
High-Performance Zonal Histogramming on Large-Scale Geospatial

Rasters Using GPUs and GPU-Accelerated Clusters

Jianting Zhang

Department of Computer Science

The City College of New York

 New York, NY, USA

jzhang@cs.ccny.cuny.edu

Dali Wang

Environmental Science Division

Oak Ridge National Laboratory

Oak Ridge, TN, USA

wangd@ornl.gov

Abstract—Hardware Accelerators are playing increasingly

important roles in achieving desired performance from

desktop to cluster computing. While General Purpose

computing on Graphics Processing Units (GPGPU)

technologies have been widely applied to computing intensive

applications, there is relatively little work on using GPUs and

GPU-accelerated clusters for data intensive computing that

typically involves significant irregular data accesses. In this

study, we report our designs and implementations of a popular

geospatial operation called Zonal Histogramming on Nvidia

GPUs. Given a zonal dataset in the form of a collection of

polygons and a geospatial raster that can be considered as a 2D

grid, for each polygon, Zonal Histogramming computes a

histogram of the values of raster cells that fall within the

polygon. Our experiments on 3000+ US counties (polygons)

over 20+ billion NASA Shuttle Radar Topography Mission

(SRTM) 30 meter resolution Digital Elevation Model (DEM)

raster cells have shown that, an impressive 46 seconds end-to-

end runtime can be achieved using a single Nvidia GTX Titan

GPU device. The runtime is further reduced to ~10 seconds

using 8 nodes on ORNL’s Titan GPU-accelerated cluster. The

desired high performance opens many possibilities for large-

scale geospatial computing that is important for environmental

and climate research.

Keywords - Zonal Histogramming, Geospatial Rasters, Point-in-

Polygon Test, Parallel Computing, GPU

I. INTRODUCTION

Progresses in remote sensing technologies and

increasing global and regional climate modeling have

generated large amount of geo-referenced raster data with

high spatial, temporal, spectral or thematic resolutions. Very

often these large-scale raster data needs to be aligned to

different types of zones, such as administrative and

ecological regions, to derive per-zone histograms to

understand the distributions of a specific environmental

variable better in the zones. These histograms can further be

used as feature vectors for more sophisticated analysis, such

as computing various distance measurements which can be

used for subsequent clustering. Such zone-based

histogramming can be treated as an extension to traditional

Zonal Statistics processing [1], a geospatial operation that

has been extensively supported in various Geographical

Information Systems (GIS) and remote sensing software

packages where only major statistics, such as min, max,

average, count and standard deviation, are reported as a

table with each row corresponds to a zone. While the

performance of the Zonal Statistics operations (including

zonal histogramming) is typically acceptable for small

datasets, significant performance issues may arise for zonal

histogramming on large-scale rasters and complex polygons.

In this study, we aim at developing a new

technique that can make full use of GPU accelerators to

speed up Zonal Histogramming in both personal and cluster

computing environments. Given a raster and a polygon

input layers, our technique has four steps in computing the

histograms of raster cells that fall within polygons. Each of

the following four steps are mapped to GPU hardware by

identifying its inherent data parallelisms (1) dividing an

input raster into tiles and compute per-tile histograms, (2)

pairing raster tiles with polygons and determining

inside/intersect raster tiles for each polygon, (3) aggregating

per-tile histograms to per-polygon histograms for inside

raster blocks, and (4) updating polygon histograms for raster

cells that are inside respective polygons through point-in-

polygon test by treating raster cells in intersecting raster

tiles as points.

Experiment results have shown that our GPU-

based parallel Zonal Histogramming technique on 3000+

US counties (polygonal input) over 20+ billion NASA

Shuttle Radar Topography Mission (SRTM) 30 meter

resolution Digital Elevation (DEM) Model raster cells [2]

has achieved impressive end-to-end runtimes: 46 seconds on

a low-end workstation equipped with an Nvidia GTX Titan

GPU. Furthermore, using the same test datasets, our

approach has achieved 60-70 seconds using a single

computing node and about 10 seconds using 8 nodes on the

Titan supercomputer located at the Oak Ridge National

Laboratory (ORNL) [3]. The results clearly demonstrate the

potentials of using massively data parallel GPU accelerators

for large-scale geospatial processing and can serve as a

concrete example of designing and implementing popular

geospatial data processing techniques on new parallel

hardware to achieve desired performance.
 The rest of the paper is arranged as the following.

Section 2 introduces background, motivation and related
work. Section 3 presents the set of parallel designs that are
capable of utilizing GPU accelerator processing power for
Zonal Histogramming and their realizations on GPUs and
cluster computers. Section 4 provides experiment results on
NASA SRTM 30 meter resolution DEM data on both a

single workstation and multiple computing nodes on Titan
GPU-accelerated cluster. Finally Section 5 is the conclusion
and future work.

