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Abstract  

In-situ and/or post- processing large amount of geospatial data increasingly becomes a 
bottleneck in scientific inquires of Earth systems and their human impacts as spatial and 
temporal resolutions increase and more environmental factors and their physical processes are 
being incorporated. In this study, we have developed a set of parallel data structures and 
algorithms that are capable of utilizing massively data parallel computing power available on 
commodity Graphics Processing Units (GPUs) for a popular geospatial technique called Zonal 
Statistics. Given a raster and a polygon input layers, our technique has four steps in computing 
the histograms of raster cells that fall within polygons. Each of the following four steps are 
mapped to GPU hardware by identifying its inherent data parallelisms (1) dividing an input raster 
into blocks and compute per-block histograms, (2) pairing raster blocks with polygons and 
determining inside/intersect raster blocks for each polygon, (3) aggregating per-block histograms 
to per-polygon histograms for inside raster blocks (4) updating polygon histograms for raster 
cells that are inside respective polygon through point-in-polygon test by treating raster cells in 
intersecting raster blocks as points. In addition, we have utilized a Bitplane Quadtree (BQ-Tree) 
based technique to decode encoded rasters to significantly reduce disk I/O and CPU-GPU data 
transfer times.  

Experiment results have shown that our GPU-based parallel Zonal Statistic technique on 
3000+ US counties (polygonal input) over 20+ billion NASA SRTM (Shuttle Radar Topography 
Mission) 30 meter resolution Digital Elevation (DEM) raster cells has achieved impressive end-
to-end runtimes: 101 seconds and 46 seconds on a low-end workstation equipped with a Nvidia 
GTX Titan GPU using cold and hot cache, respectively; and, 60-70 seconds using a single OLCF 
Titan computing node and 10-15 seconds using 8 nodes. The results clearly show the potentials 
of using high-end computing facilities for large-scale geospatial processing and can serve as a 
concrete example of designing and implementing frequently used geospatial data processing 
techniques on new parallel hardware to achieve desired performance. The project outcome can 
be used to support DOE BER’s overarching mission to “understand complex biological and 
environmental systems across many spatial and temporal scales” 
 
 

  



 

Introduction 

As spatial and temporal resolutions of Earth observatory data and Earth system 
simulation outputs are getting higher, in-situ and/or post- processing such large amount of 
geospatial data increasingly becomes a bottleneck in scientific inquires of Earth systems and 
their human impacts. Existing geospatial techniques that are based on outdated computing 
models (e.g., serial algorithms and disk-resident systems), as have been implemented in many 
commercial and open source packages, are incapable of processing large-scale geospatial data 
and achieve desired level of performance.  

One of the most significant technical trends in parallel computing is the increasingly 
popular General-purpose computing on Graphics Processing Units (GPGPU) technologies. High-
end GPGPU devices, such as Nvidia GPUs based on its Kepler architecture [1], have thousands 
of cores and provide more than 1 teraflops double precision floating point computing power and 
hundreds of GB/s memory bandwidth. GPU clusters that are made of multiple GPU-equipped 
computing nodes, such as OLCF’s Titan supercomputer [2], are enormously powerful for 
scientific investigations. Unfortunately, while single GPU devices and GPU clusters have been 
extensively used in many computing intensive disciplines [3], they have yet been widely utilized 
for geospatial computing although their potentials are well recognized [4]. GPUs typically adopt 
a shared-memory architecture, however, they require a different set of techniques from the 
traditional ones in order to be fully utilized. While this generally makes it difficult to adapt 
traditional geospatial techniques for GPUs, it also brings an opportunity to develop new high-
performance techniques by synergized exploiting modern hardware features, such as large CPU 
memory capacity, parallel data structures and algorithms and GPU hardware accelerations.  

Among various geospatial techniques that are required by multi-scale environmental data 
analysis, a frequently used one is called Zonal Statistics [5]. Given two input datasets with one 
representing measurements (e.g., temperature or precipitation) and the other one representing 
polygonal zones (e.g., ecological or administrative zones), Zonal Statistics computes major 
statistics and/or complete distribution histograms of the measurements in all polygonal zones. 
The geospatial computing task is both computing intensive and data intensive, especially when 
the number of measurements is large and the zonal polygons are complex. While several 
commercial and open source implementations of Zonal Statistics are currently available, such as 
ESRI ArcGIS [6], very few of them have been parallelized and used in cluster computers. To the 
best of our knowledge, there is no previous work on parallelizing Zonal Statistics on GPUs. In 
this study, we have developed a set of parallel data structures and algorithms that are capable of 
utilizing massively data parallel computing power available on commodity GPUs and are scale 
well on cluster computers.  

Results have shown that our GPU-based parallel Zonal Statistic technique on 3000+ US 
counties over 20+ billion NASA SRTM (Shuttle Radar Topography Mission) 30 meter 
resolution Digital Elevation (DEM) raster cells [7], which would  take hours to compute in a 
traditional Geographical Information System (GIS) environment, has achieved impressive end-
to-end runtimes: 101 seconds and 46 seconds on a low-end workstation equipped with a Nvidia 
GTX Titan GPU using cold and hot cache, respectively; and, 60-70 seconds using a single OLCF 
Titan computing node and 10-15 seconds using 8 nodes. Our experiment results clearly show the 
potentials of using high-end computing facilities for large-scale geospatial processing.  



