
 

 

Prototyping A Web-based High-Performance Visual Analytics Platform for 

Origin-Destination Data: A Case study of NYC Taxi Trip Records 
 

Jianting Zhang 
Dept. of Computer Science 

City College of New York 

New York City, NY, 10031 

jzhang@cs.ccny.cuny.edu 

Simin You 
Dept. of Computer Science  

CUNY Graduate Center 

New York, NY, 10016 

syou@gc.cuny.edu 

Yinglong Xia 
IBM T.J. Watson Research Center 

Yorktown Heights, NY, 10598 

yxia@ us.ibm.com 

 

ABSTRACT 
Origin-Destination (OD) data has quickly emerged as a popular 

and fast growing spatiotemporal data type due to widely adoption 

of GPS, smartphones and location dependent social networks.  

Several previous works have developed techniques for managing 

and visualizing large-scale OD data in desktop computing 

environments. In this study, by leveraging our experiences in 

Web-GIS and parallel spatial data processing and learning from 

successful OD data visualization case studies, we have developed 

a Web-based high-performance visual analytics prototype 

platform for OD data. Observing that interactive spatial queries 

typically only involve a limited number of Regions of Interests 

(ROIs), we propose a simple yet effective technique to aggregate 

OD records into dynamically defined OD polygons by data 

parallel scanning OD point locations for cache efficiency and 

easy parallelization on conventional multi-core hardware for high 

efficiency and performance. By dynamically integrating with a 

graph database backend, our prototype platform is capable of 

visualizing social network analytical results and guide users to 

further retrieve detailed information of interests. Two 

experiments are provided to demonstrate the utilization of the 

proposed techniques, including web frontend functionality and 

backend efficiency, by using more than 170 million taxi trip 

records in NYC in 2013 as well several urban infrastructure 

datasets. Interactive demonstrations are available for the web-

based system.  
 

1. INTRODUCTION 
Approximately 13,000 taxicabs in the New York City (NYC) 

equipped with GPS devices generate more than half a million taxi 

trip records per day with each trip has a pickup and a drop-off 

location1. As of 10/07/2014, there are more phones (7.2 billion) 

than people on the Earth2.  Cell phone call logs with caller-callee 

locations represent a category of data at an even larger scale. Also 

as visitors travel around the world more frequently, the 

increasingly popular location-dependent social networks such as 

Foursquare, location-enhanced social media such as text posted 

to Wiki sites and images and videos posted to Flickr and 

YouTube, record more and more location data at different 

granularities and accuracies. All the above data have one 

characteristic in common, i.e., recoding Origin (O) and 

Destination (D) locations, and they are typically termed as OD 

data.  

The inefficiency of using traditional GIS, Spatial 

Databases or Moving Object Databases to manage large-scale OD 

data has motivated us to develop new parallel techniques on 

modern hardware, including multi-core CPUs and Graphics 

Processing Units (GPU [1]) and distributed computing systems to 

process the OD data efficiently on modern hardware [2] [3]. 

While experiments have demonstrated high-efficiency, previous 

works mostly focus on spatially joining point location data with 

urban infrastructure data (or spatial join [4]) in an offline manner 

and do not support online visual analytics for interactive query 

and analysis. On the other hand, as visual analytics typically has 

a local focus (e.g., Region of Interests - ROIs), the computing 

demands is generally less intensive than globally exhaustive 

searching over a large OD data repository. Despite it is still 

technically challenging to make full use of commodity parallel 

hardware for high performance, it is possible to utilize 

conventional hardware to support interactive query processing 

and analysis based on limited ROIs. Different from offline spatial 

join processing, visual analytics of urban OD data involves 

considerably more operations, such as various social network 

algorithms in computing centralities and ranking, to guide 

effective visual exploration. Although these algorithms are well-

defined and open source implementations are available, the 

integration of spatial and spatiotemporal query processing and 

social network analytics with a visual exploration interface is 

non-trivial from a system development perspective. Furthermore, 

while desktop computing based information visualization system 

can generally provide more functionality (e.g., TaxiVis [5]), a 

web-based platform that allows users to access anytime and 

anywhere is more desirable, especially for non-expert users.  