II. BACKGROUND, MOTIVATION AND RELATED WORK

Geospatial processing has been undergoing a

paradigm shift in the past few years. Advancements in

remote sensing technology and instrumentation have

generated huge amounts of remotely sensed imagery from

air- and space-borne sensors. In recent years, numerous

remote sensing platforms for Earth observation with

increasing spatial, temporal and spectral resolutions have

been deployed by NASA, NOAA and the private sector. The

next generation geostationary weather satellite GOES-R

(whose first lunch is scheduled in 2016) will improve the

current generation weather satellite by 3, 4 and 5 times with

respect to spectral, spatial and temporal resolutions [4].

With a temporal resolution of 5 minutes, GOES-R generates

288 global coverages everyday for each of its 16 bands. At a

spatial resolution of 2km, each coverage and band

combination has 360*60 cells in width and 180*60 cells in

height, i.e., nearly a quarter of a billion cells. While 30-

meter resolution Landsat Thematic Mapper (TM) data is

already freely available over the Internet from USGS [5],

sub-meter resolution satellite imagery is becoming

increasing available, with a global coverage in a few days

[6]. Numerous environmental models, such as Weather

Research and Forecast (WRF), have generated even larger

volumes of geo-referenced raster model output data with

different combinations of parameters, in addition to

increasing spatial and temporal resolutions. For example,

the recent simulation of Superstorm Sandy on National

Science Foundation (NSF) Blue Waters supercomputer at

the National Center for Supercomputing Applications

(NCSA) has a spatial resolution of 500 meters and a 2-

second time step running at 9120*9216*48 three-

dimensional grid (approximately 4 billion raster cells) with

a single output file as large as 264 GB [7]. Geospatial data

at such large scales is well beyond the capacity of most

commercial and open source GIS systems which are

primarily designed for traditional uniprocessors based on

serial algorithms.

On the other hand, mainstream computer

architectures have also gone through major changes. The

past few years have witnessed fast growing numbers of

processor cores (or multi-core CPUs) in personal computing

systems. Another technical trend is the emerging General

Purpose computing on Graphics Processing Units (GPGPU)

techniques that first appeared in 2007 when Nvidia released

its Compute Unified Device Architecture (CUDA)

computing platform for its many-core GPUs for general

purpose computing [8]. While ASCI Red, the world’s first

supercomputer with 1 teraflops double precision floating

point computing power is made up of 104 cabinets and

occupied 1600 sq feet in 1996 [9], the latest Nvidia Tesla

K40 GPUs released in late 2013 can be plugged into a

computer or a cluster computing node as PCI-E peripheral

devices with even higher computing power [10]. Despite

that a few studies have exploited the computing power of

GPU accelerators for large-scale geospatial processing (see

[11] for a brief review), there are still considerable gaps

between the parallel computing power on modern

commodity hardware and the achievable performance that

mainstream geospatial processing software can offer.

Previous investigations on parallelization of geospatial

operations in 1990s are either based on shared-nothing or

shared-memory parallel computing model [12] and most of

them relied on coarse-grained task-level parallelisms. More

recently, MapReduce/Hadoop based techniques have

attracted significant research and application interests

[13,14]. Although Hadoop-based systems can achieve good

scalability, they typically have low efficiency with respect

to system resource utilization [15] and may not be able to

achieve the desired high-performance. In this study, we aim

at developing data parallel techniques for Zonal

Histogramming that can scale across multiple computing

platforms, including GPUs and GPU-accelerated clusters

that are made of identical computing nodes equipped with

GPUs. By extensively exploiting data parallelisms in

geospatial processing, raster and polygon data can be

chunked in flexible ways and mapped to parallel hardware.

It is clear that Zonal Histogramming is closely

related to point-in-polygon test which has been extensively

studied in computational geometry [16]. If we treat all raster

cells as points, the coordinates of the corners or centers of

raster cells can be computed easily and it is straightforward

to perform Zonal Histogramming on top of point-in-polygon

test. However, point-in-polygon test is typically expensive

as the complexity is generally proportional to the number of

polygon vertices for a single test. When the number of raster

cells and/or the number of polygon vertices are large, it

would be inefficient to perform such test on all or even a

subset of raster cells. In spatial databases, an operation

similar to Zonal Histogramming is a Spatial Join [17] based

on point-in-polygon test. To process such spatial joins

efficiently, a common practice is to index both points and

polygons so that only neighboring points and polygons are

paired up in the Spatial Filtering phase before point-in-

polygon tests are actually applied in the Spatial Refinement

phase [17]. As detailed in Section III, our approach

essentially indexes geospatial raster tiles implicitly so that

only raster cells in tiles that intersect polygon boundaries

require point-in-polygon tests which results in significant

savings of computation.

