Problem 1: Given a set A of n distinct integers we want to find the median of A, i.e. the element $a \in A$ such that

$$|\{ x \in A : x \leq a \}| - |\{ x \in A : x > a \}| \leq 1$$

(the above is a fancy way to state that a is the element such that A has the same number of elements which are smaller than a and larger than a, with the difference of 1 allowed to account for an odd number n of total elements).

- Give a deterministic $\Theta(n \log n)$ algorithm to find the median of A [2pts];
- Give a randomized algorithm that finds the median in expected $O(n)$ time. [8pts]

Solution:

- A $\Theta(n \log n)$ algorithm can be achieved by first sorting the array A (using say MERGE-SORT) and then selecting the median as $A[k]$ where $k = \frac{n+1}{2}$ if n is odd, and $k = \frac{n}{2}$ if n is even.
- We are going to show an algorithm $\text{Statistic}(A, j)$ that finds the j^{th} element in the array, i.e. the element a such that $|\{ x \in A : x \leq a \}| = j$. Then it will be sufficient to invoke $\text{Statistic}(A, k)$ where k is defined as above.

Our algorithm works like randomized QUICKSORT. It chooses a random "pivot" p and then divides the array in two parts: A_S of the elements smaller than the pivot and A_L of those larger than the pivot. If $|A_S| = j - 1$ then it returns the pivot as the j^{th} element. If $|A_S| > j - 1$ then obviously, the j^{th} element in A is also the j^{th} element in A_S. Finally if $|A_S| < j - 1$ then the j^{th} element in A is the ℓ^{th} element in A_L where $\ell = j - 1 - |A_S|$. The last two cases are dealt by calling the algorithm recursively on the appropriate input.

$$\text{Statistic}(A, j)$$

$$u \leftarrow \text{Random}(1, n)$$
$$p \leftarrow A[u]$$
$$A_S \leftarrow \{ a \in A : a < p \};$$
$$A_L \leftarrow \{ a \in A : a > p \};$$
$$\text{If } |A_S| > j - 1 \text{ Then Return } \text{Statistic}(A_S, j);$$
$$\text{If } |A_S| = j - 1 \text{ Then Return } p;$$
$$\text{If } |A_S| < j - 1 \text{ Then}$$
$$\ell \leftarrow j - 1 - |A_S|;$$
$$\text{Return } \text{Statistic}(A_L, \ell);$$

To analyze the running time we note that the first four lines of the algorithm take $f(n) = \Theta(n)$ time since we must read the entire array A to divide it into A_S and A_L.

We then note that for every m between j and $n - 1$ we recurse on an array of size m with probability $1/n$ (this is when we recurse on A_S). Also for every m between 1 and $j - 1$ we recurse on an array of size $n - m$ with probability $1/n$ (this is when we recurse on A_L). Finally with probability $1/n$ we do not recurse at all. So the expected running time $\tilde{T}(n)$ of $\text{Statistic}(A, j)$ is

$$\tilde{T}(n) = \frac{1}{n} f(n) + \frac{1}{n} \sum_{m=j}^{n-1} [\tilde{T}(m) + f(n)] + \frac{1}{n} \sum_{m=1}^{j-1} [\tilde{T}(n - m) + f(n)]$$

or

$$\tilde{T}(n) = \frac{1}{n} \sum_{m=j}^{n-1} \tilde{T}(m) + \frac{1}{n} \sum_{m=1}^{j-1} \tilde{T}(n - m) + f(n)$$
Let c_1, n_0 be the constants such that $f(n) < c_1 n$ for $n > n_0$. Then let’s assume that $\tilde{T}(m) < c_2 m$ for $m < n$.