Towards this end, we have started the initiative of 

developing a web-based high-performance visual analytics 

platform for urban OD data. The platform leverages our 

experiences in processing large-scale OD data on parallel 

hardware [2]. It integrates Google Map API3 for map-based 

visualization at the frontend and IBM SystemG API4 for social 

network analysis on graphs at the backend. The platform supports 

ROI-based visual queries on Google Map not only for arbitrarily 

drawn polygons but also for OD polygon pairs, with a response 

speed in a fraction of a second in a web based computing 

environment. The platform populates offline generated geosocial 

 



 

 

graphs into IBM SystemG graph databases and provides social 

network analytical services through its web-enabled APIs. The 

social network analytical results are subsequently geocoded and 

visualized in Google Map based web frontend for subsequent 

map-based interactive visual exploration. The communications 

between the Google Map based frontend and the respective 

distributed backend services are through the open standard JSON 

format to lower system development barriers and achieve 

interoperability, scalability and high performance.  

While our technical contributions in this study are 

mostly on the system designs and implementations, our prototype 

platform is unique in several aspects: an in-house developed 

spatial query processing backend that utilizes in-memory and 

parallel techniques for performance, integrating with industrial 

strength social network analysis modules for enhanced 

functionality that is typically not available in a web-based GIS, 

and, a visual analytics frontend specially designed for OD data on 

top of Google Map APIs that is easy to use. To the best of our 

knowledge, we are not aware of previous works that have 

explored similar system designs for large scale urban OD data. 

The rest of the paper is arranged as follows: Section 2 introduces 

background and motivation and briefly discusses related work. 

Section 3 presents system designs and implementation details. 

Section 4 provides case studies of several application scenarios to 

demonstrate the functionality of the prototype platform. Finally 

Section 5 is the conclusion and future work directions.  

2. BACKGROUND, MOTIVATION AND 

RELATED WORK 
The work being reported is related to quite a few disciplines and 

their intersections, including GIS, Big Data, visual analytics, 

social networks and web technologies. Web-GIS has established 

itself as a mature application domain to publish georeferenced 

data over the Web in the past two decades. In addition to open 

source software stacks, such as PostgresSQL/PostGIS [6] -

MapServer5/GeoServer6 - OpenLayers7, major GIS vendors and 

their products, such as ESRI ArcGIS Server8 and its client SDKs, 

allow users to publish their data as web services and consume 

such services in web-based environments for visualization, 

analytics and their combinations. Typically the backend has a 

database or data repository module to manage vector and raster 

geospatial data, and a middleware module to transform the raw 

geospatial data to various open formats, including images and 

documents using markup languages, such as Geographical 

Markup Language (GML9) and Keyhole Markup Language 

(KML10). The web frontend is typically provided as Javascript 

libraries or other web-plugin libraries (such as Microsoft 

Silverlight, Oracle JavaFX and Adobe/Apache Flex) that can 

assemble various formats of georeferenced data transmitted over 

the HTTP protocol and graphically represented them in browsers. 

Standardization organizations, such Open Geospatial Consortium 

(OGC11), have been playing an import role in standardizing the 

interfaces among different components in a Web-GIS application, 

such as Web Map Services (WMS12) and Web Feature Services 

(WFS13), to achieve interoperability among modules provided by 

different software vendors. The popular Google Map and 

Microsoft Bing Map combine proprietary data and a limited 

subset of GIS functionality as web services and provide such 

services through their frontend Web APIs. While the commercial 

products make it easy to use services they provide, e.g., using web 

maps as background for visualization purposes, typically it is 

difficult to publish users’ own data to use similar services or to 

significantly extend the services for more complex analysis. On 

the other hand, although most of existing open source or 

commercial Web-GIS software allows users to store large-scale 

georeferenced data in disk-resident databases or data repositories, 

their performance is not acceptable for large-scale data [2] due to 

the poor scalability of software of multiple layers in Web-GIS 

software stacks. Furthermore, while Google Map and Microsoft 

Bing Map may be able to optimize their data accesses and services 

for the data they directly manage, as users are required to integrate 

their customer data and services at the frontend (e.g., based on 

Javascript), the performance degenerates quickly as customer 

data and services increase. As a consequence, existing web-based 

systems for OD data visual analytics (e.g., [7]) have not utilized 

Web-GIS technologies extensively beyond simple web map 

overlay for visualization. Indeed, without significantly changing 

backend and/or frontend in the existing Web-GIS software stacks, 

it is very difficult to handle large-scale OD data in a sensible way. 

