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Abstract—Hardware Accelerators are playing increasingly 

important roles in achieving desired performance from 

desktop to cluster computing. While General Purpose 

computing on Graphics Processing Units (GPGPU) 

technologies have been widely applied to computing intensive 

applications, there is relatively little work on using GPUs and 

GPU-accelerated clusters for data intensive computing that 

typically involves significant irregular data accesses. In this 

study, we report our designs and implementations of a popular 

geospatial operation called Zonal Histogramming on Nvidia 

GPUs. Given a zonal dataset in the form of a collection of 

polygons and a geospatial raster that can be considered as a 2D 

grid, for each polygon, Zonal Histogramming computes a 

histogram of the values of raster cells that fall within the 

polygon. Our experiments on 3000+ US counties (polygons) 

over 20+ billion NASA Shuttle Radar Topography Mission 

(SRTM) 30 meter resolution Digital Elevation Model (DEM) 

raster cells have shown that, an impressive 46 seconds end-to-

end runtime can be achieved using a single Nvidia GTX Titan 

GPU device. The runtime is further reduced to ~10 seconds 

using 8 nodes on ORNL’s Titan GPU-accelerated cluster.  The 

desired high performance opens many possibilities for large-

scale geospatial computing that is important for environmental 

and climate research.  

Keywords - Zonal Histogramming, Geospatial Rasters, Point-in-

Polygon Test, Parallel Computing, GPU 

I.  INTRODUCTION 

Progresses in remote sensing technologies and 

increasing global and regional climate modeling have 

generated large amount of geo-referenced raster data with 

high spatial, temporal, spectral or thematic resolutions. Very 

often these large-scale raster data needs to be aligned to 

different types of zones, such as administrative and 

ecological regions, to derive per-zone histograms to 

understand the distributions of a specific environmental 

variable better in the zones. These histograms can further be 

used as feature vectors for more sophisticated analysis, such 

as computing various distance measurements which can be 

used for subsequent clustering. Such zone-based 

histogramming can be treated as an extension to traditional 

Zonal Statistics processing [1], a geospatial operation that 

has been extensively supported in various Geographical 

Information Systems (GIS) and remote sensing software 

packages where only major statistics, such as min, max, 

average, count and standard deviation, are reported as a 

table with each row corresponds to a zone. While the 

performance of the Zonal Statistics operations (including 

zonal histogramming) is typically acceptable for small 

datasets, significant performance issues may arise for zonal 

histogramming on large-scale rasters and complex polygons. 

In this study, we aim at developing a new 

technique that can make full use of GPU accelerators to 

speed up Zonal Histogramming in both personal and cluster 

computing environments. Given a raster and a polygon 

input layers, our technique has four steps in computing the 

histograms of raster cells that fall within polygons. Each of 

the following four steps are mapped to GPU hardware by 

identifying its inherent data parallelisms (1) dividing an 

input raster into tiles and compute per-tile histograms, (2) 

pairing raster tiles with polygons and determining 

inside/intersect raster tiles for each polygon, (3) aggregating 

per-tile histograms to per-polygon histograms for inside 

raster blocks, and (4) updating polygon histograms for raster 

cells that are inside respective polygons through point-in-

polygon test by treating raster cells in intersecting raster 

tiles as points.   

Experiment results have shown that our GPU-

based parallel Zonal Histogramming technique on 3000+ 

US counties (polygonal input) over 20+ billion NASA 

Shuttle Radar Topography Mission (SRTM) 30 meter 

resolution Digital Elevation (DEM) Model raster cells [2] 

has achieved impressive end-to-end runtimes: 46 seconds on 

a low-end workstation equipped with an Nvidia GTX Titan 

GPU. Furthermore, using the same test datasets, our 

approach has achieved 60-70 seconds using a single 

computing node and about 10 seconds using 8 nodes on the 

Titan supercomputer located at the Oak Ridge National 

Laboratory (ORNL) [3]. The results clearly demonstrate the 

potentials of using massively data parallel GPU accelerators 

for large-scale geospatial processing and can serve as a 

concrete example of designing and implementing popular 

geospatial data processing techniques on new parallel 

hardware to achieve desired performance. 
 The rest of the paper is arranged as the following. 