By using the substitution method we get that for $n > n_0$

$$\tilde{T}(n) < \frac{c_2}{n} \left[\sum_{m=j}^{n-1} m + \sum_{m=1}^{j-1} (n-m) \right] + c_1 n = \frac{c_2}{n} \left[\sum_{m=1}^{n-1} m + (j-1)(n-j) \right] + c_1 n$$

where the left end side is derived by noting that

$$\sum_{m=j}^{n-1} m + \sum_{m=1}^{j-1} (n-m) = \sum_{m=1}^{n-1} m - \sum_{m=1}^{j-1} m + \sum_{m=1}^{j-1} (n-m) = \sum_{m=1}^{n-1} m + \sum_{m=1}^{j-1} (m-j) + \sum_{m=1}^{j-1} (n-m)$$

Note that $(j-1)(n-j)$ is maximized by $j = n/2$ and that $\sum_{m=1}^{n-1} m = n(n-1)/2$ so we get

$$\tilde{T}(n) < \frac{c_2}{2} (n-1) + \frac{c_2}{2} \left(\frac{n}{2} - 1 \right) + c_1 n = \left(c_1 + \frac{3}{4} c_2 \right) n - c_2 < c_2 n$$

provided that $c_2 > 4c_1$.

The above proves that $\tilde{T}(n) < c_2 n$ for $n > n_0$ and therefore that $\tilde{T}(n) = O(n)$.

Problem 2: A different way to randomize QUICK-SORT is to use the deterministic version of QUICK-SORT over a 'randomized' array, according to the following pseudo-code

PERMUTE-QUICK-SORT(A)

\[B \leftarrow \text{RANDOM-PERMUTE}(A); \]
\[\text{RETURN QUICK-SORT}(B) \]

- Under what conditions on the procedure RANDOM-PERMUTE will PERMUTE-QUICK-SORT run in $O(n \log n)$ steps? [2pts]

- Consider the following procedure

SHIFT-PERMUTE(A)

\[n \leftarrow |A|; \]
\[s \leftarrow \text{RANDOM}(1, n); \]
\[\text{FOR } i = 1 \text{ TO } n \]
\[j \leftrightarrow s + i \mod n; \]
\[B[j] \leftarrow A[i]; \]
\[\text{RETURN } B \]

What is the expected running time of PERMUTE-QUICK-SORT if you use SHIFT-PERMUTE in place of RANDOM-PERMUTE? [4pts]

- Give your own implementation of RANDOM-PERMUTE that will make PERMUTE-QUICK-SORT run in $O(n \log n)$ steps. [4pts]

Solution:

- A sufficient condition for PERMUTE-QUICK-SORT to run in $O(n \log n)$ steps is that the output of RANDOM-PERMUTE is uniformly distributed among all possible permutations of the array A. In other words given a permutation of the elements of A, that permutation is output by RANDOM-PERMUTE with probability $\frac{1}{n!}$.

- We note first of all that SHIFT-PERMUTE does not output all possible $n!$ permutations of A (each with probability $\frac{1}{n!}$). Rather, it outputs only n of those permutations (the one resulting from a simple shift), each with probability $\frac{1}{n}$. This lack of "entropy" in the distribution of the output will not "destroy" a worst-case input causing a running time of $\Theta(n^2)$ on some inputs.
Consider the case of an array which is already sorted. For \(i = 1, \ldots, n \), with probability \(\frac{1}{n} \) \textsc{Shift-Permute} will bring the \(m \)th element to the first slot of the array, i.e. the pivot position. That means that we will partition the array into two arrays of size \(m - 1 \) and \(n - m \) respectively. Because of the way \textsc{Partition} works those arrays will also be already sorted: that’s because \textsc{Partition} reads the array \(A \) in order and appends elements to the appropriate array as it reads them. Notice that when the algorithm recurses it does not randomize the array anymore: \textsc{Permute-Quick-Sort} makes only one random choice at the beginning and then calls the deterministic \textsc{QuickSort} algorithm. So the running time of the recursive calls will be quadratic. The expected running time is therefore

\[
\bar{T}(n) = \frac{1}{n} \sum_{m=1}^{n} [T_{QS}(m - 1) + T_{QS}(n - m) + \Theta(n)]
\]

Where \(T_{QS}(m) \) is the running time of deterministic quicksort on an array of size \(m \). As we saw in class this is the same as

\[
\bar{T}(n) = \frac{2}{n} \sum_{m=1}^{n-1} T_{QS}(m) + \Theta(n)
\]