As a preliminary remedy, our prototype platform reuses Web-GIS 

frontend (Google Map API in particular) but enhances the 

backend with a high-performance in-memory parallel data 

management system to perform spatial queries, which will be 

further discussed next.   

Information visualization and visual analytics 

techniques specially designed for spatiotemporal data, trajectory 

data and OD data, which are becoming increasingly popular in the 

past few years, can be considered as extensions and enhancements 

to traditional GIS. While traditional GIS nicely integrates data 

management, visualization, analysis and simulation functionality 

into software suits and provide end-to-end solutions for many real 

world applications in the past few decades, they have not 

provided sufficient functionality for spatiotemporal data in 

general and OD data in particular. There have been a plethora of 

works on managing, analyzing and visualizing spatiotemporal 

data and trajectory data and we refer to [8] for reviews and 

examples. The seminal work of TaxiVis reported in [5] has 

motivated quite a few works to develop visualization gadgets 

specifically for OD data. As an example, a recent work in [7] has 

developed Circular Pixel Graph and Spatio-Temporal Stacked 

Graph to better understand patterns from OD data. Similarly, OD-

Wheel [9] was designed to explore the temporal dynamics of OD 

clusters to help users to study traffic pattern of a ROI. Different 

from TaxiVis that allows user to dynamically define ROIs by 

interactively drawing polygons on a base map and retrieve taxi 

trip records from the backend database on-demand, which 

involves considerable development efforts in indexing and query 

processing, the works reported in [7] and [9] seem to rely on 

preprocessing to aggregate OD data to a limited number of 

predefined regions to reduce computing demands. While effective 

from a computing perspective, the techniques might limit their 

capabilities to support fine-grained spatiotemporal visual 

explorations of large-scale OD data due to the predefined 

aggregations. We note that, all these works are based on a desktop 

computing environment. While preprocessing techniques, 

including indexing and aggregation, may utilize distributed 

computing environment, query processing and visualization in 

these studies seem to be based on a serial computing model, 

which may limit their scalability and achievable performance. In 

contrast, our prototype platform is designed to be web-based and 

naturally supports distributed computing environments. In 

addition to dispatching multiple queries to distributed backend 



 

 

servers, each server can natively utilizes multi-core CPUs for 

efficient parallel query processing.  

Large-scale OD data such as taxi trips has also 

motivated several research works from spatiotemporal data 

management perspective, which is closely related to data 

management in GIS. We have developed several data parallel 

spatial indexing and query processing techniques both on GPUs 

and GPU-accelerated clusters and we refer to [3] for a brief 

summary. Experiments have shown that spatially joining 

hundreds of millions of GPS OD locations in the NYC taxi trip 

records with hundreds of thousands of road segments and 

different types of zones can be completed in the order of tens of 

seconds. Compared with traditional disk resident spatial 

databases techniques running a single CPU core, 3-4 orders of 

magnitude of speedups (from tens of hours to tens of seconds) 

have been achieved due to the combined improvements of 

columnar layout, data parallel geometry operation, in-memory 

processing and many-core GPU acceleration. Based on the 

results, it is reasonable to assume that, interactive queries that 

typically involve only a limited number of manually drawn 

simple ROI polygons, can perform much faster than spatial joins 

that involve hundreds of thousands of complex real world 

polygons. This further motivates us to develop a simplified spatial 

query technique for such interactive queries in the context of web-

based visual analytics for OD data. As detailed in Section 3, our 

point-in-polygon test based query processing technique at the 

backend does not require sophisticated spatial indexing, such as  

KD-Tree in TaxiVis [5] and R-Tree, Quadtree or Grid File in our 

previous works [10] [2]. Instead, our simplified technique simply 

scans point locations and aggregate OD records that spatially 

intersect with the MBRs of query polygons by using inexpensive 

MBR test as a filtering step before performing more expensive 

point-in-polygon test on point locations and query polygons. The 

simplified technique is easy to implement and deploy on 

conventional multi-core CPUs and does not require a GPU. 

