Problem 1: A min-max spanning tree of an undirected weighted graph G, is a spanning tree T for G that minimizes the weight of the "heaviest" edge in T. In other words: define $\text{max}_e(T) = \max_{e \in T} [w(e)]$ (rather than the sum of the weight of the edges in T as in the notion of minimum spanning tree we saw in class).

- Prove that a minimum spanning tree is also a min-max spanning tree;
- Show that you can find a min-max tree in linear time $O(|V| + |E|)$

Problem 2: We saw in class Dijkstra’s algorithm is asymptotically faster than the Bellman-Ford algorithm to find shortest paths, but it requires all edges to be non-negative.

- Show an example of a graph with some edges with negative weights where Dijkstra’s algorithm fails to find a shortest path;
- Let $G = (V, E)$ be a weighted graph with weight function w and some edges with negative weights. Let W be the minimum weight in the graph with $w < 0$. Then for each edge $e \in E$ change the weight function to $w'(e) = w(e) - W$. Note that now all edges are non-negative according to the weight function w'. Now run Dijkstra’s algorithm on this graph. What happens? Is the shortest path according to w' be the same as the one according to w. Why?

Problem 3: After graduating from City College you moved to a successful career as a data analyst on Wall Street. You notice that there is a potential fortune to be made in currency trading by analyzing real-time currency exchange rates to find a way to turn $1 into more than $1 by a sequence of trades. For example suppose that $1 can buy 1.3EUR and that 1EUR buys .9 Swiss Francs, and that 1 Swiss Franc buys .86$ then by engaging in those trades you would end up with $1.0062.

Given n currencies c_1, \ldots, c_n and a table of mutual exchange rates, show an algorithm that finds such a sequence of trades, i.e. a sequence of currencies c_{i_1}, \ldots, c_{i_k} such that one unit of currency c_{i_1} is transformed into $k > 1$ units of the same currency, after being traded according to the sequence c_{i_1}, \ldots, c_{i_k}.

Analyze the correctness and running time of your algorithm.