Section 2 introduces background, motivation and related 
work. Section 3 presents the set of parallel designs that are 
capable of utilizing GPU accelerator processing power for 
Zonal Histogramming and their realizations on GPUs and 
cluster computers. Section 4 provides experiment results on 
NASA SRTM 30 meter resolution DEM data on both a 



single workstation and multiple computing nodes on Titan 
GPU-accelerated cluster. Finally Section 5 is the conclusion 
and future work. 

II. BACKGROUND, MOTIVATION AND RELATED WORK 

Geospatial processing has been undergoing a 

paradigm shift in the past few years. Advancements in 

remote sensing technology and instrumentation have 

generated huge amounts of remotely sensed imagery from 

air- and space-borne sensors. In recent years, numerous 

remote sensing platforms for Earth observation with 

increasing spatial, temporal and spectral resolutions have 

been deployed by NASA, NOAA and the private sector. The 

next generation geostationary weather satellite GOES-R 

(whose first lunch is scheduled in 2016) will improve the 

current generation weather satellite by 3, 4 and 5 times with 

respect to spectral, spatial and temporal resolutions [4]. 

With a temporal resolution of 5 minutes, GOES-R generates 

288 global coverages everyday for each of its 16 bands. At a 

spatial resolution of 2km, each coverage and band 

combination has 360*60 cells in width and 180*60 cells in 

height, i.e., nearly a quarter of a billion cells. While 30-

meter resolution Landsat Thematic Mapper (TM) data is 

already freely available over the Internet from USGS [5], 

sub-meter resolution satellite imagery is becoming 

increasing available, with a global coverage in a few days 

[6]. Numerous environmental models, such as Weather 

Research and Forecast (WRF), have generated even larger 

volumes of geo-referenced raster model output data with 

different combinations of parameters, in addition to 

increasing spatial and temporal resolutions. For example, 

the recent simulation of Superstorm Sandy on National 

Science Foundation (NSF) Blue Waters supercomputer at 

the National Center for Supercomputing Applications 

(NCSA) has a spatial resolution of 500 meters and a 2-

second time step running at 9120*9216*48 three-

dimensional grid (approximately 4 billion raster cells) with 

a single output file as large as 264 GB [7]. Geospatial data 

at such large scales is well beyond the capacity of most 

commercial and open source GIS systems which are 

primarily designed for traditional uniprocessors based on 

serial algorithms.  

On the other hand, mainstream computer 

architectures have also gone through major changes. The 

past few years have witnessed fast growing numbers of 

processor cores (or multi-core CPUs) in personal computing 

systems. Another technical trend is the emerging General 

Purpose computing on Graphics Processing Units (GPGPU) 

techniques that first appeared in 2007 when Nvidia released 

its Compute Unified Device Architecture (CUDA) 

computing platform for its many-core GPUs for general 

purpose computing [8]. While ASCI Red, the world’s first 

supercomputer with 1 teraflops double precision floating 

point computing power is made up of 104 cabinets and 

occupied 1600 sq feet in 1996 [9], the latest Nvidia Tesla 

K40 GPUs released in late 2013 can be plugged into a 

computer or a cluster computing node as PCI-E peripheral 

devices with even higher computing power [10]. Despite 

that a few studies have exploited the computing power of 

GPU accelerators for large-scale geospatial processing (see 

[11] for a brief review), there are still considerable gaps 

between the parallel computing power on modern 

commodity hardware and the achievable performance that 

mainstream geospatial processing software can offer. 

Previous investigations on parallelization of geospatial 

operations in 1990s are either based on shared-nothing or 

shared-memory parallel computing model [12] and most of 

them relied on coarse-grained task-level parallelisms. More 

recently, MapReduce/Hadoop based techniques have 

attracted significant research and application interests 

[13,14]. Although Hadoop-based systems can achieve good 

scalability, they typically have low efficiency with respect 

to system resource utilization [15] and may not be able to 

achieve the desired high-performance. In this study, we aim 

at developing data parallel techniques for Zonal 

Histogramming that can scale across multiple computing 

platforms, including GPUs and GPU-accelerated clusters 

that are made of identical computing nodes equipped with 

GPUs. By extensively exploiting data parallelisms in 

geospatial processing, raster and polygon data can be 

chunked in flexible ways and mapped to parallel hardware.    

