

Problem 1: Suppose you have one machine and a set of \(n \) jobs \(a_1, a_2, ..., a_n \) to process on that machine. Each job \(a_j \) has a processing time \(t_j \), a profit \(p_j \) and a deadline \(d_j \). The machine can process only one job at a time, and job \(a_j \) must run uninterrupted for \(t_j \) consecutive time units. If job \(a_j \) is completed by its deadline \(d_j \), you receive profit \(p_j \), but if it is completed after its deadline, you receive a profit of 0. Give an algorithm to find the schedule that obtains the maximum amount of profit, assuming that all processing times are integers between 1 and \(n \). What is the running time of your algorithm?

Problem 2: Given a graph \(G = (V, E) \) a subset \(U \subseteq V \) of nodes is called a node cover if each edge in \(E \) is adjacent to at least one node in \(U \). Given a graph, we do not know how to find the minimum node cover in an efficient manner. But if we restrict \(G \) to be a tree, then it is possible. Give a greedy algorithm that finds the minimum node cover for a tree. Analyze its correctness and running time.

A tree is a connected graph with no cycles, i.e. where any pair of nodes is connected by a simple path.

Problem 3: Let’s revisit the binary search trees from the previous homework. They are augmented with the following information. At each node \(x \) we also store \(m(x) \): the number of nodes in the subtree rooted at \(x \) (including \(x \)). This time we relax our balance requirement to be that for every node \(x \) in the tree \(m(L(x)) \leq \alpha m(R(x)) \) or \(m(R(x)) \leq \alpha m(L(x)) \) for a constant \(1/2 \leq \alpha < 1 \). We call these tree \(\alpha \)-balanced.

- Prove that \(h = O(\log n) \) where \(h \) is the height of a \(\alpha \)-balanced tree with \(n \) nodes.
- Show how to make an arbitrary binary search tree into an \(\alpha \)-balanced one for \(\alpha = 1/2 \)
- Start from a 1/2-balanced tree. Do insertion and deletions. When the tree is not \(\alpha \)-balanced anymore, bring it back to 1/2 balanced. Show that inserting and deleting cost \(O(\log n) \) time in an amortized sense.