
U2STRA: High-Performance Data Management of Ubiquitous Urban Sensing
Trajectories on GPGPUs

Jianting Zhang

Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Volumes of GPS recorded trajectory data in ubiquitous urban
sensing applications are increasing fast. Many trajectory queries
are both I/O and computing intensive. In this study, we propose
to develop the U2STRA prototype system to efficiently manage
large-scale GPS trajectory data using General Purpose
computing on Graphics Processing Units (GPGPU)
technologies. Towards this end, we have developed a trajectory
data layout schema using simple in-memory array structures
which is not only flexible for data accesses but also cache
friendly. We have further developed an end-to-end trajectory
similarity query processing technique on GPUs. Our
experiments on two publically available large trajectory datasets
(GeoLife and T-Drive) have demonstrated the efficiency of
massively data parallel GPGPU computing. An impressive 87X
speedup for spatial aggregations of GPS point locations and 25-
40X speedups for trajectory queries over serial CPU
implementations have been achieved. The U2STRA system has
also been integrated with commercial desktop and Web-based
GIS systems and spatial databases for visual exploration
purposes.
Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications – Data
mining, Spatial databases and GIS

General Terms
Management, Design

Keywords
Ubiquitous Sensing, GPS Trajectory, High-Performance,
GPGPU, Similarity Query, Spatial Aggregation

1. INTRODUCTION
Huge amounts of pervasive urban sensing data are

being captured at ever growing rates due to the increasing
availability of imaging, locating and other types of sensing
technologies on portable wireless devices and increasing urban
activities. In particular, Global Positioning System (GPS) traces
have been recorded routinely by taxicabs in many big cities over
the world. For example, The T-Drive sample dataset collected
by Microsoft Research Asia [1] has 15 million GPS readings
from 10,357 taxis during a single a week and the dataset

amounts to 762 MB in text format. The number of GPS point
locations compiled by OpenStreetMap from GPS traces
contributed by world-wide volunteers in the first seven and a
half years has reached 2.77 billion and the data volume is 55 GB
[2]. Nokia probe vehicles collects more than 11 billion GPS
readings in major cities over the world to measure and predict
traffic flows (Personal communication). Yet cell phone call logs
represent a category of data at an even larger scale [3, 4]. These
Ubiquitous Urban Sensing (U2S) data, while very useful in
understanding a variety of aspects of urban dynamics, traffic
conditions and social interactions, have imposed signficant
challenges on data management.

Geographical Information System (GIS) and Spatial
Databases (SDB) are commonly used techniques in managing
geo-referenced data. Unfortunately, most of the existing
commercial and open source GIS and spatial databases are disk-
resident and are designed for managing transactional data. The
performance is usually rather poor in managing large-scale
trajectory data. In recent years, quite a few Moving Object
Databases (MOD) techniques have been developed to index and
query trajectory data [5, 6, 7, 8, 9]. However, most of them are
designed based on traditional database architectures, i.e., disk-
resident and serial CPU computing.

To achieve the desired level of high-performance in
querying and data mining of large-scale trajectory data, it is
natural to explore the massively data parallel General Purpose
computing on Graphics Processing Units (GPGPU)
technologies. Despite the fact that almost all reasonably current
desktop and server computers have already been equipped with
GPU devices that are capable of general computing and there
have been many successful applications in different domains,
there is relatively little research on using GPGPU technologies
for data management. Among the few pioneering works to
explore the potentials of using GPGPU computing power for
data management, the majority focuses on indexing and query
processing on relational data [10, 11]. The work reported in this
paper is an extension to our previous work on using GPGPU
technologies for managing U2S Origin-Destination (OD) data
[12]. Our experiments have demonstrated 3-4 orders speedups
when joining point locations with urban infrastructure data
(street networks and different type of zones) based on different
criteria [13,14, 15]. In this study, we extend our experiences in
designing and developing the U2SOD-DB system to trajectory
data in the same context of managing ubiquitous urban sensing
data (where urban infrastructure plays a key role) and we call
our prototype system as U2STRA.

The rest of the paper is arranged as the following.
Section 2 introduces background and related work. Section 3
presents the system architecture and discusses some design
considerations. Section 4 provides the technical details of the
new implementations of key components. Section 5 provides
some experiment results. Finally Section 6 is conclusion and
future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CDMW’12, October 29, 2012, Maui, Hawaii, USA.

Copyright 2012 ACM 978-1-4503-1709-2/12/10...$15.00.

2. BACKGROUND, MOTIVATIONS AND
RELATED WORK

Moving objects and trajectories have attracted
considerable research interests in the past decade [5, 6, 7, 8].
While moving objects are not necessarily constrained by
infrastructure (such as road networks), trajectories recorded by
GPS devices, cellular networks or wifi networks, which are
typical in the context of ubiquitous sensing and computing, are
strongly connected with urban infrastructure data, including
street segments, Points of Interests (POIs) and land use types. In
general, in contrast to other types of trajectories, such as
hurricane paths and animal movements, U2S trajectories are
closely related to human activities with specific trip purposes.
While the rich semantics make U2S trajectory data interesting in
various applications, significantly more sophisticated data
management techniques are required to make sense out of the
huge amount of the data due to the sophistications of human
activities [16, 17,18].