It is clear that Zonal Histogramming is closely 

related to point-in-polygon test which has been extensively 

studied in computational geometry [16]. If we treat all raster 

cells as points, the coordinates of the corners or centers of 

raster cells can be computed easily and it is straightforward 

to perform Zonal Histogramming on top of point-in-polygon 

test. However, point-in-polygon test is typically expensive 

as the complexity is generally proportional to the number of 

polygon vertices for a single test. When the number of raster 

cells and/or the number of polygon vertices are large, it 

would be inefficient to perform such test on all or even a 

subset of raster cells. In spatial databases, an operation 

similar to Zonal Histogramming is a Spatial Join [17] based 

on point-in-polygon test. To process such spatial joins 

efficiently, a common practice is to index both points and 

polygons so that only neighboring points and polygons are 

paired up in the Spatial Filtering phase before point-in-

polygon tests are actually applied in the Spatial Refinement 

phase [17]. As detailed in Section III, our approach 

essentially indexes geospatial raster tiles implicitly so that 

only raster cells in tiles that intersect polygon boundaries 

require point-in-polygon tests which results in significant 

savings of computation.  

III. GPU-BASED PARALLEL DESIGNS AND 

IMPLEMENTATIONS 

Given a Raster R with cell cij at row i and column j having 

an integer value vij, where 0<i<M, 0<j<N and 0<vij<B, and a 

collection of polygons P, for each polygon Pk, we want to 

derive a histogram Hk with B bins where Hk
b
 is the number 

of cells that geometrically intersect with Pk and vij=b. Our 



technique has four steps and each step can be realized on 

GPUs in parallel. The overall procedure is illustrated in Fig. 

1. While the details of each step will be provided in Sections 

III.A through III.D, we would like to note that Step 1 

(lower-left of Fig. 1) is used to derive per-tile histograms, 

which is independent of the polygon dataset. Step 2 is 

designed for spatial filtering to pair up polygons with 

nearby raster tiles. In Step 3, histograms of tiles that are 

completely within polygons are added to the respective 

polygon histograms directly. Finally, point-in-polygon test 

is performed for all the cells in raster tiles that intersect with 

polygon boundaries and polygon histograms are updated 

accordingly. 

A. Per-Tile Histogram Generation 

After a raster is loaded into GPU memory, a 

natural way to generate per-tile histograms is to assign each 

raster tile to a GPU thread block (left part of Fig. 2). We 

consider the following two factors that may potentially 

impact system performance, i.e., tile size and counting 

approaches.   

There are tradeoffs in determining tile sizes. Using 

a large tile size will require less memory to store per-tile 

histograms but is likely to generate more tiles that intersect 

polygon boundaries which subsequently require more point-

in-polygon tests for all cells in these tiles. For the NASA 

SRTM case study presented in Section IV, we empirically 

set the tile size to 0.1 by 0.1 degree. As such, given that 

SRTM DEM data has a spatial resolution of approximately 

30 meters (1/3600 degree), each tile has 360 cells along both 

latitude and longitude directions. As the majority of raster 

cells have values less than 5000 (elevation in meters), we set 

the number of histogram bins to 5000. For a 5 by 5 degree 

raster, using an integer (4 bytes) for a bin count, the memory 

footprint for all the per-tile histograms would be 

50*50*5000*4 bytes = 50MB. This is acceptable as all 

GPUs used in our experiments have at least 5GB memory.  
As shown in the code segment in the right part of Fig. 2, 

all the threads in a thread block work in parallel to first zero-
out histogram bins (line 3) before updating counts in 
respective bins. As the number of threads in a thread block 
(e.g., 256) is typically smaller than the number of bins and 
the number of cells, the threads need to loop through the 
histogram bins (line 2) and raster cells (line 6) with a stride 
of blockDim.x, which is the number of threads in the block. 
We note that accessing to global variables raw_d and 
his_d_raster, which store the input raster tile and the output 
histogram for the idx

th
 tile, is largely coalesced as 

neighboring threads access nearby array elements (line 4 and 
line 10). We could have forced d_TILE_SIZE, which is the 
tile size (360 in SRTM data) to be multiples of blockDim.x 
for even better memory access; however, we have decided to 
allow users to set it arbitrarily for better programmability. 
We also leave exploring the possibility of pre-sorting tile 
cells using a better ordering (e.g., Morton Code [18]) to 
preserve spatial proximity and achieve better memory 
accesses (regardless whether the number of threads divides 
the number of columns in a raster tile) for future work.  