Experiments have shown the response time is typically a fraction 

of a second for arbitrarily drawn ROI query polygons against the 

complete 2013 NYC taxi trip dataset whose number of records is 

over 170 million on a legacy dual quad-core CPU machine. While 

we acknowledge the need of a comprehensive and powerful 

backend for large-scale OD data, we believe the simplified spatial 

query technique is useful as a lightweight module for visual 

analytics.   

While OD data naturally has a spatiotemporal 

component and can be georeferenced, for a single origin location, 

the destination location can be arbitrary in a study area. Although 

road network data can be generally represented as a planar graph 

where edges only intersect at their endpoints, OD pairs can only 

be represented as non-planar graphs.  In fact, OD pairs that are 

geographically faraway may have stronger connection. For 

example, there are much more taxi trips between the Empire State 

Building (as a ROI) and the JFK airport in NYC. The unique 

characteristic of OD graphs makes them resemble more to social 

network graphs. It is thus interesting to apply many well 

established social network algorithms to better understand OD 

data. In our previous work, we have aligned the pickup and drop-

off locations of NYC taxi trips to road network intersections [2]. 

We then calculate shortest paths between unique node pairs 

before aggregating the shortest paths to calculate the centralities 

of road network segments by empirically assuming the drivers 

will generally follow shortest paths [11] [12]. A similar idea has 

been applied to TrajGraph [13] where road segments are 

partitioned into zones to limit the numbers of OD pairs to ease 

graph manipulations. We refer to [14] for a more comprehensive 

survey on using taxi GPS traces to analyze community dynamics 

where many studies use OD data derived from complete GPS 

traces. In this study, we align taxi pickup and drop-off locations 

to predefined zones in polygon datasets (e.g., Community 

District14 in NYC) and use the polygon zones as nodes and the 

numbers of taxi trips as the weights of edges that connect the 

polygon zones. Clearly, different from road networks that planar 

graphs are formed purely based on geometry, non-planar OD 

graphs reflect the aggregated utilization of the underlying road 

networks.  

To generate OD graphs and apply social network 

algorithms, it is necessary to utilize various spatial join 

techniques, such as point-in-polygon test based and point-to-

nearest polygon based, to align OD locations with the underlying 

urban infrastructure, such as road segments and different types of 

zones. While large-scale spatial joins are computing intensive (as 

discussed before), generating OD graphs is an one-time cost and 

can be done offline, possibly by utilizing GPUs and/or computer 

clusters for accelerations. However, managing diverse OD graphs 

with complex node and edge structures and highly dynamic 

weights is technically non-trivial. As detailed in Section 3, we 

have chosen IBM SystemG as our graph database infrastructure 

to manage such OD graphs and to provide various analytical 

functionality through built-in and easy-to-use web-based APIs. 

Although we have chosen PageRank15 as an example to 

demonstrate the feasibility from an integrated system 

development perspective in this study, we plan to incorporate 

more social network analysis functionality into the prototype 

platform by adopting and extending IBM SystemG modules. To 

the best of our knowledge, we are not aware of previous works on 

dynamically integrating Web-GIS and social network analysis 

functionality for visual analytics of OD data in a distributed (web) 

computing environment. Clearly such integration requires non-

trivial coordination among Web-GIS frontend, spatial database 

backend and graph database backend. We discuss our designs and 

implementation details in the next Section. 

3. System Architecture and Implementations 
Our prototype platform currently consists of two backend servers 

and a frontend module to integrate services provided by the two 

backend servers as well as third party backends (Google Map 

services in particular). The high-level architecture is illustrated in 

Fig. 1 and the implementation details of the three components are 

provided in the subsections next. As the network/web 

communication and the GUI sub-modules are standard web and 

Web-GIS technologies, we will focus on the frontend geometry 

library sub-module that we have developed. 

3.1 Geospatial backend 
As illustrated in Fig. 1, the geospatial backend has a dual role: on-

demand processing spatial (and spatiotemporal in the future) 

queries through client side visual exploration interfaces and 

offline aggregating OD records to generate dynamic graphs for 

online social network analysis and visualization. As the offline 

computation is not time critical and have been extensively studied 

in previous works, we next focus on on-demand query processing.  