Spatial, temporal and spatiotemporal query processing
is fundamental to trajectory data management and analysis.
Quite a few indexing techniques have been developed to speed
up processing the queries over the past few years and we refer to
[5, 6, 7, 8, 9] for reviews. More specifically, SECONDO is an
extensible database system that has been extensively used to
manage moving objects and trajectories [19, 20]. Recently, the
M-Atlas project has made its system available for download [21]
which is built on top of the open source PostgreSQL database
[22] and its PostGIS plugin [23]. These indexing techniques and
system realizations target at different types of queries. In this
study, we are particular interested in similarity related trajectory
queries which have also received extensive attentions [24-27].
We currently use Hausdorff distance whose behaviors have been
discussed in previous studies (e.g. [28]) and we are also actively
exploring various definitions of trajectory similarities.

The majority of the existing indexing structures and
query processing algorithms are designed for serial CPU
implementations. The designs usually favor using sophisticated
algorithms in reducing computation overheads and improving
query response times. This is a natural choice before multi-core
CPUs and many-core GPUs become the mainstream commodity
processors. Unfortunately, there are situations that efficient but
sophisticated data structures and algorithms may perform poorly
on parallel hardware. Parallelization on such query processing
algorithms can be very difficult if excessive coordination is
required to utilize parallel processing units. Furthermore, due to
the increasing gap between computing and I/Os [29], simple
data structures such as arrays and linear scanning may
outperform indexing that require non-sequential data accesses in
certain cases due to the nature of caching mechanisms on
modern hardware architectures. Another new technical trend on
modern hardware is the increasingly availability of large
memories which makes it possible to quickly stream large
chunks of data between memory and disks. This may largely
reduce the need for page-based buffer management in traditional
disk-resident databases, especially in an Online Analytical
Processing (OLAP [30]) setting.

Based on these observations, our goal is to design a
prototype system that can utilize commodity hardware
capacities, including parallel computing power and large
memory capacity, to boost the performance of OLAP type
queries in a batch mode for U2S trajectory data. Instead of

limiting to multi-core CPUs, we have chosen to use GPUs as co-
processor for more computationally intensive modules, such as
distance based joins. We note that a distance computation may
require significantly fewer clock cycles on GPUs than on CPUs
due to their special hardware designs. In addition, GPUs usually
have signficant larger numbers of processing cores than CPUs.
For example, the Nvidia GeForce GTX 690 GPUs [31] that are
currently available form the market have 3072 cores. Although
GPU processors (~ 1 GHZ) are typically weaker than CPU
processors, thousands of processors together can deliver huge
amounts of computing power than CPUs and even small cluster
computers. The combined fast floating point computing power
and large number of processors make GPUs suitable for
accelerating trajectory queries that involve large amount of
distance computation.

While nearest neighbor searching have been
extensively used on GPUs for various applications [33-37], it
seems that there are few previous works on speeding up spatial
and spatiotemporal queries that require large amounts of
distance computation on GPUs. The potential of GPU
accelerations in speeding up queries on trajectory data in a
database environment (by utilizing indices for filtering) is
largely unknown. We believe our prototype system can provide
a concrete case study on this aspect. Our proposed research and
implementation can be used to evaluate the relative advantages
and disadvantages of classic efficiency oriented design and the
new design based on the throughput oriented GPU computing
paradigm [38] in the context of managing large-scale trajectory
data.

3. SYSTEM ARCHITECTURE DESGIN
In addition to designing an implementable architecture

to handle unique characteristics of GPS-based trajectory data as
reported next, we have brought our previous experiences in
designing the U2SOD-DB for origin-destination data [12] into
the U2STRA system for trajectory data. These experiences
include timestamp compression [12, 14], array-based simple in-
memory structures and parallel primitive friendly design for fast
implementation [13, 15]. We also note that our current design on
trajectory data is based on our experiences in processing the T-
Drive [1] and the GeoLife (also from Microsoft Research Asia
[39]) GPS trajectory datasets. We are working on further
abstracting the design to accommodate for more general cases.

The overall system design is illustrated in Fig. 1.
Before we present the design of the key components, we would
like to introduce the array-based trajectory representation which
is fundamental to the system design. While a widely accepted
trajectory representation is still lacking, following the Open
Geospatial Consortium (OGC) Simple Feature Specification
(SFS) [40] on polygons, we have defined the following four-
level hierarchy to represent trajectory data, i.e.,
dataset trajectory track point. A trajectory dataset is a
collection of trajectories and a trajectory is a collection of tracks
where each track comprises a sequence of points. The criteria on
the divisions among the first three levels can be flexile which
largely depend on applications. A point has at least three
attributes (x,y and t) but allows additional attributes. Similar to
using simple arrays to represent polygons (whose benefits are
discussed in [14]), we use the following four arrays to represent
the four-level hierarchy. First of all, by accessing the Trajectory
Index (TRI) array, we know the starting and ending positions
(and hence the number of trajectories) of the ith dataset. For

