Problem 1: You are given as input a (directed, weighted) graph G and one of his minimum spanning trees T. Show how to update the MST if a new vertex with some adjacent edges are added to G. Analyze the correctness and the running time of your algorithm. Better credit will be given to faster algorithms.

Solution: Let T be the MST of G. Note that T has exactly n nodes (where n is the number of nodes in G) and $n - 1$ edges. When you add a new node v and some edges, you are adding at most n edges. Consider the graph G' which is T together with v and its edges. G' has $n + 1$ nodes and at most $2n - 1$ edges. Run any MST algorithm (e.g. Prim’s algorithm) and get a new MST T' for G'. If you use Prim’s algorithm (with a heap implementation for the priority queue) this will cost $O(E \log V)$, but since in this case $E = O(n)$ we have that the update costs $O(n \log n)$.

If the number of edges attached to v is small (say k) then we can do this in $O(k \log k + kn)$ which is $O(n)$ for constant k. All you have to do is: first sort the the new edges by weight ($O(k \log k)$ cost). Then add each edge smallest weight first and remove the heaviest edge from any cycle you create. To follow the cycle takes $O(n)$ hence the running time.

Problem 2: What happens when you run Johnson’s algorithm on a graph that has all positive weights on its edges? What are the values of the functions $h(v)$ and $\hat{w}(e)$ for any node v and edge e?

Solution: Nothing happens! Recall that Johnson’s algorithm adds a node s to the graph and edges (s, v) for all nodes $v \in V$. Those edges will be given weight 0. Then the function $h(v)$ is defined as the shortest distance from s to v in the new graph. But since all other edges are positive, we have that the shortest path is the new edge that we added with weight 0, so $h(v) = 0$. Remember then that if $e = (u, v)$ we have that

$$\hat{w}(e) = w(e) + h(u) - h(v)$$

and therefore $\hat{w}(e) = w(e)$ in this case.

Problem 3: As described in the book and in class, the Floyd-Warshall algorithm requires $O(n^3)$ space since it stores the matrices d^k_{ij} for all $i, j, k \in [1..n]$. Show a way to reduce the space requirement of the algorithm to $O(n^2)$.

Solution: Look carefully at the code for the Floyd-Warshall algorithm: you will see that to compute d^k_{ij} you only need d^{k-1}_{ij} and d^{k-2}_{ij} and therefore it is enough too only keep the last two copies of the matrices d_{ij} (i.e. once you compute d^2_{ij}, you can erase d^0_{ij} and so on ...)