Problem 1: You are given two arrays A and B containing elements from a set U. Create two lists D and S such that S contain all the singles (i.e. elements that appear only in A or only in B), and D contains all the doubles (i.e. elements appearing in both A and B). Your algorithm should run in linear time (i.e. $O(n)$ where $n = |A| + |B|$).

Solution: Hash all the elements of A into a hash table of size n resolving collisions using a linked list. Assuming simple uniform hashing each slot will have an average of $O(1)$ elements. Now hash the elements of B. If an element of B hashed into an empty slot put it in S. If the element hashes into an occupied slot, then check if it appears in the list. If it does not, then you add it to S. If it does appear in the list, that means the element is also in A, therefore you add it to D and remove it from the hash table. At the end all the elements left in the hash table are singles (since they are elements of A that do not appear in B) and can be added to S. The running time is expected $O(n)$ since we hash each element once, and the search takes expected $O(1)$.

Problem 2: Assume simple uniform hashing. After hashing n keys into a table of size m, what is the expected number of collisions (in the entire table)?

Solution: The probability that a pair of keys collide is $\frac{1}{m}$. There are $\frac{n(n-1)}{2}$ distinct pairs, so the expected number of collisions is $\frac{n(n-1)}{2m}$.

Problem 3: Assume that you are searching for a key k in a binary search tree T, and that you find k in a leaf. The search process partition the tree T in three disjoint parts: A the nodes to the left of the search path, B the search path itself, and C the nodes to the right of the search path. Prove or disprove: for any $a \in A, b \in B, c \in C$ we have that $a \leq b \leq c$.

Solution: The statement is false. Here is a counterexample. Search for 14 in the tree below. The key 11 is to the left of the root but is larger.

```
    10
   /  \
  8   12
 /     \
6     9   11  14
```