example, in Fig. 2, the 12th dataset (base 0) has 10 trajectories
that begin at the 50th trajectory (inclusive) and ends at the 60th
trajectory (exclusive). Similarly, the Track Index (TKI) array
stores the starting positions all trajectories and the Point Index
(PTI) array stores the starting positions of all tracks. By
accessing the 50th elements in TKI, we know that the 50th
trajectory has 27 tracks with a starting position of 73.
Correspondingly, the 73rd track has 76 points with a starting
position at 913 in the point array. By accessing the point array,
we can retrieve the respective values of x/y/t and other
attributes. We note the point array can be implemented as Array
of Structures (AoS) or Structure of Arrays (SoA) depending on
how often the x/y/t components (and other relevant components
if present) are used together. The design also makes it easy to
associate additional attributes at the dataset, trajectory and track
levels by providing additional arrays with each element
correspond to the indices in the TRI, TKI and PTI, respectively.
For example, in the Microsoft Research Asia GeoLife dataset
[38], some trajectories are manually labeled with travel modes
which are very useful for analysis. These travel mode labels can
be put into an array that corresponds to the trajectory or track
index array (TRI and TKI, respectively) so that the travel mode
of each trajectory/track can be easily retrieved by simply
accessing the arrays using a position index. We note that since
we only keep the beginning positions in TRI/TKI/PTI and we
rely on the next positions to compute the lengths of the
corresponding datasets (for numbers of trajectories), trajectories
(for numbers of tracks) and tracks (for numbers of points), they
need to be put in the respective array in an ordered manner to
establish the correspondences. On the other hand, if the index
arrays are extended to include both the starting and the ending
positions (or lengths), it becomes possible to build subsets of the
trajectory data by providing multiple sets of TRI/TKI/PTI arrays
but reusing the point array. This can be convenient and efficient
in some application scenarios. Of course, it is always possible to
extract partial of the trajectory data, rebuild the four arrays and
use them as a completely new trajectory store.

Fig. 1 Overview of U2STRA System Architecture

After transforming raw data into a structured

trajectory store, a variety of queries can be performed. In the
current implementation of U2STRA, we have limited ourselves
to three types of queries as shown in the middle part of Fig. 1.
First, some simple yet useful statistics can be derived from the

trajectory data through spatial queries (e.g. Minimum Bounding
Boxes or MBRs for tracks/trajectories), temporal queries (e.g.,
durations for tracks/trajectories) or their combinations.
Furthermore, by treating points on trajectories individually, we
can aggregate these points spatially using different levels of
grids in a way similar to using the point locations at the origins
and destinations of taxi trips in U2SOD-DB [12]. These spatially
aggregated grids can be filtered by different temporal units to
generate daily or hourly grids to understand the overall patterns
of the GPS trajectory data.

Fig. 2 Array Representation of Trajectory Data
Second, the trajectories can be joined with urban

infrastructure data, such as POIs, road networks, administrative
regions and census blocks based on different spatial and
spatiotemporal relationships. Depending on applications, there
can be many join criteria. For example, to count the number of
trajectories (or tracks) that are completely within a region during
a certain time period, we would require all the points in the
trajectory/track to be in the region during the period. This can be
realized by extending our previous design on point-in-polygon
test [13] by applying an AND operator over the test results of all
points on the trajectory/track. We are in the process of
evaluating the possibilities of implementing more complex
spatiotemporal queries (e.g., those discussed in [8] in a serial
CPU computing based database setting) on GPUs based on our
existing codebase (with necessary extensions) before we decide
to include them in U2STRA.

In addition to adapting our GPGPU based spatial join
to trajectories as we just discussed, our current major design and
development efforts focus on similarity based trajectory join
processing. While quite a few approaches to computing the
similarity between two trajectories (and tracks) been defined, as
mentioned earlier, we currently use Hausdorff distance which is
defined as the maximum of minimum distances between two
point sets as shown in the left part of Fig. 3. Among the
minimum distances between the four points in T1 to T2, d3 is
the largest one and will be used as the distance between T1 and
T2. Following the filtering-refinement schema that has been
extensively used in spatial databases [40], our idea is to use
trajectory as the basic units for filtering based on the spatial
relationships between their Minimum Bounding Boxes (MBRs).
For two trajectories T1 and T2, as shown in the right part of Fig.
3, if the expanded MBR of a track (S1i) in T1 (using an
expansion distance D) and the MBR of a track (S2j) in T2
overlaps then we further perform pair-wised distance
computation and find the shortest distance to S2j for all points in
S1i. Here the shortest distance between a point and a trajectory is
simply defined as the minimum distance between the point and
all points in the trajectory. After pair-wise distance computing is
finished, each of the points in a trajectory (say T1) will have a
shortest distance to one or more tracks in T2 (i.e., S2j). By
finding the maximum distance among the computed shortest

 … 50 60 …

… 70 73 78 … 100 …

Trajectory Index

Track Index

0 …

… 885 913 959 989 …Point Index

Point X/Y/T

Raw Data

Trajectory data store

Determining time
granularity

Coordinates and
timestamp

compression

Data Cleaning
and Extraction

Spatial/temporal
aggregation and
histogramming

Trajectory
similarity join

query

Urban
infrastructure data

Spatial and
spatiotemporal

join query

GIS, visualization and visual exploration systems

distances (i.e., maximum of minimum values), the distance
between the two trajectories can be computed.

While the details of the implementation will be
provided in Section 4, we would like to briefly discuss several
design considerations. First of all, as we plan to implement the
design on parallel hardware (GPUs to be more specific), the
proposed design needs to be parallelization friendly. Pair-wise
distance computation in the refinement phase is embarrassingly
parallelizable. We also reuse the grid-file based spatial indexing
for pairing trajectory tracks in the filtering phase by
transforming a spatial relationship testing (intersecting) problem
into a set of binary searching problems through equality test that
is well supported in most parallel hardware including GPUs.
Second, as can be seen in Fig. 2, the spatial join is performed at
the track level which is in the middle between the trajectory and
point levels. The design helps to effectively use the filtering
power of MBRs.

