CSc 220: Algorithms
Homework 2 Solutions

Problem 1: A different way to randomize QUICK-SORT is to use the deterministic version of QUICK-SORT
over a 'randomized’ array, according to the following pseudo-code

PERMUTE-QUICK-SORT(A)
B +— RANDOM-PERMUTE(A);
RETUR N QUICK-SORT(DB)

e Give a sufficient condition on the procedure RANDOM-PERMUTE that will make PERMUTE-QUICK-
SORT run in O(nlogn) steps. [6pts]

e Consider the following procedure

SHIFT-PERMUTE(A)
n < |Af;
s <= RaNDOM(1, n);
Fori=1Ton
J < s+ 1 mod n;
BIj] « Alil;
RETURN B

What is the expected running time of PERMUTE-QUICK-SORT if you use SHIFT-PERMUTE in place of
RANDOM-PERMUTE? [4pts]

Solution:

e A sufficient condition for PERMUTE-QUICK-SORT to run in O(nlogn) steps is that the output of
RANDOM-PERMUTE is uniformly distributed among all possible permutations of the array A. In other
words given a permutation of the elements of A, that permutation is output by RANDOM-PERMUTE
with probability %

e We note first of all that SHIFT-PERMUTE does not output all possible n! permutations of A (each with
probability %) Rather, it outputs only n of those permutations (the one resulting from a simple shift),
each with probability % This lack of ”entropy” in the distribution of the output will not ”destroy” a
worst-case input causing a running time of ©(n?) on some inputs.

Consider the case of an array which is already sorted. For ¢ = 1,...,n, with probability 1/n SHIFT-
PERMUTE will bring the m** element to the first slot of the array, i.e. the pivot position. That means
that we will partition the array into two arrays of size m — 1 and n — m respectively. Because of the
way PARTITION works those arrays will also be already sorted: that’s because PARTITION reads the
array A in order and appends elements to the appropriate array as it reads them. Notice that when
the algorithm recurses it does not randomize the array anymore: PERMUTE-QUICK-SORT makes only
one random choice at the beginning and then calls the deterministic QUICKSORT algorithm. So the
running time of the recursive calls will be quadratic. The expected running time is therefore

T(n) =~ [Tos(m —1) + Tgs(n —m) + O(n)]

m=1

S

Where Tpg(m) is the running time of deterministic quicksort on an array of size m. As we saw in class
this is the same as

We know that Tgs(m) = ©(m?) and therefore

=23 6m?) + 6(n) = 6(m?)

m=1

The last step follows from the fact that

Z mQ < C’T'L3

m=1

for a constant ¢, which can be proven by induction. Indeed this is true for n = 1 since Zinzl m? =

1 < en® = ¢ for ¢ > 1. Then assume it’s true for n — 1, we have that

Zmz Z <n?+cn—12=cn®— Bc—1)n*+3cn —1 < cn®
m=1 m=1

provided that
(Bc—1)n* =3cn+1>0

which is true for sufficiently large n.

Problem 2: Let a and b be two n bit numbers (assume for simplicity that n is a power of 2).
e Describe the "grade school” algorithm to multiply @ and b and show that it requires O(n?) steps; [2pts]
e Describe a divide-and-conquer algorithm with an asymptotically faster running time. [8pts]
Solution:

e The grade school algorithm requires pair-wise multiplications of all the digits in the two numbers,
which is why it requires O(n?) steps (since there are n? possible pairs). More specifically let ag . .. a,_1
and by . ..b,_1 be bits such that a = Zl a;2" and b = Zz b;2'. Let cj; = ajb;. We construct n numbers,

each n-bit long
F) = Z Ci2°
i

and
ab = Z (k) ok
3
The computation of the c;; takes O(n?).

e Split a and b into the top and bottom half of the bits. Then

a=a+a2"? and b=b+ b2"/?

where G, @, b, b are n/2-bit numbers. We have that
ab=a+2"28+ 2"y

where R - R -
a=ab f=ab+ab y=ab

A trivial implementation of this algorithm would recurse four times on inputs of size n/2 to compute
the four cross products. Since the additions can be done in ©(n) time we would have the recurrence

T(n) = 4T (n/2) + O(n) = O(n?)

by the Master Method. So this approach does not improve on the grade school algorithm.

However notice what happens if we compute
§=(a+a)b+b)=a+p+~

Which means that we can recurse only three times on input of size n/2 to compute «, 8,6 and then
compute 3 = § — o — 7y to obtain ab. Since all additions can be computed in O(n) the running time of
this algorithm satisfies the recurrence

T(n) = 3T(n/2) + O(n) = O(n'*=?)

which is asymptotically faster than ©(n?).

Problem 3: You are given n samples of a chemical compound. While they look identical, some of them
have in fact been contaminated. You have a testing machine that given two samples can detect if they are
the same or not. You also know that most of the samples (a majority of them) are identical. Find one of
those identical samples making no more than n tests with your machine (a.k.a. comparisons).

Solution: Order the n samples arbitrarily as s1, s2,...,$,. Then for each odd i, compare s; with s;;1. If
they are equal, then keep just one of the two samples. If they are different, drop both of them. Repeat the
above process until you are left with just one element, and output that element as a member of the majority.

First, let’s prove that this algorithm terminates with less than n comparisons. Note indeed that at each
step the number of sample is reduced by at least half, so the number of comparisons 7" is

n n
T<—-—+—-4...42<n
<ot tet2<
We need to prove that the algorithm is correct. Let m be the number of ”"majority samples” (m-samples
in the rest), so m > n/2. The "nonmajority samples” (nm-samples) then are n — m < n/2.
Note that at the end of each iteration those samples will still be the majority of the samples left. Let’s
prove it for the first iteration: the others will follow analogously. To see that, let

e a be the number of pairs composed of a nm-sample and an m-sample: those are both dropped from
the pool;

e b the number of pairs composed by both m-samples. Of those 1 sample remains in the pool;

e ¢c = n/2 —a— b the number of pairs composed of both nm-samples. We do not know exactly what
happens in this case (depends if the pair is of identical elements or not) but we know that at most ¢/2
elements remain in the pool

The total number of elements left in the pool is at most %b, with /2 m-samples. Note that b > ¢ since the
number of m-samples is m = a + 2b, while the number of nm-samples is a + 2¢. So the m-samples are still
the majority after each iteration. This implies that the last element left must be an m-sample.

