
1

Efficient and Scalable Parallel Zonal Statistics on Large-
Scale Species Occurrence Data on GPUs

Jianting Zhang1,2 and Simin You2

1 Department of Computer Science, City College of New York, New York, NY, 10031

2 Department of Computer Science, CUNY Graduate Center, New York, NY, 10006

Correspondent author email: jzhang@cs.ccny.cuny.edu

Abstract

Analyzing how species are distributed on the Earth has been one of the

fundamental questions in the intersections of environmental sciences, geosciences and
biological sciences. With world-wide data contributions, more than 375 million species
occurrence records for nearly 1.5 million species have been deposited to the Global
Biodiversity Information Facility (GBIF) data portal. The sheer amounts of point and
polygon data and the computation-intensive point-in-polygon tests for zonal statistics for
biodiversity studies have imposed significant technical challenges. In this study, we have
significantly extended our previous work on parallel primitives based spatial joins on
commodity Graphics Processing Units (GPUs) and have developed new efficient and
scalable techniques to enable parallel zonal statistics on the GBIF data completely on
GPUs with limited memory capacity. Experiment results have shown that an impressive
end-to-end response time under 100 seconds can be achieved for zonal statistics on the
375+ million species records over 15+ thousand global eco-regions with 4+ million
vertices on a single Nvidia Quadro 6000 GPU device. The achieved high performance,
which is several orders of magnitude faster than reference serial implementations using
traditional open source geospatial techniques, not only demonstrates the potential of GPU
computing for large scale geospatial processing, but also makes interactive query driven
visual exploration of global biodiversity data possible.

1. Introduction
Quantifying species-environment relationships, i.e., analyzing how species are

distributed on the Earth has been one of the fundamental questions studied by
biogeographers and ecologists for a long time (Cox and Moore 2005). Several enabling
technologies have made biodiversity data available at much finer scales in the past
decade (Bisby 2000), including DNA barcoding for species identification, geo-referring
for converting descriptive museum records to geographical coordinates, database
technologies for managing species presence locations and related taxonomic and
environmental data, and, Geographical Information System (GIS) for species distribution
data modeling and analysis. The newly emerging cyberinfrastructure technologies (e.g.,
metadata, ontology, Web services and scientific workflow) have made exchanging and
sharing species distribution data over the Web much easier. The currently largest species
occurrence data repository might be the Global Biodiversity Information Facility (GBIF)
which was established by governments in 2001 to encourage free and open access to

2

biodiversity data via the Internet (GBIF 2014). Through a global network of countries
and organizations, as of August 2012, the GBIF data portal has more than 375 million
species occurrences records on 1,487,496 species. The majority of the records are geo-
referenced which makes it possible to overlay species occurrence records with different
types of raster and vector layers for exploring biodiversity patterns and their relationships
with environments and human impacts at global and regional scales.

Given the virtually countless combinations of species taxa, geographical regions
and ecosystems (Zhang 2012), many types of exploratory analysis on integrated
taxonomic-geographical-environmental data can be investigated (Zhang and Gruenwald
2008). In this study, we will be focusing on a fundamental spatial operation for zone-
based point location data summation, i.e., counting the numbers of points that fall within
a set of polygons in a zonal dataset. The operation is closely related to point-in-polygon
test based spatial joins (Jacox and Samet 2007, Zhang and You 2012a) and is well-
supported in several leading GIS software known as Zonal Statistics (Theobald 2005).
While both spatial databases and GIS have exploited optimization techniques, such as
indexing and preprocessing, existing designs and implementations are mostly based on
serial CPU computing models and usually incur significant delays when processing large
scale datasets. Modern commodity personal computers are increasingly equipped with
large memory and many-core accelerators, such as Nvidia GPUs that are capable of
general computing based on the Compute Unified Device Architecture (CUDA) parallel
programming model (Kirk and Hsu 2012). Unfortunately, many commercial and open
source spatial databases and GIS are optimized for the previous generations of hardware
based on outdated cost models and fail to make full use of the computing power provided
by modern commodity hardware.

Built on top of our previous research and development efforts on spatial indexing
and query processing on GPUs (Zhang and You 2012a, Zhang et al 2014), in this study,
we aim at accelerating explorations of the GBIF global biodiversity data by designing
and implementing efficient data parallel algorithms for scalable and high-performance
zonal statistics on the hundreds of millions of species occurrences over tens of thousands
of complex polygons on commodity GPUs with limited memory capacities. First of all,
we have designed a framework to allow efficiently use mapped memory on CPUs as
extended GPU memory automatically and support data parallel designs. Second, we have
developed scalable point indexing technique to index large point datasets that are beyond
GPU memory capacity by using mapped memory efficiently through batched processing.
Third, we have extended our binary search based spatial filtering algorithm to work with
the new point indexing technique. Fourth, a cell-in-polygon test based optimization
technique for advanced spatial filtering is developed to allow assigning polygon
identifiers to points if the grid cell that the points fall in is tested to be completely within
a polygon without performing expensive point-in-polygon test for individual points. We
have performed extensive experiments to demonstrate the efficiency of GPU-based
massively data parallel zonal statistics technique and compare it with two reference serial
implementations using traditional open source software packages. The scalability and
performance of the data parallel framework and techniques as well as the effectiveness of
the cell-in-polygon based optimization technique are tested under different experiment
settings.

3

The rest of the paper is arranged as follows. Section 2 introduces background and
motivation and briefly overviews related work. Section 3 provides details of the data
parallel zonal statistics framework, the scalable point indexing and spatial filtering
techniques, and the cell-in-polygon test based optimization technique for advanced
spatial filtering. Section 4 presents the experiments and results. Finally Section 5 is the
conclusion and future work directions.

2. Background, Motivation and Related Work
Given a point dataset T_O representing species occurrences with two attributes

(sp_id, the_geom) and a polygon dataset T_Z representing zones also with two attributes
(z_id, the_geom), the basic zonal statistics operation to count the number of occurrences
of species in each polygon can be expressed as the following Structured Query Language
(SQL) statement:

SELECT COUNT(*) from T_O, T_Z

WHERE ST_WITHIN (T_O.the_geom,T_Z.the_geom)

GROUP BY T_Z.z_id;

Here the_geom attributes in the two datasets represent geometry, i.e., points and

polygons, respectively. Advanced zonal statistics operations likely involve species
identifiers in additional clauses (such as WHERE and GROUP) to derive the occurrence
counts for a single or a group of species. This is useful for biodiversity researchers that
are interested in a particular group of species. The species occurrence counts can be used
to compute abundance and richness measurements for a variety of types of biodiversity
studies (Ricotta 2005). The GBIF data portal (GBIF 2014) has provided overview maps
of species occurrences for different species groups as well as countries which is very
useful in understanding the overall species distribution patterns. However, the maps are
mostly for visualization purposes and are limited to a few fixed resolutions up to 0.1 by
0.1 degree which might be too coarse for many scientific inquiries. We note that, in
addition to COUNT, additional statistics such as MIN, MAX, SUM, STD_DEV and
MEDIAN are also possible, although not all of them are natively supported by SQL.

It is clear that the zonal statistics based data summation operations are closely
related to point-in-polygon test used in the ST_WITHIN function. The function is defined
by Open Geospatial Consortium (OGC) Simple Feature Specification (SFS) (OGC 2006)
and has been implemented in several spatial databases and GIS, e.g., Java Topology Suit
(JTS1), Geometry Engine - Open Source (GEOS)2 and PostGIS/PostgreSQL (Obe and
Hsu 2011). The Oracle Spatial development team recently proposed to build an in-
memory R-Tree to speed up topological relationship query processing for complex
regions (Hu et al 2012), including point-in-polygon test. Point-in-polygon test has been
extensively investigated by the computational geometry and spatial databases research
communities. While computational geometry research usually focuses on a single point
and polygon pair, spatial databases research addresses the overall efficiency on testing a
large set of points and polygons that can be abstracted as a special type of spatial joins.