For histograms with large numbers of bins (e.g., 

greater than 256), it is impractical any more to allocate a 

histogram to each thread for counting before the per-thread 

histograms are aggregated into a single per-block (i.e., per 

tile) histogram in a thread block. Given that the performance 

of atomic operations has been significantly improved in the 

latest Nvidia Kepler architecture, we have opted to use 

atomicAdd operator to simplify per-tile histogram 

generation (line 11), although more sophisticated techniques 

may potentially improve the performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overall Design of Data Parallel Zonal Histogramming on GPUs  
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Fig. 2 Illustration and Code Segmentation for Step 1: Deriving Per-Tile Histogram  

 

B. Pairing Raster Tiles with Polygons 

The role of pairing raster tiles with polygons is similar to 
spatial filtering in spatial databases [17]. By observing that 
tiles in a raster can naturally serve as a grid-file for spatial 
indexing, we propose to reuse the GPU-based simple grid-
file indexing technique that we have developed for point 
data. While we refer to [19] for design and implementation 
details, for the sake of completeness, we would like to 
reiterate the key points of the GPU-based data parallel 
pairing technique. The idea is to rasterize the Minimum 
Bounding Box (MBB) of all polygons according to the 
spatial tessellation of raster tiles. After each of the polygon 
MBBs are decomposed into a set of raster tiles, a polygon is 
paired with one or more raster tiles. Since MBBs are simple 
approximations of polygons, the relationship between a 
polygon and a raster tile can be one of the three cases: 
outside (0), inside (1) and intersect (2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Illustration of Integrating of Per-Tile Aggregation 

and Per-Cell Modification to Derive Per-Polygon Histogram 
 
As shown in Fig. 3, we do not need to anything for tiles 

that are outside of the polygon being tested, as cells in these 

tiles should not be counted. For raster tiles that are 
completely within a polygon, we can simply combine the 
per-tile histograms into the per-polygon histograms. 
However, for raster tiles that intersect with the polygon, we 
will have to test whether a cell is inside a polygon and decide 
whether to count the cell in the per-polygon histogram, 
which is detailed in Section III.D. Although parallelizing 
tile-in-polygon test on GPUs is quite complicated as reported 
in our previous studies [20], this step (Step 2) typically 
incurs only a small fraction of overall runtimes. As such, 
practically, we can realize this step on CPUs using well-
established computational geometry libraries and transfer the 
results back to GPUs for subsequent processing.  

C. Aggregating Completely-Inside Per-tile histograms 

Conceptually, Step 3 is the most embarrassingly 
parallelizable step among the four steps. However, given a 
array of tile-in-polygon test results with each element has a 
value of either 0 (outside), 1 (inside) and 2 (intersect), we 
need the following post-processing before the aggregation. 
First, the arrays of polygon MBB identifiers and raster tile 
identifies need to be sorted based on tile-in-polygon test 
results and polygon identifies so that all the tiles that are 
completely within a polygon become adjacent in the sorted 
arrays for better GPU memory accesses. Second, the 
numbers of raster tiles that are completely within polygons 
need to be counted. This can be realized by combining 
parallel primitives, including stable_sort_by_key, 
stable_partition and reduce_by_key provided in the Thrust 
library that comes with CUDA SDK, which can be simpler 
than using native parallel programming language such as 
CUDA directly. While we refer to [11] for more details on 
parallel primitives and their applications in geospatial 
computing, the left side of Fig. 4 illustrates the four parallel 
primitives by using a simple example. 

