Problem 1: The following problem arises in the context of DNA analysis. Let \(\Sigma \) be an alphabet. Given two strings \(X = \langle x_1, x_2, \ldots, x_n \rangle \) and \(Y = \langle y_1, \ldots, y_m \rangle \) over \(\Sigma \) we are looking for the longest common subsequence of \(X \) and \(Y \).

We say that \(Z = \langle z_1, \ldots, z_k \rangle \) is a subsequence of \(X \) if there exists a strictly increasing sequence of indices \(< i_1, \ldots, i_k > \) such that \(x_{i_j} = z_j \) for all \(j = 1, \ldots, k \). Note that a subsequence does not have to be formed of adjacent elements in the original string: for example if \(X = \langle a, b, c, b, d, a, b \rangle \) then \(Z = \langle b, c, d, b \rangle \) is a valid subsequence (the indices that correspond to \(Z \) in \(X \) are \(2, 3, 5, 7 \)).

Given a dynamic programming algorithm to compute the longest common subsequence of \(X \) and \(Y \).

Problem 2: You are working at the cash register at the local supermarket and you have to make change for \(n \) cents. To save time (and be nice to your customers) you want to do that with the fewest number of coins.

- Describe a greedy algorithm to make change when the coins in the drawer are the usual U.S. coin denominations: quarters, dimes, nickels and pennies. Argue that the greedy algorithm yields an optimal solution.

- What if you were working in the country of Powerpolis where coins denominations are \(c^0, c^1, c^2, \ldots, c^k \) for some integer \(c > 1 \) and \(k \leq 1 \). Does the greedy algorithm still yield an optimal solution?

- Show an example of a set of coin denominations for which the greedy algorithm does not yield an optimal solution.

Problem 3: A sequence of \(n \) operations is performed on a data structure. The \(i^{th} \) operation costs \(i \) if \(i \) is a power of 2, otherwise it costs 1. Determine the total cost of the sequence of operations, and the amortized cost per operation. You can assume that \(n \) is a power of 2.