1 http://www.vividsolutions.com/jts/JTSHome.htm
2 http://trac.osgeo.org/geos/

4

Spatial joins are typically divided into two phases, i.e., the filtering phase and the
refinement phase (Jacox and Samet 2007). The filtering phase utilizes some pre-built or
on-the-fly constructed spatial indices to pair subsets of points and subsets of polygons for
further refinements. The refinement phase in the point-in-polygon test based spatial joins
applies computational geometry algorithms to determine whether a point is within a
polygon for paired points and polygons. Obviously, building indices incurs additional
overheads but can significantly reduce the numbers of required point-in-polygon tests and
improve spatial join efficiency. In addition to the classic ray-casting based point-in-
polygon test algorithm with linear complexity with respect to the number of vertices in a
polygon (which does not need preprocessing), several new algorithms have been
proposed in recent years (Wang et al 2005, Li et al 2007, Jimenez et al 2009, Yang et al
2010). In some of these approaches, points and polygons that are indexed by a same grid
tessellation can be paired directly without requiring tree traversals that typically involve
irregular memory accesses which can be expensive on modern hardware (Hennessy and
Patterson 2011).

One of the driving motivations for us to push the limits of parallel geospatial
processing in personal computing environments is to enable interactive visual
explorations on large scale geospatial data. Traditionally MapReduce/Hadoop based
parallel processing techniques have been designed for offline data processing and are
generally too slow for online interactive queries that require real time responses
(Grochow et al 2010). On the other hand, while GPUs have been extensively used for
speeding up rendering high-quality images based on sophisticated physics and/or
statistics at interactive frame rates, only a few research works have exploited GPU's
Single Instruction Multiple Data (SIMD) computing power (Kirk and Hsu 2012) to
support query driven visual explorations (e.g. Gosink et al 2009). We hope the scalable
data parallel zonal statistics techniques that we have developed in this study can
accelerate the performance of the biodiversity data visualization and visual exploratory
analysis systems, e.g. those reported in (Zhang et al 2007, Zhang and Gruenwald 2008,
Zhang 2012), when applied to much finer resolution data at the global scale. The GBIF
global species occurrence data, however, is significantly different from the tree species
and bird species range map data that were used in these previous studies: the data volume
is 1-2 orders of magnitude higher, the number of species is 2-3 orders of magnitude
larger, and, more importantly point locations need to be aligned to zones for subsequent
statistics which require computation intensive spatial operations.

The distinctions between data parallelisms and task parallelisms are well known
in parallel computing (Hills and Steele 1986, McCool 2012). While parallelism is
expressed using distinct tasks which may be different from each other significantly in
task parallelisms, data parallelisms is driven by a collection of data which typically have
regular data structures such as vectors or matrices. While it is easy to assign the work on
processing a chunk of such homogenous data items as a task and use data parallelisms for
task parallelisms, the reverse is generally not true. Traditionally task parallelisms are
extensively explored in distributed computing and multi-core CPUs as processors can
perform very different tasks without suffering performance degradation. However, data
parallelisms are becoming increasingly important in making full use of the processing
power of modern parallel hardware, including GPUs and Vector Processing Units (VPUs)
that come with multi-core CPUs (Hennessy and Patterson 2011). While the benefits of

5

designing data parallel algorithms was not significant enough to justify the cost of
explicitly changing design patterns due to limited vector processing power on previous
generations of CPUs, the widely adoptions of GPU computing techniques and the
increasingly wider SIMD widths have made it necessary to adopt data parallel designs in
order to make full utilization of SIMD computing power on GPUs and VPUs (Kirk and
Hsu 2012, Hennessy and Patterson 2011). On the other hand, as modern CPUs heavily
rely on the cache subsystem to bridge the increasingly larger gap between CPU speeds
and memory access latencies and to improve overall system performance, very often
good data parallel designs are naturally cache friendly and can significantly improve
system performance even on multi-core CPUs. According to the CUDA programming
model, the performance of GPUs is maximized when neighboring threads access
continuous memory addresses (coalesced memory accesses) and follow a same execution
path within a warp of threads (low control divergence). Data parallelisms typically satisfy
such requirements very well on GPUs and are naturally cache friendly on both CPUs and
GPUs. The excellent scalability of data parallelisms becomes crucially important for
modern parallel hardware to reach its potential and deliver the desired high performance.
Unfortunately, despite that there are some pioneering works on data parallel designs for
geospatial processing, such as polygonization (Hoel and Samet 2003), quad-tree based
spatial indexing (Hoel and Samet 1995) and spatial join (Hoel and Samet 1994), the
potential of exploring data parallel designs in geospatial processing is still largely
unclear, especially on modern commodity parallel hardware.

In our previous works, we have extensively investigated on the potentials of
GPU-based spatial indexing and spatial joins and many of them are based on data parallel
designs. In particular, we have developed data parallel designs for constructing quadtrees
(Zhang and You 2012a) and grid-files (Zhang et al 2014) for large-scale point data and
raster data (Zhang and You 2013a). We have also developed and evaluated multiple R-
Tree implementations on GPUs for polyline and polygon data (Zhang and You 2013b). A
parallel binary search based spatial join framework (Zhang et al 2014) is proposed for
joining indexed point data (using quadtree or grid-files) and indexed polyline or polygon
data (using grid-files). Several applications that demonstrate the effectiveness and
efficiency of the indexing and spatial join techniques have been reported, including point-
in-polygon test based spatial association between taxi pickup/drop-off locations and
census tracks in the New York City (NYC) (Zhang and You 2012a), point-to-polyline
nearest neighbor search based spatial associations between taxi pickup/drop-off locations
and street network in NYC (Zhang et al 2014), and Hausdorff distance based trajectory
similarity queries in Beijing (Zhang et al 2012). While the datasets (especially for the
NYC taxi pickup location point dataset) used in these applications are considerably large,
fortunately, they can be fit into high-end GPUs, such as Nvidia Quadro 6000 and GTX
Titan with 6 GB memory. However, as reported in (Zhang et al 2014), the limited GPU
memory has forced us to index large point dataset using grid-files in CPUs as the
underlying radix sort algorithm implemented in the Thrust library3 that comes with
Nvidia CUDA SDK4 has a large memory footprint and cannot be done in-place on the
GPU device in our experiment machine (Quadro 6000, 6 GB). Indeed, while it is not
absolutely necessary to materialize intermediate results as vectors in implementing data

3 https://github.com/thrust/thrust
4 https://developer.nvidia.com/gpu-computing-sdk

6

parallel designs using parallel primitives, doing so typically makes programming much
easier and implementations more interpretable. Otherwise, multi-level nested iterators
will be needed to provide “virtual” vectors as the inputs of the subsequent parallel
primitives. However, materializing intermediate results is at the cost of large runtime
memory footprint which, unfortunately, is a bottleneck of GPU computing at present.
This research aims at providing a more systematic solution to this outstanding research
issue from an application perspective by using the GBIF data and its zonal statistics
applications as a case study. While using GPU mapped memory on CPUs (see Section
3.1 for more details) has been supported by GPUs since Nvidia’s Fermi architecture, to
the best of our knowledge, we are not aware of previous studies on GPU-based geospatial
processing that make use of GPU mapped memory for large dataset that is beyond the
GPU memory capacity.

As discussed previously, zonal statistics on GBIF species occurrence data is
conceptually similar to the point-in-polygon test based spatial join which may suggest
that we can simply apply the techniques we have developed in (Zhang and You 2012a) to
this new dataset. However, first of all, the number of species occurrences in the dataset
(375+ million) is more than two times larger than the number of taxi pickup locations we
have processed previously (~170 million) and it is impossible to index all species
occurrences on GPUs completely due to their memory capacity limit. Second, the
polyline/polygon/trajectory data that we have used in our previous applications are
considerably simpler than the World Wild Fund (WWF) ecoregion polygon data5. The
average number of vertices per polygon in the WWF dataset (279) is nearly three times as
large as that of the NYC census block dataset (108) which brings the expected
computation intensity to be more than 6 times higher. Third, compared with taxi pickup
locations that are mostly clustered in major street intersections, the distributions of
species occurrences are much more dispersed which are likely to cause significant
divergences on GPUs, a typical problem in degrading GPU computing efficiency (Kirk
and Hsu 2012). As such, effective optimization strategies are keys to achieving high
performance for large datasets at the scale in order to support interactive visual
explorations. Finally, perhaps more importantly, while the recent Nvidia K40 GPUs set
GPU memory capacity (12 GB) to a new level, from a research perspective, it is crucial
to develop a scalable framework to support zonal statistics and other types of geospatial
processing on large dataset that exceeds GPU memory capacity limit.