__global__ void CellAggrKernel(ushort* raw_d, uint* his_d_raster) 
{ 

1 int idx=blockIdx.y*gridDim.x+blockIdx.x; 

2 for(int k=0;k<HIST_SIZE;k+=blockDim.x) 
 { 

3     if(k+threadIdx.x>=HIST_SIZE) continue; 

4       his_d_raster[idx*HIST_SIZE+k+threadIdx.x]=0; 
     } 

 5    __syncthreads(); 

  
6 for(int k=0;k<d_TILE_SIZE*d_TILE_SIZE;k+=blockDim.x) 

 { 

7  if(k+threadIdx.x>=d_TILE_SIZE*d_TILE_SIZE) continue; 
8  int p=k+threadIdx.x; 

9  //compute cell index based on p and store it in s 

10  ushort v=raw_d[s];     

11  atomicAdd(&(his_d_raster[idx*HIST_SIZE+v]),1); 

12       __syncthreads();         

     } 

} 



For the GPU kernel that aggregates per-tile 

histograms, we assign a thread block to process a polygon. 

The kernel code segment is shown in the right part of Fig. 4 

with arrays residing in global memory highlighted. For each 

block, we can retrieve the polygon identifier (pid), the 

number of raster tiles that completely fall within the 

polygon (num) and the starting position of the array that 

stores the raster tile identifiers (pos) based on the block 

identifier of the thread block (lines 3-5). The main body of 

the kernel code has two loops (lines 6-13). An outer loop 

processes all histogram bins in chunks with a stride of 

blockDim.x, i.e., number of threads in a thread block, in a 

similar way as we have discussed in Section III.A (line 6). 

Note that all threads in a thread block execute in parallel 

line by line. Threads are synchronized whenever there is a 

branch (e.g., “if” statement).  For each thread, the inner loop 

(lines 10-13) iterates over the number of raster tiles that are 

completely within the polygon and adds the per-tile count to 

the per-polygon. It is clear that, before the outer loop in 

lines 3-5, all threads in a thread block access the same 

elements in the pid_v, num_v and pos_v arrays. As such, the 

global memory accesses can be coalesced to a maximum 

degree allowed by GPU hardware. In line 11, all threads 

will have the same pos and i values and access the same 

element in the tid_v array in a similar way.  In lines 12 and 

13, w is fixed for a particular i and pid is fixed across the 

thread block. The only changing variable in accessing the 

raster cell array (his_d_raster) and the output histogram 

array (his_d_polygon) is p which is calculated by adding 

thread identifier (threadIdx.x) to the chunk offset of 

histogram bins (k). As such, neighboring threads access 

neighboring array elements in both his_d_raster and 

his_d_polygon arrays and ensure coalesced memory 

accesses.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Illustration of Deriving Polygon-Tile Pairs and Code Segment for Aggregating Per-Tile Histograms  

D. Updating Per-Polygon Histogram  

The last step might be the most computing intensive among 

the four steps. Here we reuse our GPU-based point-in-

polygon test design [19] and adapt it for cell-in-polygon 

test. While we choose the center of a raster cell for point-in-

polygon test for simplicity, it is possible to use some other 

points (e.g., corners or different types of weighted centers) 

either statically or dynamically that can represent the raster 

cell better, depending on applications. The code segment is 

shown in Fig. 5 by following a similar structure of Fig. 4. 

The middle-left part of Fig. 5 shows the relationship 

between the ply_v array and the x_v and y_v coordinate 

arrays. Note that the GPU-friendly array representation is 

significantly different from the popular object-based 

representation on CPUs. Basically the ply_v array indexes 

the x_v and y_v coordinate arrays. The beginning and the 

ending vertex index for polygon k are stored in ply_v[k-1] 

and ply_v[k]-1, respectively. The bottom-left part of Fig. 5 

illustrates the basic idea of ray-crossing based point-in-

polygon test [16]. If a line starting from the point being 

tested crosses the polygon boundary odd number times, the 

point will in the polygon; otherwise the point is outside of 

the polygon.  
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_global__ void UpdateHistKernel( ... ) 

{ 
1 int idx=blockIdx.y*gridDim.x+blockIdx.x; 

2 if(idx>=num_blocks) return; 

 
3 uint pid=pid_v[idx]; 

4 uint num=num_v[idx]; 

5 uint pos=pos_v[idx]; 
 

6 for(int k=0;k<HIST_SIZE;k+=blockDim.x) 