Progress 

Our technique has four steps and each step can 
identifying its inherent data parallelisms. First, a raster is divided into blocks and per
histograms are derived. Second, the Minimum Bounding Boxes (MBRs) of polygons are 
computed and are spatially matched with raster b
and blocks that are either inside or intersect with polygons are identified
histograms are aggregated to polygons for blocks that are completely within polygons. Finally, 
for blocks that intersect with polygon boundaries, all the raster cells within the blocks are 
examined using point-in-polygon
update corresponding histograms.

Fig. 1 Illustration of the Framework of the Proposed GPU

Our technique has four steps and each step can be mapped to GPU hardware by 
identifying its inherent data parallelisms. First, a raster is divided into blocks and per
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Fig. 2 Illustration of BQ

We have set up three experiment environments to test the efficiency and scalability of the 
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Paring raster blocks with polygons essentially applies a grid-based spatial indexing 
technique which significantly reduces the number of required point-in-polygon tests that is 
needed to assign raster cells to polygons. The four steps are highly data parallelizable and can be 
efficiently implemented on modern GPUs. Our results have shown that, after applying spatial 
indexing and GPU hardware acceleration, Parallel Zonal statistics using the NASA SRTM raster 

tates(CON-US) county data becomes I/O bound. Reading the 
38GB data from disk took more than 400 seconds which is several times larger than computing 

nique. To further reduce end-to-end runtimes, we have applied our 
Tree) technique [10] that was initially developed for coding raster data. 

The idea of the technique is to separate an M-bit raster into M binary bitmaps and then use a 
modified quadtree technique to encode the bitmaps (Fig. 2). As many neighboring raster cells are 
similar, there is a high chance that quadrants of the M binary bitmaps are uniform and can be 

coded using quadtrees. Our experiments have shown that the data volume of the 
encoded NASA SRTM raster data is about 7.3 GB, which is only about 1/5 of the original data 

Tree coding technique has successfully reduced I/O times b
As a comparison, the data volumes of TIFF-based and gzip-based compression are 15 GB 

and 8.3 GB, respectively. Interestingly, when applying gzip-based compression on BQ
encoded NASA SRTM raster data, the data volume is further reduced to 5.5 GB. 

Fig. 2 Illustration of BQ-Tree Coding of Rasters 

We have set up three experiment environments to test the efficiency and scalability of the 
proposed technique. The first two environments are single-node configurations that use a Fermi
based (Quadro 6000) and a Kepler (GTX Titan) GPU device, respectively.
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GPU cluster and we have varied the numbers of computing nodes from 1 to 16

. The results of the single-node and the cluster configurations are 
shown in Table 1 and Table 2, respectively. From Table 1, we can see that the Kepler
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Table 1 End-to-End Runtimes of Single Node Configurations 

 Cold Cache  Hot cache 

Single Node Config1 (Quadro 6000) 180s 78s 

Single Node Config2  (GTX Titan) 101s 46s 

 

Table 2 Scalability Test on OLCF Titan GPU Cluster 

# of computing nodes 1 2 4 8 16 

end-to-end runtime(s) 60.7 31.3 17.9 10.2 7.6 

 

While it is typical that analyzing climate simulation outputs relies on GIS software in a 
post-processing manner, which is neither efficient nor scalable, our study has shown that it is 
quite feasible to develop new parallel geospatial processing techniques that can be embedded 
into large-scale climate simulation modeling process and executed efficiently on high-end GPU 
clusters, such as OLCF Titan. The project outcome can be used to support DOE BER’s 
overarching mission to “understand complex biological and environmental systems across many spatial 
and temporal scales” [11]. 

Future Work 

The pilot study opens many promising future work directions.  First of all, we plan to 
further optimize the implementations of both raster coding and the four steps in Zonal Statistics 
and push the performance limit on a single GPU device. Second, as raster sizes can significantly 
impact load balancing among multiple computing nodes, we plan to utilize domain-specific 
metadata to achieve better load balancing and improve the overall performance. Finally, we 
observe that several techniques utilized in this study, such as BQ-Tree based raster coding and 
paring raster blocks with polygons, can be equally applied to realize other geospatial processing 
tasks. We would like to prioritize such tasks based on their relevance to large-scale climate and 
Earth system modeling, and, implement them on GPU clusters (such as Titan) to significantly 
boost modeling performance and support interactive data exploration and decision making.  

Conclusions 

Partially supported by the DOE VFP program, we have successfully developed a set of 
parallel data structures and algorithms and implemented a high-performance Zonal Statistics 
technique on OLCF’s Titan GPU cluster. Using NASA SRTM 30m DEM data, our technique is 
capable of computing elevation distribution histograms for all continental United States counties 
in about 100 seconds (end-to-end runtime including disk I/O) using a single GPU device and 
about 10 seconds using 8 computing nodes on Titan. Our experiments have demonstrated the 
level of achievable high-performance on high-end computing facilities when compared to 
traditional geospatial processing pipelines. The pilot study may suggest that higher throughputs 



of large-scale Earth system modeling are quite possible by incorporating advanced data 
management techniques and fully utilizing parallel hardware capabilities.  
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