3. Efficient and Scalable Zonal Statistics on GPUs: Data
Parallel Framework and Techniques

We propose to follow the GPU-based spatial join framework we have developed
previously (Zhang et al 2014) and reuse existing components, e.g., point-in-polygon test
GPU routine presented in (Zhang et al 2012a), whereas possible. Our new contributions
in this study are four-fold: 1) a framework to allow efficiently use mapped CPU memory
as extended GPU memory automatically and support data parallel designs, (2) a scalable
and efficient point indexing technique to index large point dataset that is beyond GPU
memory capacity, (3) an extended binary search based spatial filtering algorithm to work
with the new point indexing technique, (4) a cell-in-polygon test based optimization

5 http://worldwildlife.org/biomes

7

technique for advanced spatial filtering. The four new designs are highlighted and
numbered in Fig. 1. We next introduce our data parallel framework as the motherboard
for relevant techniques before the design and development details are presented in the
following subsections.

3.1 The Data Parallel Framework for Zonal Statistics
The data parallel framework for scalable and high-performance zonal statistics is

shown in Fig. 1. Note that we use solid arrows to show data processing steps and dashed
arrows to show the correspondences among data used in different components in the
framework. Following our previous study (Zhang and You 2012b), the point coordinates
and polygon vertices are stored as arrays with each element has a fixed length, instead of
storing them as objects that may have variable lengths. Although not shown in Fig. 1 due
to space limit, a polygon index array is constructed to store the first vertex positions of
the polygons to efficiently access polygon vertex arrays on both GPUs (for coalesced
memory accesses) and CPUs (for cache-friendly memory accesses). Since the GPU-based
zonal statistics technique is built on top of the point-in-polygon test based spatial joins,
we reuse the relevant data parallel designs presented in (Zhang et al 2014) including sort-
based point indexing, grid-file based polygon MBB (Minimum Bounding Box)
rasterization and indexing and binary search based spatial filtering and nested-loop based
spatial refinement. The GPU-based point-in-polygon test technique (Zhang and You
2012a) is plugged into spatial refinement to implement the required zonal statistics
functionality. These designs are extended for scalability when necessary and will to be
described in their respective subsections next. As both the previous implementations and
the implementations for new extensions can be realized using either data parallel
primitives supported by parallel libraries (e.g., Thrust) or nested loops with regular data
access patterns and can be efficiently realized by using native GPU programming
languages (e.g. CUDA), we consider both new designs for individual components and the
overall framework data parallel.

Our framework utilizes the Unified Virtual Addressing (UVA) feature that is
available in newer generations of GPUs (Kirk and Hsu 2012), which include both Fermi
and Kepler based Nvidia GPUs, to allocate chunks of CPU memory and made them
accessible to both CPUs and GPUs. We term such CPU memory chunks as GPU mapped
memory on CPUs, or simply GPU mapped memory when there are no confusions. Using
GPU mapped memory virtually extends GPU memory capacity by using CPU memory
which can be two orders of magnitude larger (1-6 GB vs. 100-1000 GB). However, in a
way similar to using disks as virtual CPU memory (Hennessy and Patterson 2011), using
GPU mapped memory in a naive way may perform poorly. For example, our experiments
show that simply applying the parallel sort primitive on GPUs (which is based on radix
sort algorithm) for point indexing using mapped memory can result in a much inferior
performance. Our data parallel framework allows effectively utilize GPU mapped
memory for scalability without significant degrading overall performance when applied
to larger scale data. While we currently focus on efficient single-node computing for
interaction intensive applications (as discussed in Section 2), conceptually, it is possible
to apply the same set of designs to larger but slower storage medium, such as local disks
and distributed memory and disks, to achieve even larger scalability when necessary.

8

Fig. 1 Data Parallel Framework for Efficient Zonal Statistics on GPUs

We also would like to note that, while not realized in this study, the data parallel

framework also naturally supports heterogeneous computing by integrating the parallel
computing power of multi-core CPUs, GPUs as well as other types of hardware
accelerators (e.g., Intel Xeon Phi devices6) that share a same address space. For example,
in the context of zonal statistics, the vector of the cell-MBB pairs derived from spatial
filtering can serve as a parallel workload queue to distribute workloads to different
processing units as shown in the top-right part of Fig. 1 where the assignments are
illustrated using solid lines with a diamond ending style. We leave this interesting study
to future work.

6 http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

Is cell completely
inside polygon?

Yes

Cell-MBB pairs after
spatial filtering

Point coordinates

MBR Rasterization

Polygon coordinates

Output polygon identifier
for all points in the cell

Point-in-polygon test
No

Output test results

…

Point Indexing

CPU Main-Memory

GPU Mapped Memory

A

B

C

IO

Chunk-sorted point coordinates

Polygon
vertices

GPU Global Memory

IO
Polygon vertices (copy)

Dynamically access point coordinate
chunks using mapped memory

Cell-MBB
pairs

Cell-MBR pairs (copy)

PCI-E
bus

2

4

CPU0 CPU1 CPU2 CPU3

 Species ID

Polygon ID

GPU Thread Blocks

1

3

9

3.2 Scalable Point Indexing on GPUs using Batched Processing
As reported in (Zhang et al 2014), the Flatly Structured Grid-file (FSG) approach

is much simpler than the Multi-Level Quadrant (MLQ) based approach for point indexing
from both a design and implementation perspective. The load balancing guarantee of the
MLQ approach is not instrumental for large scale data to achieve good performance when
the number of (point quadrants, polygon) pairs after spatial filtering is much larger than
the number of processing units. The multi-core CPU implementation (using 8 Intel Xeon
E5405 CPU cores) of the FSG approach actually has achieved much better performance
than the MLQ approach on GPUs (using Nvidia Quadro 6000) despite that the GPU can
achieve a much higher sorting rate which is a key to the performance of both MLQ and
FSG implementations. The results suggest that the FSG approach is superior to the MLQ
approach for spatially joining large scale datasets. Therefore, the FSG approach is
adopted in this study for point indexing.

While it is interesting to implement the FSG approach on GPUs, it has a much
larger memory footprint which limits the number of species occurrence point records to
about 100 million when each record has a length of 12 bytes, i.e., 4-byte float for x/y
coordinate and 4 byte integer for taxon identifier. This is also the reason that we were
forced to index 170 million taxi trip records on multi-core CPUs as reported in (Zhang et
al 2014). The scalability issue of the existing point indexing technique has motivated us
to develop a more scalable parallel design for the FSG approach on GPUs. Since the total
data volume of the longitude/latitude coordinates is about 4.2 GB for the 375 million
point data records which is well below the CPU memory capacity of a reasonably up-to-
date workstation, we assume CPU has sufficient memory to hold the raw point data and
intermediate results.

Given a point dataset with N records with each record includes a longitude and
latitude pair (optionally with some other attributes such as taxon identifier in the GBIF
dataset), the dataset is stored as an array of records in a CPU memory block which is
mapped by GPU through the UVA mechanism (Kirk and Hsu 2012). Both the CPU and
the GPU in a computing node can access the memory block, not only for point indexing
but also for point-in-polygon test in spatial refinement. When GPUs access the mapped
memory in CPUs, as illustrated at the top of Fig. 1, they are required to transfer data in
small units from the mapped memory in CPUs to their processors that need the data
through a PCI-E bus dynamically. This is quite different from the conventional way that
transfers data from CPUs to GPUs in large chunks before they are processed by GPUs.
Clearly the flexibility of being able to utilize larger CPU memory is at the cost of lower
efficiency in data transfer, in a way very similar to virtual memory in traditional CPU
computing and buffer management in relational database systems.

One might attempt to apply the FSG design to GPU mapped memory to minimize
the effort of reimplementation which can be costly. However, this will not work for two
reasons. First, while the inputs and outputs of the FSG design can use GPU mapped
memory, the implementations of many parallel primitives used in the design (including
sort in Thrust which is used by FSG) may use temporal GPU memory storage for
intermediate results which is typically proportional to the input sizes. The required
temporal memory amounts are likely to exceed GPU memory capacity for large scale
data and the process will fail due to out of memory. For example, the Nvidia Quadro
6000 GPU can only sort about 200 million records (including longitude/latitude and

10

taxon identifier) which is well below our goal for a scalable solution. Second, even if
little intermediate results are produced and the GPU is free from the memory capacity
problem by putting both inputs and outputs in GPU mapped memory in CPUs, excessive
accesses to the mapped host memory in an uncoordinated manner may significantly
degrade performance and make GPU implementations unattractive. For example, sorting
a subset of 125 million GBIF point data records in a Quadro 6000 GPU using mapped
memory needs 23.867 seconds while only 0.683 second is required if the sorting is done
completely in GPU memory. This represents a 34.7X slowdown which is not surprising,
given that the underlying radix sort algorithm requires significant amount of data
movements and PCI-E bus bandwidths are about 1-2 orders of magnitude slower than
GPU memory bandwidths.

