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Abstract

Analyzing how species are distributed on the Earth has been onbkeof t
fundamental questions in the intersections of environmental sciere@s;ignces and
biological sciences. With world-wide data contributions, more than 37Bbmépecies
occurrence records for nearly 1.5 million species have been deptsithe Global
Biodiversity Information Facility (GBIF) data portal. The sheamounts of point and
polygon data and the computation-intensive point-in-polygon tests for zatiatiss for
biodiversity studies have imposed significant technical challerigékis study, we have
significantly extended our previous work on parallel primitivesetlaspatial joins on
commodity Graphics Processing Units (GPUs) and have developed hewenefand
scalable techniques to enable parallel zonal statistics on Blife @ata completely on
GPUs with limited memory capacity. Experiment results &nevn that an impressive
end-to-end response time under 100 seconds can be achieved for zstiisstat the
375+ million species records over 15+ thousand global eco-regions withilden
vertices on a single Nvidia Quadro 6000 GPU device. The achieved highnpeanta,
which is several orders of magnitude faster than referesrtal snplementations using
traditional open source geospatial techniques, not only demonstratesetigapot GPU
computing for large scale geospatial processing, but also makeactive query driven
visual exploration of global biodiversity data possible.

1. Introduction

Quantifying species-environment relationships, i.e., analyzing howiespare
distributed on the Earth has been one of the fundamental questions shydied
biogeographers and ecologists for a long time (Cox and Moore 2005)yaSenabling
technologies have made biodiversity data available at much finlEssicathe past
decade (Bisby 2000), including DNA barcoding for species identdicageo-referring
for converting descriptive museum records to geographical coordindttabase
technologies for managing species presence locations and relamtbnac and
environmental data, and, Geographical Information System (GISpémies distribution
data modeling and analysis. The newly emerging cyberinfragtaitechnologies (e.g.,
metadata, ontology, Web services and scientific workflow) have macleanging and
sharing species distribution data over the Web much easier. Tieatbutargest species
occurrence data repository might be the Global Biodiversity Infeomdgacility (GBIF)
which was established by governments in 2001 to encourage free and opges tacc



biodiversity data via the Internet (GBIF 2014). Through a global n&twbicountries
and organizations, as of August 2012, the GBIF data portal has more thanllg#b m
species occurrences records on 1,487,496 species. The majority ofdfds rare geo-
referenced which makes it possible to overlay species occunmrecmels with different
types of raster and vector layers for exploring biodiversityepadtand their relationships
with environments and human impacts at global and regional scales.

Given the virtually countless combinations of species taxa, gpbigal regions
and ecosystems (Zhang 2012), many types of exploratory anaysistegrated
taxonomic-geographical-environmental data can be investigated d Zrah Gruenwald
2008). In this study, we will be focusing on a fundamental spatial operfatr zone-
based point location data summation, i.e., counting the numbers of poirfed|tiathin
a set of polygons in a zonal dataset. The operation is closatgddb point-in-polygon
test based spatial joins (Jacox and Samet 2007, Zhang and You 2014s)vesid
supported in several leading GIS software known as Zonal Stafi$tiembald 2005).
While both spatial databases and GIS have exploited optimizatibniqees, such as
indexing and preprocessing, existing designs and implementatiomsoatly based on
serial CPU computing models and usually incur significant deldyen processing large
scale datasets. Modern commodity personal computers are ingtgasguipped with
large memory and many-core accelerators, such as Nvidia GRUsre capable of
general computing based on the Compute Unified Device Architec@wBA) parallel
programming model (Kirk and Hsu 2012). Unfortunately, many commercialbpad
source spatial databases and GIS are optimized for the previarstgams of hardware
based on outdated cost models and fail to make full use of the cagpotver provided
by modern commodity hardware.

Built on top of our previous research and development efforts on spaliédimg
and query processing on GPUs (Zhang and You 2012a, Zhang et aliathi,study,
we aim at accelerating explorations of the GBIF global biodityedata by designing
and implementing efficient data parallel algorithms for ddalaand high-performance
zonal statistics on the hundreds of millions of species occurreneesens of thousands
of complex polygons on commodity GPUs with limited memory caacitrirst of all,
we have designed a framework to allow efficiently use mappedamnyeon CPUs as
extended GPU memory automatically and support data parallehdeSigcond, we have
developed scalable point indexing technique to index large point datzstesse beyond
GPU memory capacity by using mapped memory efficientiyutin batched processing.
Third, we have extended our binary search based spatial filtalgorithm to work with
the new point indexing technique. Fourth, a cell-in-polygon test based agitoniz
techniqgue for advanced spatial filtering is developed to allowgrasg polygon
identifiers to points if the grid cell that the points fall sntésted to be completely within
a polygon without performing expensive point-in-polygon test for individual poides
have performed extensive experiments to demonstrate the efficeEinGPU-based
massively data parallel zonal statistics technique and contpaité two reference serial
implementations using traditional open source software packages.calabilty and
performance of the data parallel framework and techniques aaswtle effectiveness of
the cell-in-polygon based optimization technique are tested underediffexperiment
settings.