III. GPU-BASED PARALLEL DESIGNS AND

IMPLEMENTATIONS

Given a Raster R with cell cij at row i and column j having

an integer value vij, where 0<i<M, 0<j<N and 0<vij<B, and a

collection of polygons P, for each polygon Pk, we want to

derive a histogram Hk with B bins where Hk
b
 is the number

of cells that geometrically intersect with Pk and vij=b. Our

technique has four steps and each step can be realized on

GPUs in parallel. The overall procedure is illustrated in Fig.

1. While the details of each step will be provided in Sections

III.A through III.D, we would like to note that Step 1

(lower-left of Fig. 1) is used to derive per-tile histograms,

which is independent of the polygon dataset. Step 2 is

designed for spatial filtering to pair up polygons with

nearby raster tiles. In Step 3, histograms of tiles that are

completely within polygons are added to the respective

polygon histograms directly. Finally, point-in-polygon test

is performed for all the cells in raster tiles that intersect with

polygon boundaries and polygon histograms are updated

accordingly.

A. Per-Tile Histogram Generation

After a raster is loaded into GPU memory, a

natural way to generate per-tile histograms is to assign each

raster tile to a GPU thread block (left part of Fig. 2). We

consider the following two factors that may potentially

impact system performance, i.e., tile size and counting

approaches.

There are tradeoffs in determining tile sizes. Using

a large tile size will require less memory to store per-tile

histograms but is likely to generate more tiles that intersect

polygon boundaries which subsequently require more point-

in-polygon tests for all cells in these tiles. For the NASA

SRTM case study presented in Section IV, we empirically

set the tile size to 0.1 by 0.1 degree. As such, given that

SRTM DEM data has a spatial resolution of approximately

30 meters (1/3600 degree), each tile has 360 cells along both

latitude and longitude directions. As the majority of raster

cells have values less than 5000 (elevation in meters), we set

the number of histogram bins to 5000. For a 5 by 5 degree

raster, using an integer (4 bytes) for a bin count, the memory

footprint for all the per-tile histograms would be

50*50*5000*4 bytes = 50MB. This is acceptable as all

GPUs used in our experiments have at least 5GB memory.
As shown in the code segment in the right part of Fig. 2,

all the threads in a thread block work in parallel to first zero-
out histogram bins (line 3) before updating counts in
respective bins. As the number of threads in a thread block
(e.g., 256) is typically smaller than the number of bins and
the number of cells, the threads need to loop through the
histogram bins (line 2) and raster cells (line 6) with a stride
of blockDim.x, which is the number of threads in the block.
We note that accessing to global variables raw_d and
his_d_raster, which store the input raster tile and the output
histogram for the idx

th
 tile, is largely coalesced as

neighboring threads access nearby array elements (line 4 and
line 10). We could have forced d_TILE_SIZE, which is the
tile size (360 in SRTM data) to be multiples of blockDim.x
for even better memory access; however, we have decided to
allow users to set it arbitrarily for better programmability.
We also leave exploring the possibility of pre-sorting tile
cells using a better ordering (e.g., Morton Code [18]) to
preserve spatial proximity and achieve better memory
accesses (regardless whether the number of threads divides
the number of columns in a raster tile) for future work.

For histograms with large numbers of bins (e.g.,

greater than 256), it is impractical any more to allocate a

histogram to each thread for counting before the per-thread

histograms are aggregated into a single per-block (i.e., per

tile) histogram in a thread block. Given that the performance

of atomic operations has been significantly improved in the

latest Nvidia Kepler architecture, we have opted to use

atomicAdd operator to simplify per-tile histogram

generation (line 11), although more sophisticated techniques

may potentially improve the performance.

Fig. 1 Overall Design of Data Parallel Zonal Histogramming on GPUs

Is tile completely

inside polygon?

Yes

M1

T1

M1

T2

M2

T3

Tile-MBR pairs

after spatial

filtering

…

…

…

…

MBB Rasterization

Add per-tile histograms to per-

polygon histograms

Cell-in-polygon test for each

cell in the tile No

Update per-polygon

histograms directly

Raster Tiling

Per-polygon histograms

 Per-tile histograms

2

1
3

4

.