The most popular on-demand spatial query on OD data 

through a visual exploration interface in the current prototype 

platform is to retrieve the OD records (e.g., taxi trips in our NYC 



 

 

case study) whose origin or destination locations fall within an 

interactively drawn polygon, or the OD records that with the 

origin and the destination in a pair of interactively drawn 

polygons. Both require the point-in-polygon test based spatial 

operation which are well supported in traditional disk-resident 

Spatial Databases (e.g. [6]) and newly emerging hardware-

accelerated prototype systems (e.g. [2]).  

As discussed previously, our geospatial backend is 

designed to balance the tradeoffs between conventional database 

technologies, which are rich in functionality and easy to use but 

suffer from low performance, and hardware-accelerated 

geospatial query processing technologies, which are high-

performance but are quite sophisticated and could be fragile due 

to lacking maturity. Different from traditional databases that 

typically follow row-based layouts for physical storage, we 

follow the columnar design and partition OD data based on both 

columns and rows for efficient data loading and subsequent in-

memory processing (we refer to Section 3 of [2]  for details). 

Given a limited number of interactively drawn polygons as user-

defined ROIs, our geospatial backend scans all the OD locations 

and aggregates OD records that fall within the ROI polygons 

without relying on any prebuilt indices. A code segment using 

OpenMP16 for straightforward parallelization is listed in Fig. 2. 

The approximately 20 lines of C code can be easily included in 

any C/C++ programs for simplicity and portability. Note that the 

7 lines point-in-polygon test code is due to W. Randolph Franklin 

of RPI in 1990s17.  We note that our GPU-based pint-in-polygon 

test module reported in [10] is based on the code as well.  

Although we have not used any spatial index, we do use 

the MBR of a ROI query polygon represented by (xmin, ymin, 

xmax, ymax) to filter out location points that are outside of the 

MBR. Even for large ROIs where the MBR-based filtering is not 

effectively, scanning through all the yearly 170 million taxi 

pickup or drop off locations typically requires only a fraction of a 

second on an Intel dual quad-core machine running at 2.0 GHZ 

released in 2007. In contrast, a similar query against 

PostgreSQL/PostGIS database may take minutes. The query 

processing time using the simple technique could be even lower 

than network delays for web-based visual explorations. We found 

the performance satisfactory when the technique is applied to 

NYC taxi trip data at a yearly basis, although further refinement 

may be needed for larger-scale data. On the other hand, as the 

numbers of cores in multi-core machines are also increasing fast 

in the past few years [15], it is likely that the growth of CPU cores 

may match the growth of data volumes for the particular 

application that we are targeting at. This may further increase the 

applicability of the proposed simple technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Fig. 1 Prototype Platform System Architecture and Components 
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Fig. 2 Code Segment of OpenMP based Parallel Processing of 

Interactive Spatial Query based on Point-in-Polygon Test 

3.2 Graph Database for Social Network 

Analysis 
SystemG is a graph database that is being actively developed at 

IBM Research, which explores efficient graph data organization 

for parallel computing architectures. SystemG is a whole 

spectrum solution for large scale graph processing, including 

graph storage, runtime, analytics and visualization [16]. In this 

study, we primarily use SystemG as a graph database backend to 

manage dynamical graphs and provide social network analysis 

functionality. As the possible combinations of spatial, temporal 

and thematic (e.g., zone datasets) selections from a visual 

exploration interface is considerably large, the backend needs to 

respond to such dynamic parameters during a visual exploration 

process, retrieve and transform the corresponding graphs, 

perform required graph analytics and send back the results to the 

client. As part of its analytics library, SysemG provides various 

social network analysis functionality, including shortest paths, 

betweeness centrality and PageRank. In this study, we will be 

using PageRank for demonstration purposes where graph weights 

are defined as the numbers of OD records between an OD pair, in 

a way similar to TrajGraph [13] where travel time between two 

OD zones is used as the weight of the corresponding OD graph. 

PageRank is useful in revealing the distributions of hot traffic 

hubs and the relative ranking of OD zones.  