{ 
//set p to be the bin # 

7  uint p=k+threadIdx.x; 
8  if(p>=HIST_SIZE) continue; 

9  __syncthreads(); 

10  for(int i=0;i<num;i++) 
{ 

11     uint w =tid_v[pos+i]; 

12     uint v=his_d_raster[w*HIST_SIZE+p]; 
13     his_d_polygon[pid*HIST_SIZE+p]+=v; 

} 

} 

} 
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Fig. 5 Illustration of Identifying Intersecting Tiles and Ray-Cast Based Point-In-Polygon Test (Left) and Code Segment for 

Per-Cell Modification of Per-Polygon Histogram (Right) 

 

 

While the CPU serial implementation of the ray 

crossing based point-in-polygon test by Randolph Franklin 

(italicized in the right part of Fig. 5) only handles single-

ring polygons, motivated by the fact that adding the 

coordinate origin to the polygon vertex array will handle 

multi-ring polygons correctly, we have modified our GPU 

implementation [19] to support multi-ring polygons which 

are not rare in the US county dataset that we use for our 

NASA SRTM data case study (Section IV). Similar to the 

arguments made in Section III.C, while accesses to global 

memory array ply_v (polygon index) are inevitably non-

coalesced due to non-continuous pid values, accesses to 

global arrays pid_v (polygon identifier array), num_v 

(number of raster tiles array), pos_v (first tile index array) 

and tid_v (tile index array) are coalesced. This is due to the 

reason that all threads access either the same array element 

or neighboring array elements. Furthermore, since each 

thread is assigned to process a single raster cell in the inner j 

loop, all threads access the same elements in the x_v and y_v 

arrays. As such, memory accesses can be combined to a 

maximum degree allowed by GPU hardware. We could 

have loaded polygon vertices to GPU shared memory before 

looping through them by all threads. While this may reduce 

global memory accesses to a certain degree, as GPU shared 

memory is still a limited resource, doing so may reduce the 

scalability of the implementation, in addition to being more 

complex. 

IV. EXPERIMENTS AND RESULTS 

A. Data and Experiment Environment Setup 

As a popular geospatial operation, Zonal 

Histogramming can be applied to a variety of environmental 

and climate applications. In this study, we will use the 

boundaries of 3000+ United States counties as the polygon 

dataset that has 87,097 vertices in total. For the raster 

dataset, we will use NASA SRTM data in the Continental 
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__global__ void pip_test_kernel( ... ) 

{ 

    int idx = gridDim.x * blockIdx.y + blockIdx.x;         

    if (idx>= num_blocks)  return;  
     __syncthreads();      
 
    int pid = pid_v[idx];  uint num=num_v[idx];  uint pos=pos_v[idx];      

    int p_f = pid == 0 ? 0: ply_v[pid-1];  int p_t = ply_v[pid]; 
 

    for(int i=0;i<d_TILE_SIZE*d_TILE_SIZE;i+=blockDim.x) 

    { 
        if(i+threadIdx.x>=d_TILE_SIZE*d_TILE_SIZE) break; 

        __syncthreads(); 

       for(int k=0;k<num;k++) 
       { 

         unitt w =tid_v[pos+k]; 

        //compute row and column numbers from w and store it in c and r       
        float _x1 = (c+0.5)*SCALE/d_TILE_SIZE; 

        float _y1 = (r+0.5)*SCALE/d_TILE_SIZE; 
         
        bool in_polygon = false; 
        for (int j = p_f; j < p_t-1; j++) 

        { 

            float x0 = x_v[j];  float y0 = y_v[j];  
            float x1 = x_v[j+1];  float y1 = y_v[j+1]; 

            if ( x1 == 0 && y1 == 0 ) {   j++;  continue; } 

                // from http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ 
                if ((((y0 <= _y1) && (_y1 < y1)) ||((y1 <= _y1) && (_y1 < y0))) && 

                    (_x1 < (x1 - x0) * (_y1 - y0) / (y1 - y0) + x0)) 

                in_polygon = !in_polygon; 
         }//end for j 

        if(in_polygon)  

        { 
 //compute index of the cell in the raster data array and store it in s 

ushort v=raw_d[s]; 

 his_d_polygon[pid*HIST_SIZE+v]+=1; 
        } 

        __syncthreads(); 

    }//end for k 
  }//end for i 
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United States (CONUS) region with 20 billion raster cells. 