Fig. 2 Illustration and Code Segmentation for Step 1: Deriving Per-Tile Histogram

B. Pairing Raster Tiles with Polygons

The role of pairing raster tiles with polygons is similar to
spatial filtering in spatial databases [17]. By observing that
tiles in a raster can naturally serve as a grid-file for spatial
indexing, we propose to reuse the GPU-based simple grid-
file indexing technique that we have developed for point
data. While we refer to [19] for design and implementation
details, for the sake of completeness, we would like to
reiterate the key points of the GPU-based data parallel
pairing technique. The idea is to rasterize the Minimum
Bounding Box (MBB) of all polygons according to the
spatial tessellation of raster tiles. After each of the polygon
MBBs are decomposed into a set of raster tiles, a polygon is
paired with one or more raster tiles. Since MBBs are simple
approximations of polygons, the relationship between a
polygon and a raster tile can be one of the three cases:
outside (0), inside (1) and intersect (2).

Fig. 3 Illustration of Integrating of Per-Tile Aggregation

and Per-Cell Modification to Derive Per-Polygon Histogram

As shown in Fig. 3, we do not need to anything for tiles

that are outside of the polygon being tested, as cells in these

tiles should not be counted. For raster tiles that are
completely within a polygon, we can simply combine the
per-tile histograms into the per-polygon histograms.
However, for raster tiles that intersect with the polygon, we
will have to test whether a cell is inside a polygon and decide
whether to count the cell in the per-polygon histogram,
which is detailed in Section III.D. Although parallelizing
tile-in-polygon test on GPUs is quite complicated as reported
in our previous studies [20], this step (Step 2) typically
incurs only a small fraction of overall runtimes. As such,
practically, we can realize this step on CPUs using well-
established computational geometry libraries and transfer the
results back to GPUs for subsequent processing.

C. Aggregating Completely-Inside Per-tile histograms

Conceptually, Step 3 is the most embarrassingly
parallelizable step among the four steps. However, given a
array of tile-in-polygon test results with each element has a
value of either 0 (outside), 1 (inside) and 2 (intersect), we
need the following post-processing before the aggregation.
First, the arrays of polygon MBB identifiers and raster tile
identifies need to be sorted based on tile-in-polygon test
results and polygon identifies so that all the tiles that are
completely within a polygon become adjacent in the sorted
arrays for better GPU memory accesses. Second, the
numbers of raster tiles that are completely within polygons
need to be counted. This can be realized by combining
parallel primitives, including stable_sort_by_key,
stable_partition and reduce_by_key provided in the Thrust
library that comes with CUDA SDK, which can be simpler
than using native parallel programming language such as
CUDA directly. While we refer to [11] for more details on
parallel primitives and their applications in geospatial
computing, the left side of Fig. 4 illustrates the four parallel
primitives by using a simple example.

__global__ void CellAggrKernel(ushort* raw_d, uint* his_d_raster)
{

1 int idx=blockIdx.y*gridDim.x+blockIdx.x;

2 for(int k=0;k<HIST_SIZE;k+=blockDim.x)
 {

3 if(k+threadIdx.x>=HIST_SIZE) continue;

4 his_d_raster[idx*HIST_SIZE+k+threadIdx.x]=0;
 }

 5 __syncthreads();

6 for(int k=0;k<d_TILE_SIZE*d_TILE_SIZE;k+=blockDim.x)

 {

7 if(k+threadIdx.x>=d_TILE_SIZE*d_TILE_SIZE) continue;
8 int p=k+threadIdx.x;

9 //compute cell index based on p and store it in s

10 ushort v=raw_d[s];

11 atomicAdd(&(his_d_raster[idx*HIST_SIZE+v]),1);

12 __syncthreads();

 }

}

For the GPU kernel that aggregates per-tile

histograms, we assign a thread block to process a polygon.

The kernel code segment is shown in the right part of Fig. 4

with arrays residing in global memory highlighted. For each

block, we can retrieve the polygon identifier (pid), the

number of raster tiles that completely fall within the

polygon (num) and the starting position of the array that

stores the raster tile identifiers (pos) based on the block

identifier of the thread block (lines 3-5). The main body of

the kernel code has two loops (lines 6-13). An outer loop

processes all histogram bins in chunks with a stride of

blockDim.x, i.e., number of threads in a thread block, in a

similar way as we have discussed in Section III.A (line 6).