Fig. 2 Parallel Design for Indexing Point Data in Chunks

Our solution is to partition the input point data array into chunks and process the
chunks in batches. While we refer to (Zhang et al 2014) for the detailed design of the
original (i.e., single-chunk) FSG algorithm and a multi-core CPU implementation for
reference, we next briefly repeat the key ideas of the design before presenting design
details of the multi-chunk FSG algorithm and its GPU implementation for the purpose of
being self-contained. As discussed earlier, the FSG algorithm for point indexing actually

a b a b b

ID

Y

X

a b

Step1: Transform

Step2: Sort

a a a b b ID b b

Y

X

a b

3 4
0 3

7

Step3: Reduce (by key)
Step4: Scan
(prefix-sum)

PntRec

Processing in a chunk

PntRec

PntCID

PntLen

PntPos

5 11 7 10 9
CLen

0 5 16 23 33 CPos

+ + + +
scan

11

is much simpler than the MLQ algorithm presented in (Zhang et al 2012a) and requires a
simple chaining of only four parallel primitives, i.e., transform, sort, reduce (by key) and
scan. The transform primitive derives a cell identifier for each point based on its
(longitude, latitude) pair. Given a grid cell size, row-major ordering is used to compute
the cell identifier for easy calculation. The next step is to sort the points based on their
cell identifiers to put all points that fall within a grid cell close to each other. Clearly,
points within a grid cell are not sorted for performance concerns. A reduce (by key)
primitive is used to count the numbers of points within all grid cells which are
subsequently used to compute the positions of the first points among the points that are
within the corresponding grid cells. As shown in the middle part of Fig. 2, given an input
array PntRec, four arrays will be in the output list. In addition to the sorted PntRec array,
we also have PntCID that stores grid cell identifiers, PntLen array that stores the numbers
of points in cells and PntPos array that stores the positions of first points among the
points in a grid cell in the sorted PntRec array.

When there are multiple chunks in a point data array, thanks to our data parallel
design, each chunk can be processed independently, either using a single GPU where the
chunks are processed sequentially, or using multiple GPUs where the chunks are
processed in parallel, or in a way that combines the two options. For GPUs with smaller
memory capacities, we can simply decrease batch sizes and make the technique scalable.
The performance will degrade gracefully for very small GPU memory capacities but the
tradeoff can be justified in this case. The design is similar to the mapping phase in the
MapReduce computing model (Dean and Ghemawat 2010) in the sense that chunks are
processed independently and no communications are required in this step.

 While it seems that we will need to rearrange the sorted point array in multiple
chunks to proceed to the spatial filtering step, our design avoids such data movements
(which could be expensive for hundreds of millions records) by only manipulating the
three arrays at the grid cell level, i.e., PntCID, PntLen and PntPos arrays. Since the
number of the grid cells for indexing is typically much smaller than the number of point
record, the costs for manipulating such arrays are much lower. This is the key to the
scalability and efficiency of our new design for indexing point data. The steps are
illustrated in the lower part of Fig. 2. First of all, the total number of points in each chunk
is collected for all chunks and stored in the CLen array. Similar to computing the PntPos
array from the PntLen array by using a scan (prefix-sum) primitive, we can compute the
CPos array from the CLen array. Note that the lengths of the CLen and CPos arrays are
the same as the number of chunks which are typically very small and the costs of this step
are negligible. Next, the value of each CPos array element is added back to all the
elements in the PntPos array within each chunk (bottom part of Fig. 2), so that the
elements in the PntPos array correctly index points in grid cells after concatenating the
PntRec, PntLen and PntPos arrays in all chunks. Again, since all the steps are
implemented using parallel primitives, the design is highly data parallel and can be
implemented on top of parallel libraries that support these fundamental primitives in a
straightforward manner. Experiments on the GBIF pint data shows that, about 1/3 of the
total processing time is spent on transferring data between GPUs and CPUs while the rest
2/3 of the time is spent on sorting among all batches. The runtimes of the rest steps
(including transform, reduce and scans) are relatively insignificant. Given that GPUs
have excellent performance on sorting (Merrill and Grimshaw, 2011), the new design,

12

termed as Multi-Chunked FSG for point indexing, is expected to be not only scalable but
also highly efficient.

Comparing with our previous design on point indexing that requires all point data
fit in GPU memory capacity, our new design not only solves the outstanding scalability
problem but also has the following two advantages that are worthy of mentioning. First,
the inputs and outputs are stored in GPU mapped memory in CPUs and thus the memory
pressure on GPUs is significantly reduced. The reduced memory requirement allows a
larger chunk size in a batch and/or supports more sophisticated processing that requires
more temporal GPU memory. Second, while not implemented in this study (as the end-
to-end performance of point indexing is already satisfactory for the GBIF point data), it is
possible to put the task of processing each batch into a GPU stream so that data transfer
latency between CPUs and GPUs can be hidden by computing in multiple GPU streams
on a single GPU device (Kirk and Hsu 2012). Based on our experiments, the batched
GPU implementation is able to index the 375+ million species occurrence records with 3
batches in about 4.5 seconds. The performance amounts to an impressive throughput of
83 million records (about 1 GB data volume in total) per second.

3.3 Extending Spatial Filtering to Support Chunked Point
Indexing

The binary search based spatial filtering design and its GPU-based
implementation (Zhang and You 2012a, Zhang et al 2014) does not allow duplicated cell
identifiers which means that the technique will not work for the multi-chunked point
indices using the technique presented in Section 3.2. For a grid cell appeared in K chunks,
there will be K duplicated cell identifiers in the PntCID array. We next present details on
how binary search based spatial filtering can be extended to work for grid-file indexed
point data in multiple chunks.

First, the PntLen and PntPos arrays derived from Multi-Chunked FSG point
indexing approach are sorted by using the PntCID array as keys to make the same cell
identifiers appear next to each other in the PntCID array. Note that the positions of the
elements in the PntLen and PntPos arrays are changed according to the key-value based
sorting. Next, as shown in Fig. 3, for each of the element in the MID array, our spatial
filtering algorithm binary searches the PntCID array by using the corresponding element
in the MC array as the key. Recall that the MID array and the MC array store the
correspondences between polygon MBB identifiers and cell identifiers of rasterized
polygon MBBs (Zhang et al 2014). The key extension is to match cell identifiers in the
MC array and the sorted PntCID array by using three parallel primitives, i.e.,
binary_search, lower_bound and upper_bound, as a bundle for binary searches. While
the lower_bound and upper_bound primitives returns the first and the last positions
where values could be inserted without violating the ordering during binary searching,
the binary_search primitive returns whether the values being searched are or are not in
the array being searched. The resulting position vectors from lower_bound and
upper_bound primitives need to be filtered out by the resulting boolean vector from the
binary_search primitive to eliminate unsuccessful searches while keeping the upper
bounds and lower bounds of successful searches. Note that it is not necessary to use
upper_bound primitive if cell identifiers in the PntCID array are guaranteed to be unique,
which is the case if the point dataset is not chunked. This is exactly the original FSG

13

design for spatial filtering presented in (Zhang et al 2014). Finally, for each matched
(MID i, lower_boundi, upper_boundi) triple, we can use MIDi and lower_boundi and
upper_boundi values to access polygon vertex arrays and point coordinate arrays as
following. Assuming arrays that store vertex positions and the numbers of polygon
vertices are PlyPos and PlyLen, respectively, then the polygon vertices will be at the
position PlyPos[idx(MID i)] .. PlyPos[idx(MID i)+1]-1 with PlyLen[i] vertices. Function
idx(i) maps polygon identifier i to an index in the PlyPos or PlyLen array, which can be
as simple as idx(i)=i. Similarly points that fall within the grid cell whose identifier is
being searched are distributed in upper_boundi - lower_boundi +1 blocks. Note that
blocks are combinations of chunks and grid cells, i.e., a bock of points are within a grid
cell in a chunk. For each j= lower_boundi .. upper_boundi, the starting position and
number of points in these blocks are recorded in PntPos[j] and PntLen[j], respectively.
They can be used to access the PntRec array to retrieve point coordinates or other
information for further processing. While supporting multiple data point chunks has
added significant complexity to our original spatial filtering design, it eliminate the need
to actually sort point records in multiple chunks as it would have been done for a single
chunk. We note that data movements are typically expensive in various sorting
implementations on both CPUs and GPUs and should be avoided as much as possible for
large scale data.