Properly controlling the sizes of tracks in the
preprocessing phase is very important. If the MBRs are too
large, then the filtering power is limited which will result in
quadratically growing numbers of pair-wise distance
computation in the refinement phase. On the other hand, when
the MBRs are too small, for a large query distance D, the
expansion ratios will be large and will result in a large number
of duplicated track pairs which need to be removed before the
refinement phase. The large number of duplicated track pairs
can impose signficant memory pressure on GPUs.

Fig. 3 Illustration of Hausdorff Distance Between Two
Trajectories and Paring Two Trajectory Tracks

4. IMPLMENTAITON DETAILS
In this section, we will be focusing on the parallel

implementations of trajectory similarity query on GPGPUs by
assuming basic knowledge of GPGPU programming. We also
refer to our related works for the implementation details on
spatial and temporal aggregations [12, 14] and different types of
spatial joins between points and urban infrastructure data [13,
14, 15]. Although the implementation of trajectory similarity
query still follows the filtering-refinement schema in spatial
joins [41], there are several unique features. First of all,
trajectory similarity query involves a new data type (trajectory)
and joins a trajectory dataset with itself (i.e., self join). Second,
the similarity (using Hausdorff distance) is defined between two
sets instead of between two individual objects as we have dealt
in the previous studies. More importantly, unlike in point
datasets where the MBRs of the divisions of the dataset do not
overlap, the MBRs of trajectory tracks can overlap significantly.
There will be multiple MBRs associated with a grid cell in the
refinement phase (to be detailed shortly) which makes the
implementation more complex.

The implementation of the trajectory similarity query
begins with rasterizing the MBRs of trajectory tracks to a
uniform grid. Based on the widths and heights of the MBRs, the
numbers of rasterized grid cells for the MBRs can be determined
(which are stored in a vector V1). In our GPU-based
implementation, we have developed a GPU kernel (program
block that can be executed in parallel) for this purpose by
assigning a computing block to process a MBR. After applying
an exclusive scan on V1, we can obtain the starting positions to
output the cells of the MBRs (which are stored in V2). Each
computing block then output the trajectory segment identifiers
and rasterized cell identifiers based on V2, in parallel, to two
vectors (VQQ and VQC), respectively. Please refer to the top-
middle part of Fig. 3 for the illustration of this step. The second
step is to rasterize the expanded MBRs (with the predefined
distance D) of the trajectory segments by following the same
procedure as in Step 1. The results are stored in VPP and VPC
vectors, respectively, as illustrated in the bottom-middle part of
Fig. 3. The third step is to pair the segment identifiers in VQQ
and VPP through equality test on the cell identifiers in VQC and
VPC. Our implementation is based on the vectroized binary
search parallel primitive provided by the Thrust library [42] that
comes with CUDA SDK as detailed below.

Fig. 4 Illustration of the Four Steps in GPU-based Implementation of the Filtering Phase for Trajectory Similarity Join Query

D

D

d1

d2

d3
d4

1 1 1 2 2 2 2 21

2 3 … … 3 5 2 ……

1 5 … 2 4 …3

1 1 2 2 21

VQQ

VQC

VPP

VPC

Q1
P1

Q1
P1

Q2
P1

Q1
P2

Q2
P2

2 1 2 2 ...1

2 3 3 5 …2

VQQ

VQC

Lower bound binary search
Upper bound binary search

Q1
P1

Q2
P1

Q2
P2

Unique

Q1
P1

Q1
P1

Q1
P2

Q2
P1

Q2
P2

Q1
P2

Sort

Q2

5

3

2

Q1 P1

P2

D

D

Sort

d11 d21 d22d12

d
Reduce

1

2

3
4

We assume VQQ are sorted based on VQC so that
trajectory segments identifiers associated with a same cell
identifier appear consecutively in VQC. A parallel sorting can
be applied for this purpose. For each of the elements in VPC, in
parallel, we perform a lower bound and an upper bound binary
search on VQC. If there is a hit, then we know the starting and
ending positions of the matched elements in VQQ. Based on
these positions, the trajectory track identifiers stored in VQQ
can be retrieved and they are paired with the trajectory track
identifiers stored in VPP that corresponds to the element in
VPC. As an example, assuming that we are searching the cell
with an identifier of 2 in VPC (whose corresponding track
identifier is 2 in VPP, i.e., P2), the lower bound and the upper
bound of the binary searches are 1 and 2 respectively. The two
segment identifiers stored in VQQ at the position range are 1
and 2 (i.e., Q1 and Q2), respectively. As such, P2 will be paired
with Q1 and Q2. After knowing the number of matches for all
elements in VPC, in a way similar to step 1, we can apply an
exclusive scan to compute the output positions of the matched
pair in the output vector (say V3) and copy the matched pairs to
V3. It is conceivable that there will be duplicates in V3 with
respect to the combinations of the track identifiers in Q and P.
Since only one copy is needed to represent the matched track
pair to be used in pair-wise distance computation in the
refinement phase, in Step 4, we can follow a stand procedure by
combining a sort and a unique primitive for this purpose.