The NASA SRTM elevation data at 30 meter resolution was 

obtained on a near-global scale in February 2000 from a 

space-borne radar system and has been widely used in many 

applications since then. The CONUS raster dataset has a 

raw volume of 40 GB and about 15GB when compressed in 

TIFF format in 6 raster data files (we refer them collectively 

as the NASA SRTM raster hereafter). To use multiple Titan 

nodes to process the raster data in parallel, we have further 

decomposed the original 6 rasters into 36 smaller rasters. 

The original raster sizes and their partitions are listed in 

Table 1. Since it currently infeasible to decompress TIFF 

images efficiently on GPUs, we reuse our Bitplane Bitmap 

Quadtree (or BQ-Tree [21]) technique to compress the raw 

data. The data volume is reduced to 7.3GB, i.e. ~18% of 

original size. More importantly, the compressed data can be 

easily decoded into tiles on GPUs [21] for subsequent zonal 

histogramming. While disk I/O is still significant when 

compared with computing which deserves further research 

in a high-performance computing setting, we assume all 

BQ-Tree compressed data resides in GPU memory for all 

experiments.  

Table 1 List of SRTM Rasters  and Partition Schemas 

Raster # dimension Partition Schema 

1 54000*43200 2*2 

2 50400*43200 2*2 

3 50400*43200 2*2 

4 82800*36000 2*2 

5 61200*46800 2*2 

6 68400*111600 4*4 

Total 20,165,760,000 36 

We have set up three experiment environments to 

test the efficiency and scalability of the proposed technique. 

The first two environments are single-node configurations 

that use a Fermi (Quadro 6000) and a Kepler (GTX Titan) 

GPU device, respectively. Note that both devices have 6 GB 

GPU device memory. The third experiment environment is 

the ORNL Titan GPU-accelerated cluster. At the time of 

writing, the ORNL Titan supercomputer is the largest GPU-

accelerated cluster in the world and the K20 GPU devices 

equipped on Titan are also based on the Kepler architecture. 

We have varied the numbers of computing nodes to be used 

on Titan from 1 to 16. The end-to-end runtime is reduced to 

7.6 seconds when using 16 nodes which is already good 

enough from an application perspective. We did not count 

disk I/O times on Titan as data was very often cached in its 

file system during our experiments. The performance of 

Titan’s file system also varied significantly due to uneven 

workloads. As such, we did not include disk I/O times in the 

two desktop settings either. However, the runtimes for the 

cluster experiment setting to be reported did include MPI 

communication times since we measured the wall-clock 

time at each node and will report the longest runtime among 

all the nodes as the wall-clock end-to-end runtime. We next 

report and discuss the experiment results under the three 

experiment settings. 

B. Results on Single Node GPU devices 

The runtimes of the four steps in Zonal 

Histogramming for both the Quadro 6000 and GTX Titan 

devices are listed in Table 2. For the purpose of 

completeness and better understanding of end-to-end 

runtimes, we have also included raster decoding times as 

Step 0 runtimes. The end-to-end runtimes are larger than the 

total of the runtimes of the five steps (listed in the second-

last row in Table 2) due to data transfer times between 

CPUs and GPUs as well as times to write output to disks. 

From Table 2 we can see that, as expected, Step 4 on cell-

in-polygon test is the most expensive steps on both the 

Quadro 6000 and GTX Titan devices, followed by Step 1 in 

computing per-block histograms. Both Step 2 and Step 3 are 

insignificant when compared to Step 1 and Step 4.  Step 0 

on raster decomposition takes about 20% of the end-to-end 

runtimes, although not dominate, is significant. However, 

we argue that, given that the BQ-Tree compressed raster 

volume has been reduced from 40GB to 7.3 GB and 

assuming that the sustainable data transfer rate between 

CPU memory and GPU memory is 2.5GB/s, the data 

compression technique can reduce the CPU->GPU transfer 

time from 8 seconds to about 3 seconds, which can largely 

offset the incurred raster decompression times (especially on 

the GTX Titan device) although data compression is mostly 

designed for reducing disk I/O overheads. 