To better illustrate our extended design, an example is provided in Fig. 3. In the
top part of the figure, after binary searching each cell identifier in the MC array from the
PntCID array, while there are two matched cell identifiers in the PntCID array (at
position 1 and 2 and shaded with light and dark gray color, respectively) are paired with
cell identifier 2 in the MC array, there is only one match for cell identifiers 6 and 8,
respectively, and there are no match for cell identifiers 5, 4 and 1. As shown in the
bottom part of Fig. 3, the three points in the first chunk and the four points in the second
chunk in grid cell #2 can be accessed by combining the corresponding elements in the
PntPos and the PntLen arrays. The point data records are colored in light and dark gray in
a same way as the two matched elements in the PntCID, Pntlen and PntPos arrays are
colored.

Fig. 3 Data Parallel Design for Spatial Filtering with Chunked Point Indexing

Lower bound binary search

Upper bound binary search

Binary Search

1 1 1 2 2 2 2 2 1

2 5 4 1 8 6

2 4 6 8 2

MID

MC

PntCID (key)

1

2

1

6

2

8

3 4 PntLen(value)

2 14 PntPos (value)

Key-value sorted

PntRec

1

2

5

5

6

6

MID

PntCID

Lower bound index
Upper bound index

{

14

3.4 Parallel Cell-in-Polygon Test for Optimization
The tradeoffs between spatial filtering and spatial refinement in spatial joins are

well studied in spatial databases (Jacox and Samet 2007). In our FSG approach, clearly,
using a high resolution grid for point/polygon indexing will increase the amount of
workload in indexing and spatial filtering but is likely to reduce the workload in the final
spatial refinement phase. However, for heavily clustered regions, the numbers of points
that fall within some grid cells are likely to be large. Assuming that there are K points in
a grid cell, directly applying the point-in-polygon test would require O(K) tests, each
requires O(V) operations where V is the number of vertices in the polygon to be tested.
When K is large in such grid cells, directly performing point-in-polygon test can be very
expensive.

By observing that if the grid cell is completely inside or outside a polygon, we can
directly assign results to all points in the grid cell without requiring any point-in-polygon
test. Although a cell-in-polygon test is generally more expensive than a cell-in-polygon
test, when K is large, the optimization is likely to be beneficial. From a probabilistic
perspective, if the probability that the grid cell is completely within or outside of a
polygon is high, the overall computing cost can be significantly decreased by performing
a single cell-in-polygon test instead of multiple point-in-polyline tests. We consider this
optimization technique as part of spatial filtering and refer it as advanced spatial filtering
in this study.

Several well-established computational geometry principles can be used to test the
relationships between a rectangle (including a squared grid cell) and a polygon.
Motivated by the procedure used in (Wang et al 2012), we have used the following two
steps to determine whether a grid cell intersects, is within, or, is outside of a polygon.
Note that multi-rings are allowed in our technique by separating rings with the origin of
the underlying coordinate system. Our technique extends the work in (Wang et al 2012)
that only supports single-ring polygons and the extension is necessary for WWF
ecoregion data as polygons in this dataset are complex and many of them have multiple
rings. As shown in Fig 4A, the first step for cell-in-polygon test is to check whether any
of the grid cell's four edges intersect with any of the polygon edges, or, whether any of
the polygon's vertices are within the cell, to determine whether the grid cell intersects
with the polygon. If the grid cell does not intersect with the polygon, then it is either
completely inside (Fig. 4B) or completely outside the polygon (Fig. 4C). We
subsequently test whether any of the cell's corners are within the polygon. If the test is
true then the grid cell is inside the polygon otherwise the grid cell is outside of the
polygon.

Fig. 4 Three Cases in Cell-in-Polygon Tests

(A) Intersect (B) Inside

(C) Outside

15

Assuming that there are N+1 polygon vertices, then the total number of edge

intersection tests between the 4 cell edges and the N polygon edges is 4*N and the total
number of vertex-in-cell test is N+1. Our GPU implementation requires about C1=25
arithmetic operations for edge intersection test and about C2=20 arithmetic operations for
vertex-in-cell test. As such, the total number of operations required for a cell-in-polygon
test is around (4*C1+C2)*N. In contrast, a single point-in-polygon test requires about
C2*N operations while testing K points requires C2*K*N operations. Assuming the
probability of the grid cell that is completely within or outside of the polygon is p, then
the expected number of operations for applying the optimization technique is
(4*C1+C2)*N*p+C2*K*N*(1-p). The simple cost model allows us to further explore the
performance of the optimization technique with respect to K, p, C1 and C2.

First of all, in order for the optimization technique to be beneficial, the number of
operations with the optimization should be less than the number of operations without the
optimization, i.e., (4*C1+C2)*N*p+ C2*K*N*(1-p)<C2*K*N. A simple derivation
shows that the necessary condition is K>4*C1/C2+1. The condition, which is
surprisingly simple and is irrelevant to p, is fairly easy to achieve. This is because, as C1
and C2 are comparable, the condition can be further reduced to K>5, which should hold
for most grid cells. Even if C1 is much larger than C2 for some hardware instruction sets,
there is a high chance that K is still bounded by a relatively small number in order for the
condition to hold. Second, we would like to compute the speedup due to the optimization
and see how it changes with K, p, C1 and C2. Further assuming C2=w*C1, the speedup
can be simply calculated as

Although unlikely in real geospatial data, when p is close to 1, i.e., almost all grid

cells completely fall within polygons, we can see that S becomes proportional to K which
indicates a linear speedup with K. By setting w=20/25=0.8 and plugging p=0.85 and
K=364 (measured values, see Section 4.4), the theoretical speedup S is about 6.1X, which
agrees with the experiment results (6.4X on GPUs at the grid level 13) very well on an
average basis at the dataset level (Section 4.4). When K is relatively large, the K*w*(1-p)
part will dominate the denominator in the cost model. As such, the upper bound of S
becomes S=1/(1-p) which is much easier to estimate. In this simplified case, S increases
with p as expected. When plugging p=0.85, S becomes 6.7 which is still very close to the
experiment results reported in Section 4.4. We expect that as the grid level increases and
grid cells become smaller, p will increase while K will decrease. This makes it interesting
to choose a grid level to maximize performance speedup.

p)-(1*w*K+p*w)+(4

w*K

p)-(1*N*K*C1*w+p*N*C1)*w+C1*4

N*C1*w*K

p)-(1*N*K*C2+p*N*C2)+C1*(4

N*K*C2

=

=

=S

16

4. Experiments
Our primary goal in this study is to develop high-performance computing tools for

zonal statistics of large-scale species occurrence data. Our experiments in this section
thus focus on the GBIF species occurrence dataset, although the designs and
implementations can be extended to other types of data and additional geospatial
operations. We will first provide a description of the datasets and the experiment settings
in Section 4.1. As it is impossible to report the experiment results of all the proposed
parallel techniques due to space limit, we will be focusing on the overall performance in
Section 4.2, the performance of the cell-in-polygon optimization technique for advanced
spatial filtering in Section4.3 and comparisons with serial implementations using
traditional techniques in Section 4.4.

4.1 Data and Experiment Setting
The GBIF global species occurrence dataset has 375+ million species occurrences

records as of 08/02/2012. Our preprocessing results have shown that the dataset contains
1,487,496 species, 168,280 genus, 1,142 families in 262 classes, 109 phyla and 9
kingdoms. The majority (95.7%) of the records is related to animals and plants. A large
portion (74.1%) is geo-referenced (with latitude/longitude coordinates at different
accuracy levels) and can be associated with terrestrial eco-regions. The WWF ecoregion
dataset comes in ESRI shapefile format and has 14,458 polygons, 16,838 rings and
4,028,622 points. The ecoregion data volume is relatively small when compared to
today's CPU memory capacities. However, the raw GBIF species occurrence data we
received is in the form of a relational database dump with 35 columns and has a total data
volume of 180 GB. Many of these columns use the variable character type which makes
random accesses very difficult. We have extracted individual columns and converted
them into binary format for further processing. In this study, we primarily focus on three
attributes, i.e., latitude, longitude and taxon identifier. As the total data volume of the
three attributes is less than 1/3 of the CPU memory in our experiment system (16 GB),
hereafter we assume that all data involved are memory-resident.