We know that \(T_{QS}(m) = \Theta(m^2) \) and therefore

\[
\bar{T}(n) = \frac{2}{n} \sum_{m=1}^{n-1} \Theta(m^2) + \Theta(n) = \Theta(m^2)
\]

The last step follows from the fact that

\[
\sum_{m=1}^{n} m^2 < cn^3
\]

for a constant \(c \), which can be proven by induction. Indeed this is true for \(n = 1 \) since \(\sum_{m=1}^{1} m^2 = 1 < cn^3 = c \) for \(c > 1 \). Then assume it’s true for \(n - 1 \), we have that

\[
\sum_{m=1}^{n} m^2 = n^2 + \sum_{m=1}^{n-1} m^2 < n^2 + c(n - 1)^3 = cn^3 - (3c - 1)n^2 + 3cn - 1 < cn^3
\]

provided that

\[(3c - 1)n^2 - 3cn + 1 > 0\]

which is true for sufficiently large \(n \).

• Following the answer to the first question, we need to make sure that \textsc{Random-Permутe} outputs a permutation chosen uniformly at random among all possible permutations of \(n \) elements. A way to do this is to select \(n \) random element between 1 and \(n \) without repetition. So choose the first one at random, then choose the second one at random among the remaining ones and so on.

Problem 3: Let \(a \) and \(b \) be two \(n \) bit numbers (assume for simplicity that \(n \) is a power of 2).

• Describe the ”grade school” algorithm to multiply \(a \) and \(b \) and show that it requires \(O(n^2) \) steps; [2pts]

• Describe a divide-and-conquer algorithm with an asymptotically faster running time. [8pts]

Solution:

• The grade school algorithm requires pair-wise multiplications of all the digits in the two numbers, which is why it requires \(O(n^2) \) steps (since there are \(n^2 \) possible pairs). More specifically let \(a_0 \ldots a_{n-1} \) and \(b_0 \ldots b_{n-1} \) be bits such that \(a = \sum_i a_i 2^i \) and \(b = \sum_i b_i 2^i \). Let \(c_{ij} = a_j b_i \). We construct \(n \) numbers, each \(n \)-bit long

\[
c^{(k)} = \sum_i c_{ki} 2^i
\]
and
\[ab = \sum_k c^{(k)}2^k \]
The computation of the \(c_{ji} \) takes \(O(n^2) \).

- Split \(a \) and \(b \) into the top and bottom half of the bits. Then
\[a = \hat{a} + \bar{a}2^{n/2} \quad \text{and} \quad b = \hat{b} + \bar{b}2^{n/2} \]
where \(\hat{a}, \bar{a}, \hat{b}, \bar{b} \) are \(n/2 \)-bit numbers. We have that
\[ab = \alpha + 2^{n/2}\beta + 2^n\gamma \]
where
\[\alpha = \hat{a}\hat{b} \quad \beta = \hat{a}\bar{b} + \bar{a}\hat{b} \quad \gamma = \bar{a}\bar{b} \]
A trivial implementation of this algorithm would recurse four times on inputs of size \(n/2 \) to compute the four cross products. Since the additions can be done in \(\Theta(n) \) time we would have the recurrence
\[T(n) = 4T(n/2) + \Theta(n) = \Theta(n^2) \]
by the Master Method. So this approach does not improve on the grade school algorithm.

However notice what happens if we compute
\[\delta = (\hat{a} + \bar{a})(\hat{b} + \bar{b}) = \alpha + \beta + \gamma \]
Which means that we can recurse only three times on input of size \(n/2 \) to compute \(\alpha, \beta, \delta \) and then compute \(\beta = \delta - \alpha - \gamma \) to obtain \(ab \). Since all additions can be computed in \(\Theta(n) \) the running time of this algorithm satisfies the recurrence
\[T(n) = 3T(n/2) + \Theta(n) = \Theta(n^\log_3 3) \]
which is asymptotically faster than \(\Theta(n^2) \).