As an extension to SystemG’s PageRank 

implementation, we consider not only graph structure (node 

degrees) but also edge weight, which is computed as the number 

of OD records (taxi trips) between an OD pair. The primary 

reason for the extension is that, for the NYC taxi trip dataset, the 

resulting OD graphs for pretty much all zoning systems are almost 

fully connected graphs. This is due to the close social-economic 

interactions among NYC zones. Without exploiting edge weight, 

classic PageRank algorithm designed for unweighted graphs will 

produce the same ranking scores for the zones which is not 

informative and is undesirable. Currently our prototype platform 

supports two zoning systems, i.e., Community District with 71 

zones and Taxi Zone with 263 zones. The processing times of all 

the analytic modules that we have tested on the small graphs by 

SystemG is negligible. The high efficiency and high scalability of 

the graph databases backend allow much larger and much more 

complex graph analytics for better visual explorations and we 

leave it for our future work.  

Another feature of SystemG we have exploited 

extensively is its built-in support for web-based applications. By 

starting the backend in a socket mode, all graph query and 

analytical results that are sent to terminals for debugging purposes 

in the interactive mode can be redirected to web clients. By setting 

the output format to JSON, the graph processing results can be 

easily consumed by web clients as Javascript objects and 

integrated with other web APIs, such as Google Map APIs for 

visualization. 

3.3 Web Frontend 
While many of the web frontend functionality utilizes standard 

techniques, such as Javascript asynchronous function call and 

JSON string encoding and parsing for distributed data 

communication and defining spatial parameters through polygon 

drawing (lower-right part of Fig. 1), in this subsection, we would 

like to highlight a few techniques that we consider unique to the 

prototype platform. 

First, when querying OD pairs during an interactive 

visual exploration, after users draw both an origin polygon, a 

destination polygon and an arrow (all by Google Map APIs), we 

check the geometrical validity of the arrow at the web frontend 

by implementing the point-in-polygon test in Javascript. Only 

when both ends of an arrow fall within the two polygons, the web 

frontend considers it a valid OD pair query. Invalid OD polygon 

pairs will not be allowed to be sent to the geospatial backend to 

protect the backend from invalid queries and to lower its 

overhead.  

Second, after a social network analysis by the graph 

database backend is completed and the results are geo-coded and 

visualized in the web frontend, we allow users to query graph 

weights of any OD pairs using a map interface. While the colored 

or patterned zones can show the distributions of the resulting 

ranking or centrality scores which can serve the purpose of 

“Overview” in visualization terminology [17], users may want to 

further look into the edge weights that are associated with certain 

nodes of the original graph to serve the purpose of providing 

“Detail”, according to the well-known information seeking 

mantra – “Overview First, filter and zoom and details on demand”  

[17]. Although this can be easily implemented in a desktop 

computing environment, we found it non-trivial in a Web 

browser.  

int pip_count(float vertices[][2], int num_vertices) 

{ 

…   

int count = 0; 

#pragma omp parallel for reduction(+:count) 

  for (int i = 0; i < num_points; ++i) { 

    double x = point_x[i]; 

    double y = point_y[i]; 

    if (x < xmin || x > xmax || y < ymin || y > ymax)  

continue; 

    bool in_polygon = false; 

    for (int j = 0; j < num_vertices-1; ++j) { 

      double x0 = vertices[j][0]; 

      double x1 = vertices[j+1][0]; 

      double y0 = vertices[j][1]; 

      double y1 = vertices[j+1][1]; 

 

      if ((((y0 <= y) && (y < y1)) || 

            ((y1 <= y) && (y < y0))) && 

          (x < (x1 - x0) * (y - y0) / (y1 - y0) + x0)) 

        in_polygon = !in_polygon; 

    } 

    if (in_polygon) ++count; 

  } 

  return count; 

} 



 

 

Our solution is to allow users draw an arrow on the map 

and determine the identifiers of the origin and the destination 

zones, again by applying the point-in-polygon test algorithm. 