Note that all threads in a thread block execute in parallel

line by line. Threads are synchronized whenever there is a

branch (e.g., “if” statement). For each thread, the inner loop

(lines 10-13) iterates over the number of raster tiles that are

completely within the polygon and adds the per-tile count to

the per-polygon. It is clear that, before the outer loop in

lines 3-5, all threads in a thread block access the same

elements in the pid_v, num_v and pos_v arrays. As such, the

global memory accesses can be coalesced to a maximum

degree allowed by GPU hardware. In line 11, all threads

will have the same pos and i values and access the same

element in the tid_v array in a similar way. In lines 12 and

13, w is fixed for a particular i and pid is fixed across the

thread block. The only changing variable in accessing the

raster cell array (his_d_raster) and the output histogram

array (his_d_polygon) is p which is calculated by adding

thread identifier (threadIdx.x) to the chunk offset of

histogram bins (k). As such, neighboring threads access

neighboring array elements in both his_d_raster and

his_d_polygon arrays and ensure coalesced memory

accesses.

Fig. 4 Illustration of Deriving Polygon-Tile Pairs and Code Segment for Aggregating Per-Tile Histograms

D. Updating Per-Polygon Histogram

The last step might be the most computing intensive among

the four steps. Here we reuse our GPU-based point-in-

polygon test design [19] and adapt it for cell-in-polygon

test. While we choose the center of a raster cell for point-in-

polygon test for simplicity, it is possible to use some other

points (e.g., corners or different types of weighted centers)

either statically or dynamically that can represent the raster

cell better, depending on applications. The code segment is

shown in Fig. 5 by following a similar structure of Fig. 4.

The middle-left part of Fig. 5 shows the relationship

between the ply_v array and the x_v and y_v coordinate

arrays. Note that the GPU-friendly array representation is

significantly different from the popular object-based

representation on CPUs. Basically the ply_v array indexes

the x_v and y_v coordinate arrays. The beginning and the

ending vertex index for polygon k are stored in ply_v[k-1]

and ply_v[k]-1, respectively. The bottom-left part of Fig. 5

illustrates the basic idea of ray-crossing based point-in-

polygon test [16]. If a line starting from the point being

tested crosses the polygon boundary odd number times, the

point will in the polygon; otherwise the point is outside of

the polygon.

 

P2

T2

P1

T3

P1

T4

P1

T1

P3

T6

P1

T2

P3

T2

P2

T5

0 1 1 0 1 2 2 1

P1

T3

P1

T4

P3

T6

P2

T5

stable_sort_by_key

stable_partition

reduce_by_key

P1

2

P3

1

P2

1

0 3

pid_v

4

scan (prefix sum)

P1

T2

P1

T3

P1

T4

P1

T1

P2

T5

P3

T2

P3

T6

P2

T2

2 1 1 0 1 2 1 0

_global__ void UpdateHistKernel(...)

{
1 int idx=blockIdx.y*gridDim.x+blockIdx.x;

2 if(idx>=num_blocks) return;

3 uint pid=pid_v[idx];

4 uint num=num_v[idx];

5 uint pos=pos_v[idx];

6 for(int k=0;k<HIST_SIZE;k+=blockDim.x)

{
//set p to be the bin #

7 uint p=k+threadIdx.x;
8 if(p>=HIST_SIZE) continue;

9 __syncthreads();

10 for(int i=0;i<num;i++)
{

11 uint w =tid_v[pos+i];

12 uint v=his_d_raster[w*HIST_SIZE+p];
13 his_d_polygon[pid*HIST_SIZE+p]+=v;

}

}

}





2

num_v

pos_v

tid_v

Bin Chunks

Fig. 5 Illustration of Identifying Intersecting Tiles and Ray-Cast Based Point-In-Polygon Test (Left) and Code Segment for

Per-Cell Modification of Per-Polygon Histogram (Right)

While the CPU serial implementation of the ray

crossing based point-in-polygon test by Randolph Franklin

(italicized in the right part of Fig. 5) only handles single-

ring polygons, motivated by the fact that adding the

coordinate origin to the polygon vertex array will handle

multi-ring polygons correctly, we have modified our GPU

implementation [19] to support multi-ring polygons which

are not rare in the US county dataset that we use for our

NASA SRTM data case study (Section IV). Similar to the

arguments made in Section III.C, while accesses to global

memory array ply_v (polygon index) are inevitably non-

coalesced due to non-continuous pid values, accesses to

global arrays pid_v (polygon identifier array), num_v

(number of raster tiles array), pos_v (first tile index array)

and tid_v (tile index array) are coalesced. This is due to the

reason that all threads access either the same array element

or neighboring array elements. Furthermore, since each

thread is assigned to process a single raster cell in the inner j

loop, all threads access the same elements in the x_v and y_v

arrays. As such, memory accesses can be combined to a

maximum degree allowed by GPU hardware. We could

have loaded polygon vertices to GPU shared memory before

looping through them by all threads. While this may reduce

global memory accesses to a certain degree, as GPU shared

memory is still a limited resource, doing so may reduce the

scalability of the implementation, in addition to being more

complex.