We have empirically set the data grid resolution to 1 arc-minute (approximately 2
kilometers around the equator) primarily because this might be the finest resolution for
global biodiversity studies and it may already be beyond the accuracy of some species
occurrence records. The width and height of the resulting grid are 21,600 and 10,800,
respectively. The gridded coordinates of a point location can be easily stored as a 2-byte
short integer along both longitude and latitude dimensions. As the indexing grid
resolutions are allowed to be coarser than the data grid resolution, we have chosen three
grid resolutions for spatial indexing, i.e., 2n*2n for n=13, 14 and 15, to investigate how
various performance measurements change with indexing grid resolutions.

All experiments are performed on a Dell Precision T5400 workstation equipped
with 16 GB memory and a 500 GB 7200 RPM hard drive. The workstation has dual
quad-core Intel E5405 CPUs (8 cores in total) running at 2.00 GHZ and with 6MB L2
cache per core pair, 128 KB L1 cache per core and 12.8 GB/s memory bandwidth per
CPU. The workstation is also equipped with an Nvidia Quadra 6000 GPU device with
448 CUDA cores (1.15 GHz), 6 GB GDDR5 memory and 144 GB/s memory bandwidth.
The sustainable disk I/O speed is about 100 MB/s while the theoretical data transfer
speed between the CPU and the GPU is 8 GB/s through PCI-E. The relevant software

17

installed on the workstation are Nvidia CDUA SDK 5.0 (with Thrust library 1.6), g++
4.6.3 and Intel TBB 4.1. All programs, including the two serial implementations using
traditional technologies (Section 4.3), are optimized with -O3 during compilations for fair
comparisons.

4.2 Overall Experiment results
The runtimes of the four components in our GPU-based zonal statistics technique,

i.e., point indexing, polygon MBB indexing, spatial filtering and spatial refinement,
under the three grid resolutions are plotted in Fig. 5. We do not include polygon MBB
indexing runtimes as they are negligible when compared to others (51, 197 and 787
milliseconds for the three grid cell levels). Note that the spatial filtering runtimes are
measured with the optimization technique described in Section 3.4. The comparisons
with non-optimized implementations are discussed separately in Section 4.3.

From Fig. 5 we can see that, the runtimes of spatial filtering and spatial
refinement dominate the overall runtimes under all the three grid resolutions. From an
application perspective, the most significant conclusion we can draw from the
experiments is that, zonal statistics on the 375+ million species occurrences over the 15
thousand complex ecoregion polygons based on point-in-polygon test spatial relationship
can be completed on a commodity workstation equipped with a single GPU device in the
order of 100 seconds.

Fig. 5 Plots of runtimes of Point Indexing, Spatial Filtering and Spatial
Refinement on GPUs using three grid resolutions

Our data parallel designs make it relatively easy to implement the designs in

multiple parallel hardware platforms. For demonstration and comparison purposes, we
have also implemented the designs on multi-core CPUs. To minimize the additional
implementation efforts, since the Thrust parallel library also provides interfaces to Intel
Thread Building Block (TBB7) library that is known to be efficient on multi-core CPUs,
we recompile our GPU-based Thrust code to use TBB and link it with TBB runtime
library to utilize multi-core CPUs, in a way similar to the work reported in (Zhang et al
2014) for point-to-polyline nearest neighbor search based spatial joins, but with two
exceptions. The first exception is on point indexing where we have found that the GNU
parallel mode library8 is more efficient for multi-core CPU based sorting and we use it

7 https://www.threadingbuildingblocks.org/
8 http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

seconds

18

instead for fair comparisons. The second exception is related to the native CUDA
implementation of the point-in-polygon test module as reported in (Zhang and You
2012a). Also fore fair comparisons, we have implemented the point-in-polygon test
module using the native TBB programming model by assigning a range of (polygon,
block) pairs as a task and let a single CPU core loop through all the points in the polygon
for point-in-polygon test.

As expected, the GPU-based implementations are significantly faster than their
peer multi-core CPU implementations with speedups ranging from 2.7X to 4.7X for the
three major components (point indexing, spatial filtering and spatial refinement) under
the three grid resolutions, as shown in Fig. 6. The speedups are higher for spatial filtering
and spatial refinement as they are more computing intensive and can better use GPU’s
massive floating point computing power better. Please note that the CPU performance is
measured when all the 8 cores are fully utilized and the multi-core CPU implementations
have been optimized as much as possible for fair comparisons. Our results agree with the
rigorous performance analysis on quite a few non-geospatial benchmarks by Lee et al
(2010) when comparing the performance of GPUs and multi-core CPUs. The
comparisons may also suggest that our data parallel designs can achieve high efficiency
on both GPUs and multi-core CPUs by using parallel primitives that are optimized for the
respective hardware platforms. As such, they are less likely to depend on the
programming skills of individual programmers and are more preferable from a software
development perspective.

Fig. 6 Plots of GPU over multi-core CPU speedups of Point Indexing, Spatial
Filtering and Spatial Refinement using three grid resolutions

After comparing with multi-core CPU implementations based on our data parallel

designs, we would like to comment on the relationships between filtering and refinement
using different grid resolutions in our GPU-based implementation as observed in the
experiments before we move to experiments on the cell-in-polygon test optimizations in
the next subsection. First of all, from Fig. 5, it is easy to see that the filtering runtimes
increase with grid resolutions while the refinement runtimes decrease with grid
resolutions for both CPU and GPU implementations. This is expected as using finer
resolution grid for filtering reduces false positives and requires fewer point-in-polygon
tests in the refinement phase. Since cell-in-polygon test is used in the filtering phase as an
optimization technique, which is also computation intensive, the runtimes in the filtering

19

phase are comparable with the runtimes in the refinement phase, although the computing
workload for the basic spatial filtering design cam be quite light (Zhang et al 2014).
While the runtime of spatial filtering is about 1/5 of the runtime of spatial refinement at
the grid level 13, the ratio quickly increases to 1.6 at the grid level 15. The totals of the
filtering and refinement runtimes (and hence the end-to-end runtimes) are minimized at
the grid level 14. The results indicate that choosing proper grid level is important in
improving the system performance and we leave a more comprehensive investigation for
future work.

4.3 Experiments on Cell-in-Polygon Test based Optimization
Recall that when pairing grid cells for points with grid cells for polygon MBBs in

the cell-in-polygon test based optimization for advanced spatial filtering (Section 3.3),
there are three cases for non-empty point grid cells. The first case is that point grid cells
are not in the polygons corresponding to the paired MBBs and the number of such grid
cells is measured as E=N-Cell-Outside. The second case is that point cells complete fall
within polygons and the number is measured as A=N-Cell-Inside. The rest of the grid
cells belong to the third category whose number is measured as C=N-Cell-Intersect.
Subsequently the total numbers of points that fall within these grid cells can be computed
by summing up all the points in the respective types of grid cells and are referred as F=N-
Point-Outside, B=N-Point-Inside and D=N-Point-Intersect, respectively. The numbers of
grid cells and the numbers of points are plotted in Fig. 7. Clearly, C=N-Cell-Intersect is
much smaller than both A=N-Cell-Inside and E=N-Cell-Outside (left of Fig. 7) and D=N-
Point-Intersect is much smaller than B=N-Point-Inside and F=N-Point-Outside (right of
Fig. 7). This is the foundation of our optimization technique and will be further discussed
from a probabilistic perspective shortly. An interesting observation is that, species
occurrences that fall in the first category of grids (outside) are mostly for non-terrestrial
species. While the numbers of occurrences are relatively small (F=N-Point-Outside), i.e.
the species distributions in these grid cells are sparse, the number of such grid cells (E=N-
Cell-Outside) is large. Fortunately, we can simply discard such grid cells and the
associated species occurrence records after the advanced spatial filtering as they are
deemed not to be associated with any polygons representing terrestrial ecoregions that are
paired with as a result of the basic spatial filtering.

