.