After the filtering phase completes, we proceed with
the refinement phase. We modify the pair-wise distance
computing kernel we have developed previously [13-15] for this
purpose. Within a CUDA computing block that handles a (P,Q)
track pair, same as before, for each of the points in the Q (or P)
track, we compute the minimum distance between the point and
all the points in the P (or Q) track are computed. We assign a
thread to each point in Q track and let it loop through all the
point in the P track for this purpose. The maximum distance
among all the S minimum distances is output where S is the
number of points in the Q track. Finally, a maximum reduction
on all the (P,Q) pairs to compute the global maximum distance
among all the trajectory tracks of T1 and those of T2 if the
bounding boxes are within the threshold distance D. Note that
we have only shown two trajectories (P and Q respectively) in
Fig. 4. In practice, there will be a large number of trajectories
(and tracks) involved in a trajectory similarity query. This is not
an issue since the track identifiers are globally unique and the
parallel primitives do not limit the number of elements in the
relevant vectors. To handle multiple trajectories, we will need to
extend the last step slightly by looking up the trajectory
identifiers based on the track identifiers and use a segmented
version of the reduce primitive by using the combinations of the
trajectory identifiers (from P tracks and Q tracks, respectively)
as the key.

There are several technical issues need to be further
discussed to better understand the filtering phase of the
trajectory similarity join query processing. First of all, although
we have used Q to represent tracks to be paired and P to
represent tracks that initiates pairing and we have chosen to
expand the MBRs of P elements, since this is a self-join and is
symmetrical, it is possible to do the other way, i.e., expanding
the MBRs of Q elements. Second, if we decide to expand the
bounding boxes of P tracks, we note that there is no need to sort
VPP based on VPC although a VPC element (cell identifier)
may correspond to multiple track identifier as in the VQQ/VQC

pairs. The reason is that each element in VPC searches through
VQC independently (in parallel) and the paired result need to be
sorted independently in Step 4 of the filtering phase. On the
other hand, sorting on VQC/VQQ is necessary because the
requirements of the binary search (including lower bound and
upper bound search). Finally, we note that while the
rasterization process and grid-file based filtering phase in the
trajectory join processing generate duplicated track identifier
pairs, it eliminates the need of complex spatial indexing which is
difficult to implement on GPUs in general. However, as
mentioned at the end of Section 3 and discussed in Section 5.3,
the duplications do impose some memory pressure on GPUs.
We are also in the process of exploring multi-level grid-file
structures to reduce or eliminate the duplications.

5. EXPERIMENT AND RESULTS

5.1 Data and Experiment Setup
To test the feasibility of the system design and the

performance of the implemented modules, we have used the
Microsoft Research Asia T-Drive [1] and GeoLife [38] datasets.
They are provided as two sets of text files with different
structures. Following the architectural design introduced in
Section 2, we transform each dataset into four arrays so that they
can be efficiently streamed among disks, CPU memories and
GPU memories. We have processed both datasets but will use
the T-Drive dataset for visual exploration purposes (Section 5.2)
and use the GeoLife dataset to test the performance of the GPU-
based trajectory similarity query processing (Section 5.3). We
have discretized the study region, i.e., (116.1000, 39.7000,
116.7553, 40.35530), into a 65536*65536 grid with a resolution
of 10-5 degree (the maximum precision provided in the original
datasets). As such, a grid cell has a spatial extent of 10-5 degree
by 10-5 degree. The with and height of a grid cell are
approximately 0.85 meter and 1.11 meter along the longitude
(X) and latitude (Y) direction, respectively. All GPS point
locations in the two datasets are aligned to grid cells. All
experiments are performed on a Dell Precision T5400
workstation equipped with dual quadcore CPUs running at 2.26
GHZ with 16 GB memory, a 500GB hard drive and an Nvidia
Quadra 6000 GPU device with 448 cores and 6 GB memory.

The trajectories in the GeoLife dataset are chunked
based on the annotated travel mode labels that come with the
dataset. We are particularly interested in the trajectories that are
labeled as “walk” for trajectory similarity queries from a data
management perspective as their bounding boxes are relatively
small and have good filtering power. Two preprocessing steps
are performed to make the trajectory similarity query feasible
and interesting from a practical perspective. First, GPS points
that are outside of the study area are removed. This results in
1,178,524 points out of the 1,440,823 points that are in the
trajectories labeled as “walk”. The number of trajectories after
this step is 3,245. Second, we have removed trajectories whose
MBR areas are larger than 0.0001 square degrees in the study
area, in addition to trajectories that have only one point (MBR
areas are 0). This steps results in 2,341 trajectories. To better
understand the distributions of the trajectories, we have plotted
their MBRs in Fig. 5. Clearly, the majority of the selected
trajectories are located in the Northern part of Beijing, especially
in the areas that are close to Microsoft Research Asia office.
These trajectories will be used for trajectory similarity queries
and the results will be reported in Section 5.3.

Fig. 5 MBR Plots of GeoLife Trajectories (left) and Two

Detailed Views in Different Presentations (Right)

5.2 Visualization of Raw Trajectories and
Gridded GPS Points

U2STRA supports exporting internal representations
of trajectory data into SQL statements which can be imported in
the open source PostgreSQL database through the PostGIS
plugin. Subsequently, these trajectory data can be exported to
ESRI Shapefile format that is accepted by many GIS software
(such as ESRI ArcGIS and QGIS) for visualization and visual
exploration purposes. A snapshot of the T-Drive dataset by
connecting two neighboring GPS location points as lines is
shown in the left part of Fig. 5. At the city scale, the directly
plotted GPS trajectories show the overall network topology of
Beijing City reasonably well. A major problem of plotting all
trajectories by linking two consecutive points is that, for
trajectories with low sampling rates, the connected lines can
deviate from true travel paths significantly. When plotted
together, they are likely to clutter the whole display space
without providing much useful information at finer scales, as
shown in the right part of Fig. 5.