IV. EXPERIMENTS AND RESULTS

A. Data and Experiment Environment Setup

As a popular geospatial operation, Zonal

Histogramming can be applied to a variety of environmental

and climate applications. In this study, we will use the

boundaries of 3000+ United States counties as the polygon

dataset that has 87,097 vertices in total. For the raster

dataset, we will use NASA SRTM data in the Continental

P1

T2

P1

T4

P3

T6

P3

T2

reduce_by_key

P1

2

P3

2

0

pid_v

4

scan (prefix sum)

2

num_v

pos_v

tid_v
__global__ void pip_test_kernel(...)

{

 int idx = gridDim.x * blockIdx.y + blockIdx.x;

 if (idx>= num_blocks) return;
 __syncthreads();

 int pid = pid_v[idx]; uint num=num_v[idx]; uint pos=pos_v[idx];

 int p_f = pid == 0 ? 0: ply_v[pid-1]; int p_t = ply_v[pid];

 for(int i=0;i<d_TILE_SIZE*d_TILE_SIZE;i+=blockDim.x)

 {
 if(i+threadIdx.x>=d_TILE_SIZE*d_TILE_SIZE) break;

 __syncthreads();

 for(int k=0;k<num;k++)
 {

 unitt w =tid_v[pos+k];

 //compute row and column numbers from w and store it in c and r
 float _x1 = (c+0.5)*SCALE/d_TILE_SIZE;

 float _y1 = (r+0.5)*SCALE/d_TILE_SIZE;

 bool in_polygon = false;
 for (int j = p_f; j < p_t-1; j++)

 {

 float x0 = x_v[j]; float y0 = y_v[j];
 float x1 = x_v[j+1]; float y1 = y_v[j+1];

 if (x1 == 0 && y1 == 0) { j++; continue; }

 // from http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
 if ((((y0 <= _y1) && (_y1 < y1)) ||((y1 <= _y1) && (_y1 < y0))) &&

 (_x1 < (x1 - x0) * (_y1 - y0) / (y1 - y0) + x0))

 in_polygon = !in_polygon;
 }//end for j

 if(in_polygon)

 {
 //compute index of the cell in the raster data array and store it in s

ushort v=raw_d[s];

 his_d_polygon[pid*HIST_SIZE+v]+=1;
 }

 __syncthreads();

 }//end for k
 }//end for i

}

 x/y Coordinate

 100 110

outer ring

p_f p_t



 0
 0

 

......

inner ring

2 crossings, outside

4 crossings, outside

3 crossings, inside

1 crossings, inside

United States (CONUS) region with 20 billion raster cells.

The NASA SRTM elevation data at 30 meter resolution was

obtained on a near-global scale in February 2000 from a

space-borne radar system and has been widely used in many

applications since then. The CONUS raster dataset has a

raw volume of 40 GB and about 15GB when compressed in

TIFF format in 6 raster data files (we refer them collectively

as the NASA SRTM raster hereafter). To use multiple Titan

nodes to process the raster data in parallel, we have further

decomposed the original 6 rasters into 36 smaller rasters.

The original raster sizes and their partitions are listed in

Table 1. Since it currently infeasible to decompress TIFF

images efficiently on GPUs, we reuse our Bitplane Bitmap

Quadtree (or BQ-Tree [21]) technique to compress the raw

data. The data volume is reduced to 7.3GB, i.e. ~18% of

original size. More importantly, the compressed data can be

easily decoded into tiles on GPUs [21] for subsequent zonal

histogramming. While disk I/O is still significant when

compared with computing which deserves further research

in a high-performance computing setting, we assume all

BQ-Tree compressed data resides in GPU memory for all

experiments.

Table 1 List of SRTM Rasters and Partition Schemas

Raster # dimension Partition Schema

1 54000*43200 2*2

2 50400*43200 2*2

3 50400*43200 2*2

4 82800*36000 2*2

5 61200*46800 2*2

6 68400*111600 4*4

Total 20,165,760,000 36

We have set up three experiment environments to

test the efficiency and scalability of the proposed technique.

The first two environments are single-node configurations

that use a Fermi (Quadro 6000) and a Kepler (GTX Titan)

GPU device, respectively. Note that both devices have 6 GB

GPU device memory. The third experiment environment is

the ORNL Titan GPU-accelerated cluster. At the time of

writing, the ORNL Titan supercomputer is the largest GPU-

accelerated cluster in the world and the K20 GPU devices

equipped on Titan are also based on the Kepler architecture.