Unfortunately, using Google Map APIs, while we are able to 

access the whole set of polygons of the base map that is being 

visualized, we are not able to get the active polygons in the current 

view and we have to perform the test on all polygons. While the 

number of polygons in a base map is typically small, the 

Javascript based geometry test is orders of magnitude slower than 

the backend side implementation and the performance is often 

unacceptable for interactive visual exploration. Again, we apply 

MBR based spatial filtering to limit the number of point-in-

polygon test to solve the performance issue. We also observed 

that users are typically interested in nearby OD pairs which makes 

the query quite selective and the MBR based filtering highly 

effective in our experiments. An alternative might be to delegate 

the point-in-polygon test to server side. This would require the 

graph database backend to either communicate with the 

geospatial backend dynamically or implement the geometry 

operation inside the graph database backend. We are working on 

integrating the point-in-polygon test code originally developed 

for the geospatial backend into the graph database backend. 

4. EXPERIMENTS AND 

DEMONSTRATIONS 
  Fig. 3 is a snapshot of a case study of querying an OD 

pair through the visual exploration interface. For the two 

interactively drawn polygons in the middle town region in NYC, 

it took the geospatial backend 136.29 milliseconds and 165.48 

milliseconds to scan 173,179,763 pickup and drop-off locations 

in the two polygons and count numbers of locations that fall 

within the polygons. The performance is considered acceptable 

for interactive visual explorations. We are in the process of 

developing visual gadgets for temporal selection by learning from 

previous designs, such as TaxiVis [5] and OD-Wheel [9], and 

adapting for our web frontend. 

Our second experiment is to demonstrate the utilization 

of the integrated Web-GIS and social network analysis for visual 

explorations of geosocial data. After users choose a certain zoning 

system (community district or taxi zone) and a weight metric 

(numbers of trips in hours 0-23 and their total) through dropdown 

lists, as shown in the top-left side of Fig. 4, the prototype 

communicates with the graph database backend and retrieves 

social network analysis results. While we currently uses colors to 

visualize PageRank results (red represents higher ranking and 

green for lower ranking), more sophisticated visualization 

techniques can be applied for better visualization. Form Fig. 4 it 

is clear that, taxi zones in the mid-town and downtown areas as 

well as the LaGuardia airport and the JFK airport regions (both 

are in Queens) are ranked much higher than those in Staten Island, 

which is expected and intuitive for non-expert users.  

Assuming users are interested in retrieving the OD 

details between a taxi zone in the mid-town region and the 

LaGuardia airport region, as shown in the mid-left part of Fig. 4, 

they can draw an arrow to identify the original and the destination 

zones (polygons). If the original and the destination are validated, 

they will be highlighted (colored in yellow) and the detailed 

information will be requested form the graph database backend. 

Users can further switch to the interactive spatial query interface 

to draw polygons within or cross the boundaries of the predefined 

OD zones to obtain more specific OD information. While we are 

in the process to integrate the two web frontend interfaces, we 

hope the designs can serve as the starting point to better support 

seamless OD data explorations with both predefined zones and 

dynamically defined ROIs.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Snapshot of an Interactive Spatial Query Processing Demonstration after Users Draw a Pair of OD Polygons  



 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Visualizing and Exploring PageRank Results of Taxi Zones: Interfaces and Results 

 

5. CONCLUSION AND FUTURE WORK 
In this study, we report our work on developing a high-

performance research platform to visually explore large-scale 

urban OD data in a web computing environment. Still under 

active development, the prototype platform integrates an in-

memory parallel geospatial query processing backend and a graph 

database backend and provides several novel web frontend 

modules for both functionality and efficiency. Using the yearly 

170+ million taxi trips in NYC, we have provided two 

experiments to demonstrate the utilization of an interactive query 

processing interface where users can define their OD ROIs 

interactively, and a geo-referenced social network analysis 

interface where graphs are dynamically defined, analytical results 

are visualized and details can be retrieved in an intuitive map-

centric way.  

The reported work is preliminary in nature and 

naturally leads to several future improvements. First of all, we 

plan to extend the geospatial backend to efficiently support more 

types of spatial queries, in addition to point-in-polygon test. 



 

 

Second, as discussed inline, we plan to work with IBM SystemG 

development team to integrate spatial data processing 

functionality to support in-graph spatial queries. This may 

significantly reduce the coordination complexity among the web 

frontend and the two backend servers. Third, we plan to develop 

more intuitive visual gadgets for temporal selection in the web 

frontend, for both interactive spatial queries on raw OD data and 

social network inspired analysis on derived OD graphs.   
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