To support the analysis based on the cost model and help validate the
optimization technique, we have also computed the K and p values (defined in Section
3.4) at the three levels as following. At the dataset level, K can be intuitively defined as
the total number of points (i.e., NP=B+D+F) divided by the total number of cells (i.e.,
NC=A+C+E), where the values A through F are plotted in Fig. 7. We can compute p
based on either cells (i.e., p-Cell=(A+C)/NP) or points (i.e., p-Point=(B+D)/NP). When
points are uniformly distributed, the two measurements should be close. However, this is
not the case for the GBIF data as the numbers of species occurrence records vary
significantly across the world due to various ecological and geographical reasons and
human factors in collecting the data. From the left plot in Fig. 8, we can see that K
decreases from 364 at the level 13 to 112 at the level 15, which is expected. While p-Cell
values are larger than p-Point values, all the ratios are above 0.8 as shown in the right
part of Fig. 8. This clearly indicates the effectiveness of the optimization technique as
only points in the "intersect" cells need to be actually tested while points in the "inside"

20

and "outside" cells can be assigned polygon identifiers directly and simply discarded,
respectively.

Fig. 7 Plots of numbers of grid cells (left) and numbers of points (right) in grid
cells that are inside, intersect and outside of paired polygons at three grid resolutions

Fig. 8 Plots of K values (left) and p-Cell and p-Point (right) values at three grid
resolutions

The left part of Fig. 9 plots the total runtimes of spatial filtering on GPUs with

and without the optimization technique for advanced spatial filtering. To validate the
effectiveness of the cost model presented in Section 3.4, we have used both p-Cell and p-
Point as p values and plugged K values (Fig. 8) into the cost model and term the resulting
speedups as S-Cell and S-Point (w has been set to 0.8 as explained in Section 3.4). From
the results we can see that both the computed and measured speedups increase as the
grids get finer. The measured speedup due to the optimization technique is labeled as S-
GPU and they are plotted in the right part of Fig. 9. We can see that S-GPU agrees with
S-Point pretty well although S-Cell is generally over estimated. The results clearly
demonstrate the effectiveness of our cost model presented in Section 3.4 by using point
level statistics. This can be useful for guiding query optimizations and we will explore it
further in our future work.

21

Fig. 9 Plots of total runtimes of optimized and non-optimized GPU
implementations (left) and their relative speedups (right) at three grid resolutions

4.4 Comparisons with alternatives using traditional technologies
It is not our intention to directly compare our memory-resident massively data

parallel technique with serial implementations using traditional geospatial software
packages that are designed for uniprocessors and disk-resident systems. This is because
the two techniques are developed for different applications targeting at different
hardware. Nevertheless, we report performance comparisons with two serial
implementations using libspatialindex9 for R-Tree based polygon indexing and GDAL10
(through GEOS) for point-in-polygon test for reference purposes. The comparisons can
also help understand the level of performance that our technique has achieved due to data
parallel designs and optimized implementations on GPUs.

The major difference between the two serial implementations is that the second
implementation incorporates an optimization heuristic in hope to improve the overall
performance while the first serial implementation simply querying polygon MBBs that
intersect with each and every point before performing point-in-polygon test between the
point and the polygons whose MBBs intersect with the querying point. Given that
querying the polygon R-Tree for 375+ million points can be expensive when traversing
the polygon R-Tree individually, the heuristic is to locate all the MBBs in the polygon R-
Tree leaf nodes that intersect with grid cells of groups of points where only a single R-
Tree query is needed for the groups of points within the grid cells. The second
implementation clearly requires grid-based indexing of points but can potentially save R-
Tree query time as the number of accesses to R-Tree nodes can be significantly reduced
through point grouping. Although it is possible to use R-Tree to index points by treating
each point as a degenerated MBB, the high index construction cost has led us to decide to
either not index the point data (implementation 1) or re-use the results of our grid file
based indexing (implementation 2).

We believe the first serial implementation represents a reasonably efficient
implementation by apply spatial filtering before refinement as a typically trained
geospatial programmer would do. We also expect the second serial implementation to be

9 http://libspatialindex.github.io/
10 http://www.gdal.org/

milliseconds

22

more efficient by incorporating the optimization heuristic. However, the results are quite
the opposite as detailed below. The code for the two serial implementations and the three
subsets of point data are publically available online11 and we encourage interested readers
to cross-examine the implementations, validate the experiment results and make
independent comparisons.

First of all, neither implementation is as efficient as we have expected. It takes
18.77 hours to process a subset of approximately 10 million point records with a
throughput in the order of 139 points per second. Additional experiments using two
smaller subsets of species with 279,808 and 746,302 points result in similar performance,
i.e., 138 points per second for both smaller datasets. By using a linear extrapolation, it
would take 600+ hours to complete the 375 million points using the serial
implementations, although the implementation does exhibit excellent scalability and is
suitable for MapReduce/Hadoop systems. However, the performance is 4-5 orders of
magnitude slower (138 points per second) than our GPU based implementation (375
million points in about 100 seconds) which is inferior from both a usability and a finical
perspective.

Second, the experiments show that the optimization heuristic employed in the
second serial implementation is largely ineffective. While measured accesses to the
polygon R-Tree has been dramatically reduced by the optimization, the runtimes do not
get improved noticeably. Further investigations have revealed that the polygon R-Tree is
fairly small (a few megabytes) and can be completely cached in memory which makes
reducing accesses to R-Tree insignificant as in disk-resident cases. Since querying cells
boundaries against the polygon R-Tree will inevitably cause more false positives when
compared with directly querying points and point-in-polygon test which is much more
expensive than accessing memory-resident R-Tree nodes, the heuristic does not work as
expected. Since point data are also made memory resident in both serial implementations,
we can conclude that the low performance of the serial implementations is largely
unrelated to disk I/Os in our experiments.

While we are still in the process of fully understanding the 4-5 orders of
magnitude of performance differences, we believe that excessive memory
allocation/deallocation to accommodate for low memory capacities, library overheads for
generality (e.g., object-oriented abstractions) and mismatch between traditional data
structures and algorithms with modern hardware architectures (e.g., cache unfriendliness
in depth-first tree traversals) are among the factors that contribute to the low performance
of the two serial implementations by using traditional geospatial techniques. Furthermore,
it is interesting to observe that, even assuming that our multi-core CPU-based
implementations have achieved perfect scalability (8X for 8 cores), the performance of
the corresponding serial implementations of our data parallel designs (by multiple the
number of cores with the measured runtimes) are still about three orders of magnitude
faster than using traditional technologies. This may suggest that there is a huge room to
improve traditional spatial data processing technologies by adopting data parallel designs
and hardware architecture aware implementations. We leave this interesting
interdisciplinary research topic for our future work.

11 http://www-cs.ccny.cuny.edu/~jzhang/zs_gbif.html.

23

5 Summary and Conclusions
In this study, we have significantly extended our previous techniques for point-in-

polygon test based spatial joins on GPUs for large scale data. The integrated scalable
designs and their GPU implementations have successfully performed zonal statistics on
375+ million global species occurrence records over 15 thousand complex ecoregions in
facilitating exploring global biodiversity explorations. First, we have developed a
scalable data parallel framework by using GPU mapped memory in CPUs for large-scale
data that may exceed GPU memory capacity. Second, we have further extended our point
data indexing and binary search based spatial filtering designs to accommodate multi-
chunked point data indexing while achieving much higher efficiency when compared
with using mapped memory naively. Third, the cell-in-polygon test based optimization
technique for advanced spatial filtering is highly effective and achieves 6.4-8.2x
speedups. The measured speedups match with our cost model very well which opens the
possibility for predictive optimization. The combined improvements have reduced the
total runtime to about 100 seconds using a single GPU device. The performance is
several orders of magnitude faster than two reference serial implementations using
traditional open source geospatial techniques. The realized high performance on top of
scalable designs is not only significant for practical applications in exploring increasingly
larger global biodiversity data but also suggests that there are huge rooms to improve the
performance of traditional geospatial technologies on modern parallel hardware.