We have varied the numbers of computing nodes to be used

on Titan from 1 to 16. The end-to-end runtime is reduced to

7.6 seconds when using 16 nodes which is already good

enough from an application perspective. We did not count

disk I/O times on Titan as data was very often cached in its

file system during our experiments. The performance of

Titan’s file system also varied significantly due to uneven

workloads. As such, we did not include disk I/O times in the

two desktop settings either. However, the runtimes for the

cluster experiment setting to be reported did include MPI

communication times since we measured the wall-clock

time at each node and will report the longest runtime among

all the nodes as the wall-clock end-to-end runtime. We next

report and discuss the experiment results under the three

experiment settings.

B. Results on Single Node GPU devices

The runtimes of the four steps in Zonal

Histogramming for both the Quadro 6000 and GTX Titan

devices are listed in Table 2. For the purpose of

completeness and better understanding of end-to-end

runtimes, we have also included raster decoding times as

Step 0 runtimes. The end-to-end runtimes are larger than the

total of the runtimes of the five steps (listed in the second-

last row in Table 2) due to data transfer times between

CPUs and GPUs as well as times to write output to disks.

From Table 2 we can see that, as expected, Step 4 on cell-

in-polygon test is the most expensive steps on both the

Quadro 6000 and GTX Titan devices, followed by Step 1 in

computing per-block histograms. Both Step 2 and Step 3 are

insignificant when compared to Step 1 and Step 4. Step 0

on raster decomposition takes about 20% of the end-to-end

runtimes, although not dominate, is significant. However,

we argue that, given that the BQ-Tree compressed raster

volume has been reduced from 40GB to 7.3 GB and

assuming that the sustainable data transfer rate between

CPU memory and GPU memory is 2.5GB/s, the data

compression technique can reduce the CPU->GPU transfer

time from 8 seconds to about 3 seconds, which can largely

offset the incurred raster decompression times (especially on

the GTX Titan device) although data compression is mostly

designed for reducing disk I/O overheads.

Table 2 List of Individual Step and Accumulated Runtimes

(in seconds) on Two Types of GPUs

 Quadro

6000

GTX

Titan

(Step 0): Raster decompression 16.2 8.30

Step 1: Per-block histogramming 21.5 13.4

Step 2: Block-in-polygon test 0.11 0.07

Step 3: “within-block” histogram

aggregation

0.14 0.11

Step 4: cell-in-polygon test and

histogram update

29.7 11.4

Runtimes of steps 0-4 67.7 33.3

Wall-clock end-to-end runtimes 85 46

It is also interesting to compare the runtimes on

Quadro 6000 and GTX Titan where Step 4 is sped up 2.6X,

Step 1 is sped up 1.6X and Step 0 is sped up nearly 2X. As a

consequence, the end-to-end runtimes is nearly reduced to

half on GTX Titan. This clearly indicates the advantage of

the newer Kepler architecture on which the GTX Tian

device is based. Compared with the previous generation

Fermi architecture, on which the Quadro 6000 device is

based, the Kepler-based GPU device not only has 6 times of

processing cores (2,688 vs. 448, although Kepler cores have

lower frequency) but also 2 times memory bandwidth (288.4

GB/s vs. 144 GB/s).

C. Results on Titan GPU-Accelerated Cluster

We used MPI for inter-node communications to

make parallel designs scalable on GPU-accelerated clusters.

The master node was used to combine per-polygon

histograms (in case a polygon may intersect with multiple

raster tiles) as this step only took a small fraction of a

second. The end-to-end runtimes using 1-16 nodes on Titan

are plotted and listed in Fig. 6. While we did not intend to

compare our GPU-based implementation with existing GIS

software as they are designed for different computing

platforms and different scales of data, we have observed

orders of magnitude better performance on a subset of the

experiment data. While our tests stopped at using 16 Titan

nodes as we had achieved the desired near interactive

processing rate (in the order of seconds), we anticipate that

our data parallel designs and implementations will scale

with large datasets, as Fig. 6 suggests. We note that, when

comparing the single node performance in the cluster

computing setting (60.7 seconds) with that of GTX Titan

(46 seconds), the 25% performance gap may potentially due

to lower clock rate and bandwidth on K20 GPUs when

compared with GTX Titan GPUs as well as MPI overheads.

It is also worthy of understanding that, as the

number of nodes increases, each node processes a smaller

number of tiles, which may bring inter-node load unbalance

and reduce scalability. This is because, raster tiles that are at

the edge of spatial coverage of polygon dataset, e.g., those

in the southern part of Florida, are likely to have large

portions of raster tiles that are completely outside of any

polygon. As such, the work needs to be done in Step 4 for

these tiles is much lighter than others. A potential

improvement is to distribute the four steps in Zonal

Histogramming to cluster nodes separately at the cost of

more MPI communications. The tradeoffs between

communication and load balancing need to be well studied

to achieve high performance.