Fig. 6 Visualizing GPS Trajectories in GIS at the City

Scale (Left) and Block Scale (Right)
An alternative solution is to plot the GPS points

separately without connecting them. However, there are two
major problems for the straightforward approach. First, when the
numbers of points are large (e.g., millions to billions), drawing
the points in a GIS environment is extremely slow due to large
data volumes and graphics rendering overheads. Second, due to
limited screen resolutions, points that are close to each other
very often are overshadowed. Both of the problems prevent from
seeing a clear picture of the structures that can derived from the
underlying GPS data. As such, we reuse our grid-based spatial
aggregation module to compute the numbers of GPS points that
fall within a raster grid and output the aggregated results into an

image. The result of aggregating 17,762,489 GPS points in the
T-Drive dataset using an 8192*8192 grid is shown in Fig. 6.
Compared with Fig. 5, plotting aggregated GPS points seems to
be a better approach than plotting trajectories directly.

Fig. 7 Visualizing Aggregated GPS Point Locations

Our results show that U2STRA is able to aggregate the

nearly 18 million points in 47.25 milliseconds while it took
4,110.27 milliseconds for the same aggregation on a serial CPU
implementation using STL (Standard Template Library [44])
with O2 optimization. Clearly an impressive 87X speedup has
been achieved. While the performance of the serial CPU
implementation is acceptable for this relatively small dataset, we
expect the speedup will be much more desirable for large GPS
datasets, such as OpenStreetMap Planet GPS point dataset with
2.77 billion GPS points (we are working on it actively to derive
world-wide roadmap). Interested readers are further encouraged
to access the link at [45] to our website to visualize the derived
road map in a Web-based GIS environment. We have registered
the aggregated raster with the OpenStreetMap data in the same
area. An interesting observation is that, the derived road map
from GPS locations is able to show some new roads that do not
exist in the OpenStreetMap data yet. The results suggest that
near real time taxi GPS trajectories can potentially be used to
update city street maps at a much finer temporal resolution.

5.3 Results on trajectory similarity queries
In this set of experiments, we focus on the efficiency

of the query processing on trajectory similarity join. Before
discussing the performance, we provide an example from the
GeoLife dataset in Fig. 8 to help understand the Hausdorff
distance based similarity measurement better. In Fig. 8, the red
dashed line is the longest among all the dashed lines which
represent the shortest distances from all the points in the green
trajectory to the blue trajectory. We have used this approach to
verify the correctness of the implementation by looking into
selected trajectory pairs.

We use a grid dimension of 8192*8192 for
rasterization during the filtering phase although other grid
dimensions are possible. To test the scalability of the GPU
implementation, we have used different D values and report the
results in Table. 1. For comparison purposes, we have also
implemented the refinement phase in the query processing on
CPUs using a single core (serial implementation). We did not
implement the filtering phase on CPUs for two reasons. First, we
are not aware of efficient open source implementations of main-
memory based spatial indexing on CPUs and our GPU
implementation, while has achieve impressive throughput, may
not be efficient on CPUs due to the overhead of parallelization
coordination. It would be inappropriate to simply serialize the

GPU implementation on CPUs and report its performance.
Although we could have used external memory spatial indexing
packages (such as libspatialindex [43]), it would not be fair to
compare the performance directly as the gap between main-
memory structures and external memory structures are well-
known. Second, perhaps more importantly, the runtimes of the
filtering phase is dominated by the refinement phase on both
GPUs and CPUs. The runtimes of the filtering phase on CPUs
do not affect GPU speedups significantly due to Amdahl's law
[46]. The runtimes for of the refinement phase of the CPU
implementation for different D values are also shown at the
lower part of Table. 1.

Fig. 8 A Real Example Showing Hausdorff Distance between
Two trajectories Identified During the Experiments

From Table 1 we can clearly see that our GPU based

implementation has achieved 35-40X speedup on distance
computation in the refinement phase. Even the runtimes of the
filtering phase on CPUs are excluded, the GPU implementation
still achieves overall 25-35X speedup (last row of Table 1).
However, the experiments also confirmed the analysis on the
GPU memory pressure imposed by the simple grid-file based
filtering framework. We can also see that, as D increases, the
runtimes of the filtering phase weigh higher which is the
primary reason that the speedups (SP-RT and SP-Overall) get
lower. Although our GPU implementation is capable of handling
up to NCP=257 million paired cell identifiers for D=500*10-5
degree (as shown in Table 1), it runs out of GPU memory for
D=750*10-5 degree where NCP=379 million which clearly
indicates that the GPU implementation is memory bound. From
Table 1 we can see that both NCE (number of rasterized cells of
expanded MBRs) and NCP (number of paired cell identifiers)
grow almost linearly with D but NCE has a higher slope. This
can be explained by the fact that the majority of trajectories in
walk mode follow street segments which are either horizontal or
vertical in most cases in Beijing. As such, the areas of expanded
MBRs of these trajectories, which are proportional to NCE,
grow mostly linearly except those with significant portions of
perpendicular turns (which do happen). The reason that NCP has
a lower grow slope can potentially be attributed to the fact that
only the expanded part of MBRs are paired with additional cells
while the base part does not. In another word, NCP grows with
Σ(area(Expanded MBRi)-area(MBR)) which is less than
Σ(area(Expanded MBRi)).