For future work, first of all, we would like to integrate our technique with data
management and visualization frontends for practical applications. Second, since the
scalable data parallel framework is also applicable to other types of spatial processing, it
is thus interesting to examine its scalability in additional applications with larger scale
data. For example, spatially and temporally associating 2.7 billion GPS points deposited
to Openstreetmap Planet12 with global road networks by using the point-to-polyline
nearest neighbor search based spatial joins (Zhang et al 2014). Third, as discussed in
Section 3.1, our new data parallel framework allows integrate multi-core CPUs and
multi-GPUs as well as other types of hardware accelerators that share a same address
space to synergistically process large scale data by assigning chunks of array elements to
multiple processors in a straightforward manner. We plan to materialize the design which
essentially allows heterogeneous computing and implement it on a hybrid CPU-GPU
system for performance evaluation using the GBIF data and the Openstreetmap Planet
GPS location data. Finally, while it is certainly a challenging task that requires significant
effort, we plan to investigate the mismatches between the designs and implementations of
traditional geospatial processing software packages and the new generation of parallel
hardware in a systematic manner. The findings may not only lead to improved
performance but also may provide new insights on how to make better use of commodity
parallel hardware and enable larger scale geospatial processing with higher efficiency and
better scalability.

ACKNOWLEDGEMENT
This work is supported in part through PSC-CUNY Grants #65692-00 43 and

#66724-00 44 and NSF Grants IIS-1302423.

12 http://wiki.openstreetmap.org/wiki/Planet.osm

24

References
1. Bisby, F. A., 2000. The quiet revolution: Biodiversity informatics and the internet,

Science, 289 (5488), pp. 2309-2312.
2. Cary, A., Sun, Z., Hristidis, V. and Rishe, N., 2009. Experiences on processing spatial

data with MapReduce. Proceedings of the 21st International Conference on Scientific
and Statistical Database Management (SSDBM’09), pp.302-319.

3. Cox, C. and Moore, P., 2005. Biogeography: An Ecological and Evolutionary
Approach (7th Ed.), Wiley.

4. Dean, J. and Ghemawat, S., 2010. MapReduce: a flexible data processing tool.
Communications of the ACM, 53(1), pp.72-77.

5. GBIF, 2014. Global biodiversity information facility (GBIF) data portal, online at
http://data.gbif.org/.

6. Grochow, K., Howe, B. , Stoermer, M. , Barga, R. and Lazowska, E. , 2010.
Client+Cloud: evaluating seamless architectures for visual data analytics in the ocean
sciences, Proceedings of the 22st International Conference on Scientific and
Statistical Database Management (SSDBM’10), pp. 114-131.

7. Gosink, L. J., Wu, K. et al. 2009. Data parallel bin-based indexing for answering
queries on multi-core architectures, Proceedings of the 21st International Conference
on Scientific and Statistical Database Management (SSDBM’09), pp. 110-129.

8. Hennessy, J. and Patterson, D. A., 2011. Computer Architecture: A Quantitative
Approach (5th ed.), Morgan Kaufmann.

9. Hillis, W. D. and Steele, Jr., G. L., 1986. Data Parallel Algorithms. Communications
the ACM (CACM), 29(12), pp.1170-1183

10. Hoel, E. G. and Samet, H., 1994. Performance of Data-Parallel Spatial Operations.
Proceedings of the International Conference on Very Large Data Bases (VLDB’94),
156-167.

11. Hoel, E. G. and Samet, H., 1995. Data-parallel primitives for spatial operations using
PM quadtrees. Proceedings of Computer Architectures for Machine Perception
(CAMP’95), pp. 266-273.

12. Hoel, E. G. and Samet, H., 2003. Data-parallel polygonization. Parallel Computing
29(10), pp. 1381-1401.

13. Hu, Y., Ravada, S., Anderson, R. and Bamba, B., 2012. Topological relationship
query processing for complex regions in oracle spatial, Proceedings of ACM
international symposium on Advances in Geographic Information Systems (ACM-
GIS'12), pp. 3-12.

14. Kirk, D. B. and Hwu,W.-M. W., 2012. Programming Massively Parallel Processors:
A Hands-on Approach (2nd ed.), Morgan Kaufmann.

15. Lee, V.W. Kim, C. et al, 2010. Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU. Proceedings of the 37th
Annual International Symposium on Computer Architecture (ISCA'10), pp. 451-460.

16. Li, J., Wang, W. and Wu, E., 2007. Point-in-polygon tests by convex decomposition,
Computers & Graphics, 31 (4), pp. 636-648.

17. Jacox, E. H. and Samet, H., 2007. Spatial join techniques, ACM Transaction on
Database System, 32 (1), Article #7.

25

18. Jimenez, J. J., Feito, F. R. and Segura, R. J. , 2009. A new hierarchical triangle-based
point-in-polygon data structure, Computers & Geosciences, 35 (9), pp. 1843-1853.

19. Merrill, D. and Grimshaw, A. S., 2011. High performance and scalable radix sorting:
a case study of implementing dynamic parallelism for GPU computing, Parallel
Processing Letters, 21 (2), pp. 245-272.

20. McCool, M., Robison, A.D. and Reinders, J., 2012. Structured Parallel Programming:
Patterns for Efficient Computation, Morgan Kaufmann.

21. Obe, R. and Hsu, L., 2011. PostGIS in Action, Manning Publications.
22. OGC, 2006. Open Geospatial Consortium (OGC) Simple Feature Specification (SFS),

online at http://www.opengeospatial.org/standards/sfs.
23. C. Ricotta, 2005. Through the jungle of biological diversity, Acta Biotheoretica, 53,

pp. 29-38.
24. Theobald, D., 2005, GIS Concepts and ArcGIS Methods, 2nd Ed., Conservation

Planning Technologies, Inc.
25. Wang, K., Huai, Y. et al., 2012. Accelerating pathology image data cross-comparison

on CPU-GPU hybrid systems, Proceedings of the VLDB Endowment, 5 (11), pp.
1543-1554.

26. Wang, W., Li, J. and Wu, E., 2005. 2D point-in-polygon test by classifying edges into
layers, Computers & Graphics 29 (3), pp. 427-439.

27. Yang, S., Yong, J.-H. et al., 2010. A point-in-polygon method based on a quasi-
closest point, Computers & Geosciences, 36 (2), pp. 205-213.

28. Zhang, J., You, S. and Gruenwald, L., 2014. Parallel Online Spatial and Temporal
Aggregations on Multi-core CPUs and Many-Core GPUs. Information Systems, in
press. (doi: 10.1016/j.is.2014.01.005).

29. Zhang, J. and You, S., 2013a. High-performance quadtree constructions on large-
scale geospatial rasters using GPGPU parallel primitives. International Journal of
Geographical Information Sciences (IJGIS), 27(11), pp. 2207-2226.

30. Zhang, J. and You, S., 2013b. GPU-based Spatial Indexing and Query Processing
Using R-Trees. Proceedings of ACM SIGSPAIAL Proceedings of the ACM
SIGSPATIAL Workshop on Analytics for Big Geospatial Data (BigSpatial’13).

31. Zhang, J., 2012. A high-performance web-based information system for publishing
large-scale species range maps in support of biodiversity studies. Ecological
Informatics 8, pp. 68-77.

32. Zhang, J. and You, S., 2012a. Speeding up large-scale point-in-polygon test based
spatial join on GPUs, Proceedings of the ACM SIGSPATIAL Workshop on Analytics
for Big Geospatial Data (BigSpatial’12), pp. 23-32.

33. Zhang, J. and You, S., 2012b. CudaGIS: Report on the design and realization of a
massive data parallel GIS on GPUs. Proceedings of the ACM SIGSPATIAL
Workshop on GeoStreaming (IWGS’12), pp. 101-108.

34. Zhang, J., You, S. and Gruenwald, L., 2012. U2STRA: high-performance data
management of ubiquitous urban sensing trajectories on GPGPUs. Proceedings of the
2012 ACM workshop on City data management workshop (CDMW’12), pp. 5-12.

35. Zhang, J. and Gruenwald, L., 2008. Embedding and extending GIS for exploratory
analysis of large-scale species distribution data, Proceedings of ACM international
symposium on Advances in Geographic Information Systems (ACM-GIS'08), #28.

26

36. Zhang, J., Pennington, D. D. and Liu, X., 2007. GDB-explorer: Extending open
source Java GIS for exploring ecoregion-based biodiversity data. Ecological
Informatics, 2 (2), pp. 94- 102.