Fig. 6 Plot of Runtimes (seconds) Against Number of Nodes

on Titan GPU-Accelerated Cluster

V. CONCLUSIONS AND FUTURE WORK

In this study, we report our parallel designs and

implementations of several steps of the popular geospatial

operation Zonal Histogramming on GPU accelerators.

Experiments on both Fermi and Kepler GPUs have

demonstrated impressive performance. Further experiments

on ORNL Titan GPU-accelerated cluster have shown

excellent scalability which makes the technique potentially

useful to solve larger scale problems while achieving near

real-time interactions on GPU accelerated clusters.

For future work, in addition to further improving

single-node performance and achieving better load

balancing on clusters as discussed in the relevant sections,

we also would like to integrate the GPU-accelerated

geospatial operation with visualization modules for

interactive visual explorations. We also plan to design and

implement more GPU-accelerated geospatial operations and

help solve real world problems in efficient and scalable

ways by using GPU-equipped workstations and GPU-

accelerated cluster.

REFERENCES

[1] D. M. Theobald (2005). GIS Concepts and ArcGIS Methods (2nd
Ed.) Conservation Planning Technologies, Inc.

[2] http://www2.jpl.nasa.gov/srtm/
[3] http://www.olcf.ornl.gov/titan/
[4] http://www.goes-r.gov/
[5] http://landsat.usgs.gov/
[6] http://www.digitalglobe.com/
[7] Peter,J.,Straka, M., etc (2013).Petascale WRF Simulation of

Hurricane Sandy Deployment of NCSA's Cray XE6 Blue Waters.
Proceedings of ACM SC'13 Conference, #63.

[8] Kirk,B. and Hwu,W.-m. W. (2012). Programming Massively Parallel
Processors: A Hands-on Approach, 2nd ed. Morgan Kaufmann.

[9] http://en.wikipedia.org/wiki/ASCI_Red
[10] http://www.nvidia.com/object/tesla-workstations.html
[11] Zhang, J. and You. S. (2013). High-Performance Quadtree

Constructions on Large-Scale Geospatial Rasters Using GPGPU
Parallel Primitives. International Journal of Geographical Information
Sciences (IJGIS), 27(11), pp. 2207-2226

[12] Clematis,A., Mineter, M. and Marciano, R. (2003). High
performance computing with geographical data. Parallel Computing,
29(10):1275–1279

[13] Aji, A., Wang,F. et al(2013). Hadoop GIS: A High Performance
Spatial Data Warehousing System over Mapreduce. Proc. VLDB
Endow, 6(11), 1009--1020.

[14] Eldawy, A.,Li, Y., et al (2013). CG_Hadoop: Computational
Geometry in MapReduce. Proc. ACM-GIS, 284-293.

[15] Lee, I.H., Lee, Y. J., et al. (2012). Parallel data processing with
MapReduce: a survey. SIGMOD Record 40(4):11-20

[16] http://en.wikipedia.org/wiki/Point_in_polygon
[17] Jacox,E. H. and Samet,H. (2007). Spatial join techniques. ACM

Transactions on Database Systems, TODS 32(1), #7.
[18] http://en.wikipedia.org/wiki/Z-order_curve
[19] Zhang, J. and You,S. (2012). Speeding up Large-Scale Point-in-

Polygon Test Based Spatial Join on GPUs. Proc. ACM BigSpatial
workshop.

[20] Zhang, J. and You, S. (2013). Parallel Zonal Summations of Large-
Scale Species Occurrence Data on Hybrid CPU-GPU Systems.
Technical report. Online at http://www-
cs.ccny.cuny.edu/~jzhang/papers/zonalstat_tr.pdf.

[21] Zhang, J., You, S. and Gruenwald, L. 2011). Parallel quadtree coding
of large-scale raster geospatial data on GPGPUs. Proc. of ACM-GIS,
457-460.

Acknowledgement: This work is supported in part by NSF Grant IIS-
1302423. The work was initiated while Jianting Zhang was visiting ORNL
through DOE Office of Science Visiting Faculty Program (VFP). We thank
Dr. Yaxing Wei at ONRL for providing the NASA SRTM data. This
research used resources of the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office of Science of the
Department of Energy under Contract DE-AC05-00OR22725. Oak Ridge
National Laboratory is managed by UT-Battelle LLC for the Department of
Energy under contract DE-AC05-00OR22725.

#of nodes runtime (s)
1 60.7

2 31.2

4 17.9

8 10.2

16 7.6

http://www.goes-r.gov/
http://landsat.usgs.gov/