Table 1 Numbers of Rasterized and Paired Cell Identifiers,

Runtimes and GPU Speedups from the Experiments

D (*10-5 °) 50 100 200 500 750
NCO (*106) 2.441
NCE (*106) 4.324 6.934 14.35 54.16 107
NCP (*106) 38.34 56.06 100.2 257.6 379
NUP (*106) 0.095 0.120 0.171 0.318 -
GPU-FT (ms) 277.8 418.9 779.6 2150 -
GPU-RT (ms) 2124 2505 3235 5220 -
GPU-TT (ms) 2402 2924 4015 7370
CPU-RT (s) 83.50 96.30 120.3 181.9
SP-RT(X) 39.3 38.4 37.2 34.8
SP-Overall (X) 34.8 32.9 30.0 24.7

Notes: NCO: # of rasterized cells of original MBRs; NCE: #of rasterized
cells of expanded MBRs; NCP: # of paired cell ids: NUP: #of unique
trajectory pairs whose MBRs are within D; GPU-FT: GPU filtering
time; GPU-RT: GPU refinement time; GPU-TT=GPU-IT + GPU-FT +
GPU-RT; CPU-RT: CPU refinement time; SP-RT(refinement speedup)
= CPU-RT*1000/GPU-RT; SP-Overall (Overall Speedup) =CPU-
RT*1000/GPU-TR.

Another observation from Table 1 that is worthy of
discussion is the ratio between NCP and NUP (number of
unique trajectory pairs whose MBRs are within D) is in the
order of 400 to 800 which grows sub-linearly as D grows. The
ratio might be too high with respect to efficient filtering. We
have decided to use a large grid file (8192*8192) for the
filtering phase which is effective in reducing computing
Hausdorff distances. The reduction rate can be computed as
NUP*2/(N*N) where N is the number of trajectory tracks. When
plug in N=2,341, the reduction rate varies from 3.47% to 11.6%.
We are considering use smaller grid files to reduce NCP and
hence memory requirement at the cost of increasing the NUP
and hence the workload in the refinement phase. It would be
interesting to derive a quantitative analytical framework to seek
optimal parameters with respect to the grid file sizes. Another
possible direction is to use multi-level grid files to reduce NCP
directly as cells that are matched at the upper levels do not need
to be matched in the lower levels. This is left for future work.

6. CONCLUSION AND FUTURE WORK
 In this study, we have explored the research

opportunity in using massively data parallel GPGPU
technologies for trajectory data management which is becoming
important due to the popularities of GPS and other locating and
navigation devices. In particular, we have developed the
U2STRA prototype system to perform parallel aggregations to
understand the overall patterns of GPS point locations in
trajectory datasets and process similarity trajectory queries
based on the Hausdorff distance. We have also developed a
practical in-memory data layout schema that has low memory
footprint and is cache friendly, in addition to supporting flexible
data organization and retrieval. The experiments have shown
that spatial aggregations of nearly 18 million GPS point
locations in the T-Drive dataset has achieved 87X speedup
compared with a serial CPU implementation using STL and 25-
40X speedup on trajectory similarity queries over an optimized
serial CPU implementation in the refinement phase that requires
intensive distance computation. The simple grid-file based
spatial indexing also provides a solid foundation for future
improvements.

For future work, first of all, we plan to develop a more
efficient parallel data structure on GPUs for filtering in
trajectory query processing by exploring multi-level grid-files

and other options. Second, we want to investigate the suitability
of GPGPU computing technologies for trajectory data cleaning
and segmentation which are usually also computing intensive.
Third, our U2STRA system currently only supports Hausdorff
distance based similarity query and we plan to investigate on
more measurements of similarity and support different types of
trajectory queries. Finally, we plan to test the system on larger
dataset (such as OpenStreetMap Planet GPS point dataset) and
develop techniques to reduce GPU memory capacity bottleneck.

REFERENCES
1. User Guide of T-Drive Data.

http://research.microsoft.com/pubs/152883/User_guide_T-
drive.pdf

2. http://wiki.openstreetmap.org/wiki/Planet.gpx
3. Reades, J., Calabrese, F., et al. 2007. Cellular Census:

Explorations in Urban Data Collection. Pervasive Computing,
IEEE 6(3): 30-38.

4. Calabrese, F., Colonna, M. et al. 2010. Real-Time Urban
Monitoring Using Cell Phones: A Case Study in Rome. IEEE
Transactions on Intelligent Transportation Systems 12(1): 141-
151.

5. Mokbel, M..F, Ghanem, T.M., Aref, G., 2003. Spatio-
Temporal Access Methods. IEEE Data Eng. Bull. 26(2): 40-49.

6. Nguyen-Dinh, L., Aref, G., Mokbel, M..F, 2010. Spatio-
Temporal Access Methods: Part 2 (2003 - 2010). IEEE Data
Eng. Bull. 33(2): 46-55

7. Güting R.F., and Schneider, M., 2005. Moving objects
databases. Morgan Kaufmann. ISBN-13: 978-0120887996

8. Deng, K., Xie, K., Zheng, K. and Zhou, X., 2011. Trajectory
Indexing and Retrieval. In Yu Zheng and Xiaofang Zhou (eds)
Computing with Spatial Trajectories. Springer.

9. Cudre-Mauroux, P., Wu, E. and Madden, S. (2010). TrajStore:
An adaptive storage system for very large trajectory data sets.
Proceedings of IEEE ICDE Conference.