Table 2 List of Individual Step and Accumulated Runtimes 

(in seconds) on Two Types of GPUs  

 Quadro 

6000 

GTX 

Titan 

(Step 0): Raster decompression   16.2 8.30 

Step 1: Per-block histogramming   21.5 13.4 

Step 2: Block-in-polygon test  0.11 0.07 

Step 3: “within-block” histogram 

aggregation  

0.14 0.11 

Step 4: cell-in-polygon test and 

histogram update  

29.7 11.4 

Runtimes of steps 0-4 67.7 33.3 

Wall-clock end-to-end  runtimes   85 46 

It is also interesting to compare the runtimes on 

Quadro 6000 and GTX Titan where Step 4 is sped up 2.6X, 

Step 1 is sped up 1.6X and Step 0 is sped up nearly 2X. As a 

consequence, the end-to-end runtimes is nearly reduced to 

half on GTX Titan. This clearly indicates the advantage of 

the newer Kepler architecture on which the GTX Tian 

device is based. Compared with the previous generation 

Fermi architecture, on which the Quadro 6000 device is 

based, the Kepler-based GPU device not only has 6 times of 

processing cores (2,688 vs. 448, although Kepler cores have 

lower frequency) but also 2 times memory bandwidth (288.4 

GB/s vs. 144 GB/s).  



C. Results on Titan GPU-Accelerated Cluster 

We used MPI for inter-node communications to 

make parallel designs scalable on GPU-accelerated clusters. 

The master node was used to combine per-polygon 

histograms (in case a polygon may intersect with multiple 

raster tiles) as this step only took a small fraction of a 

second. The end-to-end runtimes using 1-16 nodes on Titan 

are plotted and listed in Fig. 6. While we did not intend to 

compare our GPU-based implementation with existing GIS 

software as they are designed for different computing 

platforms and different scales of data, we have observed 

orders of magnitude better performance on a subset of the 

experiment data. While our tests stopped at using 16 Titan 

nodes as we had achieved the desired near interactive 

processing rate (in the order of seconds), we anticipate that 

our data parallel designs and implementations will scale 

with large datasets, as Fig. 6 suggests.  We note that, when 

comparing the single node performance in the cluster 

computing setting (60.7 seconds) with that of GTX Titan 

(46 seconds), the 25% performance gap may potentially due 

to lower clock rate and bandwidth on K20 GPUs when 

compared with GTX Titan GPUs as well as MPI overheads.  

It is also worthy of understanding that, as the 

number of nodes increases, each node processes a smaller 

number of tiles, which may bring inter-node load unbalance 

and reduce scalability. This is because, raster tiles that are at 

the edge of spatial coverage of polygon dataset, e.g., those 

in the southern part of Florida, are likely to have large 

portions of raster tiles that are completely outside of any 

polygon. As such, the work needs to be done in Step 4 for 

these tiles is much lighter than others. A potential 

improvement is to distribute the four steps in Zonal 

Histogramming to cluster nodes separately at the cost of 

more MPI communications. The tradeoffs between 

communication and load balancing need to be well studied 

to achieve high performance.  

 

 

 

 

 

 

 

 

Fig. 6 Plot of Runtimes (seconds) Against Number of Nodes 

on Titan GPU-Accelerated Cluster 

V. CONCLUSIONS AND FUTURE WORK 

In this study, we report our parallel designs and 

implementations of several steps of the popular geospatial 

operation Zonal Histogramming on GPU accelerators. 

Experiments on both Fermi and Kepler GPUs have 

demonstrated impressive performance. Further experiments 

on ORNL Titan GPU-accelerated cluster have shown 

excellent scalability which makes the technique potentially 

useful to solve larger scale problems while achieving near 

real-time interactions on GPU accelerated clusters.  

For future work, in addition to further improving 

single-node performance and achieving better load 

balancing on clusters as discussed in the relevant sections, 

we also would like to integrate the GPU-accelerated 

geospatial operation with visualization modules for 

interactive visual explorations. We also plan to design and 

implement more GPU-accelerated geospatial operations and 

help solve real world problems in efficient and scalable 

ways by using GPU-equipped workstations and GPU-

accelerated cluster.  
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