Problem 1: The following problem arises in the context of DNA analysis. Let Σ be an alphabet. Given two strings $X = <x_1, x_2, \ldots, x_n>$ and $Y = <y_1, \ldots, y_m>$ over Σ we are looking for the longest common subsequence of X and Y.

We say that $Z = <z_1, \ldots, z_k>$ is a subsequence of X if there exists a strictly increasing sequence of indices $<i_1, \ldots, i_k>$ such that $x_{i_j} = z_j$ for all $j = 1, \ldots, k$. Note that a subsequence does not have to be formed of adjacent elements in the original string: for example if $X = <a, b, c, b, d, a, b>$ then $Z = <b, c, d, b>$ is a valid subsequence (the indices that correspond to Z in X are $2, 3, 5, 7$).

Given a dynamic programming algorithm to compute the longest common subsequence of X and Y.

Solution: We use dynamic programming. Let $LCS[i, j]$ be the LCS (longest common subsequence) of the string $X_i = <x_1, x_2, \ldots, x_i>$ and $Y_j = <y_1, \ldots, y_j>$. Obviously $LCS[1, j]$ is equal to 1 if x_1 appears in Y_j, and 0 otherwise. Similarly $LCS[i, 1]$ is equal to 1 if y_1 appears in X_i, and 0 otherwise.

Now consider what happens if we want to fill $LCS(i, j)$ with $i, j \geq 2$. There are two cases to examine:

- If $x_i = y_j$ then $LCS(i, j) = 1 + LCS(i-1, j-1)$. That’s because the LCS of
- If $x_i \neq y_j$ then $LCS(i, j) = \max[LCS(i-1, j), LCS(i, j-1)]$

Both equations follow from the fact that the LCS problem has the ”optimal subproblem structure”. Indeed if $x_i = y_j$ then let $s = LCS(i, j)$; it must be that s ends with x_i (which is equal to y_j) otherwise it would not be the LCS(i, j). Let \hat{s} be the string s after you drop x_i from it. Obviously this must be the LCS($i-1, j-1$) indeed if $s' \neq \hat{s}$ with $|s'| \geq |\hat{s}|$ was the LCS($i-1, j-1$) then s' concatenated with x_i would be a longer LCS(i, j) and that contradicts $s = LCS(i, j)$. Similarly for the case $x_i \neq y_j$: if $s = LCS(i, j)$ it must be that s is either the LCS($i-1, j$) or LCS($i, j-1$) because x_i and y_j don’t match so there is no LCS that takes them both.

This gives us a dynamic programming algorithm to compute LCS(n, m) by filling the LCS(\cdot, \cdot) by row and column order (i.e. we fill row 2, then column 2, then row 3, then column 3 – since we are assured to always have the entries that we need). The running time is $O(nm)$ since filling the first row takes $O(nm)$, similarly for the first column, and then filling the rest of the matrix takes constant work per entry.

Problem 2: You are working at the cash register at the local supermarket and you have to make change for n cents. To save time (and be nice to your customers) you want to do that with the fewest number of coins.

- Describe a greedy algorithm to make change when the coins in the drawer are the usual U.S. coin denominations: quarters, dimes, nickels and pennies. Argue that the greedy algorithm yields an optimal solution.
- What if you were working in the country of Powerpolis where coins denominations are $c ^ 0, c ^ 1, c ^ 2, \ldots, c ^ k$ for some integer $c > 1$ and $k \geq 1$. Does the greedy algorithm still yields an optimal solution?
- Show an example of a set of coin denominations for which the greedy algorithm does not yield an optimal solution.

Solution:

- Let q, d, n, p be the number of quarters, dimes, nickels and pennies respectively in the optimal solution when you have to make changes for N cents. First we are going to prove that the optimal solution must satisfy certain properties.

 1. $p < 5$. If $p \geq 5$ then the solution could be improved by removing 5 pennies and replacing them with a nickel.
2. If \(n \geq 2 \) then the solution could be improved by removing 2 nickels and replacing them with a dime.

3. If \(d = 2 \) then \(n = 0 \). Indeed if \(d \geq 3 \) then the solution could be improved by removing 3 dimes and replacing them with a quarter and a nickel. Moreover if \(d = 2 \) and \(n \geq 1 \) then the solution could be improved by removing 2 dimes and a nickel and replacing them with a quarter.

We now prove that there is only one possible solution satisfying the above, and that this solution is the greedy solution. The first three conditions imply that \(d + n + p < 25 \). Therefore \(q = \lfloor N/25 \rfloor \) which is exactly the choice made by the greedy algorithm. Conditions 1-2 imply that \(n + p < 10 \) therefore \(d = \lfloor (N - 25q)/10 \rfloor \) which also is the choice made by the greedy algorithm. Since \(p < 5 \) then we have that \(n = \lfloor (N - 25q - 10d)/10 \rfloor \) again the choice made by the greedy algorithm. Obviously \(p \) is now fully determined as the one in the greedy algorithm.

- The analysis in this case is the same as in the previous case. First of all we prove that if \(n_i \) is the number of coins of denomination \(c^i \) in the optimal solution, then it must be that \(n_i < c \) (otherwise the solution could be improved by removing \(c \) coins of denomination \(c^i \) and replacing them with a single coin of denomination \(c^{i+1} \)). Then we prove that there is only one solution that satisfy this condition and that’s the greedy solution. Indeed the above means that for all \(i \)

\[
\sum_{j=0}^{i-1} n_j c^j < c^i
\]

Note that this uniquely determines \(n_k \) as \(\lfloor N/c^k \rfloor \). This the choice made by the greedy algorithm. You can continue to argue this in descending order of \(i \).

- There are many ways to solve this, but one possible solution is denominations 1, 11, 12 and \(N = 22 \). The optimal solution uses 2 coins, but then greedy algorithm uses 11.

Problem 3: A sequence of \(n \) operations is performed on a data structure. The \(i^{th} \) operation costs \(i \) if \(i \) is a power of 2, otherwise it costs 1. Determine the total cost of the sequence of operations, and the amortized cost per operation. You can assume that \(n \) is a power of 2.

Solution: Assume \(n = 2^k \) and therefore \(k = \log n \). Let \(A \) be the set of integers between 1 and \(n \) which are not powers of 2. Obviously \(A = \{j : j \neq 1, 2, \ldots, 2^i, \ldots, 2^k \} \) and therefore \(|A| = n - k \). We have that the total cost is

\[
\sum_{i \in A} 1 + \sum_{i=0}^{k} 2^i = (n - k) + \frac{2^{k+1} - 1}{2 - 1} = n - k + 2^{k+1} - 1 = O(n)
\]

the last equation comes from the fact that \(k = \log n \). This means that the amortized cost per operation is \(O(1) \).