10. He, B. S., Lu, M., Yang, K., Fang, R., Govindaraju, N. K.,
Luo, Q. and Sander, P. V. (2009). Relational Query
Coprocessing on Graphics Processors. ACM Transactions on
Database Systems 34(4).

11. Bakkum, P. and Skadron, K. (2010). Accelerating SQL
database operations on a GPU with CUDA. Proceedings of
GPGPU workshop, 94-103.

12. Zhang, J., Gong, H. et al 2012. U2SOD-DB: A Database
System to Manage Large-Scale Ubiquitous Urban Sensing
Origin-Destination Data. Proceedings of ACM SIGKDD
Workshop on Urban Computing.

13. Zhang, J. and You., S. 2012. Speeding up Large-Scale Point-
in-Polygon Test Based Spatial Join on GPUs. Technical report
online at http://geoteci.engr.ccny.cuny.edu/pub/pipsp_tr.pdf

14. Zhang, J., You, S. and Gruenwald, L. (2012). High-
Performance Online Spatial and Temporal Aggregations on
Multi-core CPUs and Many-Core GPUs. Technical Report.
Online at http://www-
cs.ccny.cuny.edu/~jzhang/papers/aggr_tr.pdf.

15. Zhang, J., You, S. and Gruenwald, L. (2012). Speeding Up
High-Performance Spatial Join Processing on GPGPUs with
Applications to Large-Scale Taxi Trip Data. Technical Report.
Online at http://www-
cs.ccny.cuny.edu/~jzhang/papers/nnsp_tr.pdf.

16. Sergio Ilarri, Eduardo Mena, Arantza Illarramendi. 2010.
Location-dependent query processing: Where we are and
where we are heading. ACM Computing Surveys (CSUR).
42(3) 1-73

17. Giannotti, F., Nanni, M., et al., 2011. Unveiling the complexity
of human mobility by querying and mining massive trajectory
data. The VLDB Journal 20(5): 695-719.

18. Renso, C., Baglioni, M., et al, In Press. How you move reveals
who you are: understanding human behavior by analyzing
trajectory data. Knowledge and Information Systems: 1-32.

19. Güting, R., Braese, A., et al, 2009. Nearest Neighbor Search on
Moving Object Trajectories in SECONDO. Proceedings of
SSTD.

20. Düntgen, C., Behr, T. and Güting, R. (2009). BerlinMOD: a
benchmark for moving object databases. The VLDB Journal
18(6): 1335-1368.

21. http://m-atlas.eu/
22. http://www.postgresql.org/
23. http://postgis.refractions.net/
24. Trajcevski, G., Ding, et al., 2007. Dynamics-aware similarity

of moving objects trajectories. Proceedings of ACM-GIS.
25. Somayeh, D., Robert, W. and Patrick, L., 2009. Exploring

movement-similarity analysis of moving objects, ACM.
SIGSPATIAL Special 1,11-16.

26. Chen, Y. and Patel, J. M., 2009. Design and evaluation of
trajectory join algorithms. Proceedings ACM-GIS.

27. Gunopulos, D. and Trajcevski, G., 2012. Similarity in (spatial,
temporal and) spatio-temporal datasets. Proceedings of EDBT.

28. Adelfio, M., Nutanong, S. and Samet, H., 2011. Similarity
search on a large collection of point sets. Proceedings of ACM-
GIS.

29. Hennessy, J.L. and Patterson, D. A, 2011. Computer
Architecture: A Quantitative Approach (5th ed.). Morgan
Kaufmann

30. http://en.wikipedia.org/wiki/Online_analytical_processing
31. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-

690
32. Garcia, V., Debreuve, E. and Barlaud, M., 2008. Fast k nearest

neighbor search using GPU. Computer Vision and Pattern
Recognition Workshops, 2008.

33. Cayton, L., 2010. A Nearest Neighbor Data Structure for
Graphics Hardware. Proceedings of ADMS.

34. Pan, J. and Manocha, D., 2011. Fast GPU-based locality
sensitive hashing for k-nearest neighbor computation.
Proceedings of ACM-GIS.

35. Pan J. and Manocha, D., 2012. Bi-level Locality Sensitive
Hashing for k-Nearest Neighbor Computation. Proceedings of
IEEE ICDE Conference, 378-389

36. Kruls, M., Skopal, T., Lokoc, J. and Beecks, C. 2012.
Combining CPU and GPU architectures for fast similarity
search. Distributed and Parallel Databases 30(3): 179-207.

37. Kato, K. and Hosino, T. 2012. Multi-GPU algorithm for k-
nearest neighbor problem. Concurrency and Computation:
Practice and Experience 24(1): 45-53.

38. Michael, G. and David, B. K., 2010. Understanding
throughput-oriented architectures. CACM 53(11): 58-66.

39. http://research.microsoft.com/pubs/152176/User%20Guide-
1.2.pdf

40. http://www.opengeospatial.org/standards/sfs
41. Jacox, E. H. and Samet, H. (2007). Spatial join techniques.

ACM Transaction on Database System 32(1).
42. http://thrust.github.com/
43. http://libspatialindex.github.com/
44. http://www.sgi.com/tech/stl/
45. http://geoteci.engr.ccny.cuny.edu/geoteci/tdrive_bj.html
46. http://en.wikipedia.org/wiki/Amdahl's_law

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