The rest of the paper is arranged as follows. Section 2 introdac&ground and
motivation and briefly overviews related work. Section 3 provides detdilthe data
parallel zonal statistics framework, the scalable point indexand spatial filtering
techniques, and the cell-in-polygon test based optimization techniquedvanced
spatial filtering. Section 4 presents the experiments and reBuitly Section 5 is the
conclusion and future work directions.

2. Background, Motivation and Related Work

Given a point dataset T_O representing species occurrendeswaitattributes
(sp_id, the_geom) and a polygon dataset T_Z representing zones alseoaovittributes
(z_id, the_geom), the basic zonal statistics operation to count theenofmficcurrences
of species in each polygon can be expressed as the followingugtdiQuery Language
(SQL) statement:

SELECT COUNT(*) fromT_O, T_Z
WHERE ST_WITHIN (T_O.the_geom,T_Z.the_geom)
GROUP BY T_Z.z_id;

Here the_geom attributes in the two datasets represent ggongef points and
polygons, respectively. Advanced zonal statistics operations likely vimvepecies
identifiers in additional clauses (such as WHERE and GROUP)rivedbe occurrence
counts for a single or a group of species. This is useful for biciyeesearchers that
are interested in a particular group of species. The speoiesrence counts can be used
to compute abundance and richness measurements for a varietgobfypiodiversity
studies (Ricotta 2005). The GBIF data portal (GBIF 2014) has providedi@vemaps
of species occurrences for different species groups asawetbuntries which is very
useful in understanding the overall species distribution patterns. Howkgemaps are
mostly for visualization purposes and are limited to a few freswlutions up to 0.1 by
0.1 degree which might be too coarse for many scientific inquiries.n@e that, in
addition to COUNT, additional statistics such as MIN, MAX, SUM,DSDEV and
MEDIAN are also possible, although not all of them are natively supported by SQL.

It is clear that the zonal statistics based data suramaiperations are closely
related to point-in-polygon test used in the ST_WITHIN function. The function is define
by Open Geospatial Consortium (OGC) Simple Feature Spemhc@FS) (OGC 2006)
and has been implemented in several spatial databases and GlEBwa g opology Suit
(JTS), Geometry Engine - Open Source (GEO&)d PostGIS/PostgreSQL (Obe and
Hsu 2011). The Oracle Spatial development team recently proposed doabuih-
memory R-Tree to speed up topological relationship query procegsingomplex
regions (Hu et al 2012), including point-in-polygon test. Point-in-polyganhias been
extensively investigated by the computational geometry and lspat@bases research
communities. While computational geometry research usually feause single point
and polygon pair, spatial databases research addresses theeffieraticy on testing a
large set of points and polygons that can be abstracted as a $yseiaf spatial joins.

! http://www.vividsolutions.com/jts/JTSHome.htm
2 http://trac.0sgeo.org/geos/



Spatial joins are typically divided into two phases, i.e., therifige phase and the
refinement phase (Jacox and Samet 2007). The filtering phasesusiinee pre-built or
on-the-fly constructed spatial indices to pair subsets of pointsudnsets of polygons for
further refinements. The refinement phase in the point-in-polygon testl lspatial joins
applies computational geometry algorithms to determine whetheiin& igowithin a
polygon for paired points and polygons. Obviously, building indices incurs auliti
overheads but can significantly reduce the numbers of required point-in-polygon tests and
improve spatial join efficiency. In addition to the classic rastiog based point-in-
polygon test algorithm with linear complexity with respect torthmber of vertices in a
polygon (which does not need preprocessing), several new algorithms have bee
proposed in recent years (Wang et al 2005, Li et al 2007, Jimenke20&%a Yang et al
2010). In some of these approaches, points and polygons that are indexsahiey grid
tessellation can be paired directly without requiring treeetsals that typically involve
irregular memory accesses which can be expensive on modern tetHeanessy and
Patterson 2011).

One of the driving motivations for us to push the limits of paralisgatial
processing in personal computing environments is to enable interacisual
explorations on large scale geospatial data. Traditionally MdydeéHadoop based
parallel processing techniques have been designed for offline datesgirg and are
generally too slow for online interactive queries that requil@ teme responses
(Grochow et al 2010). On the other hand, while GPUs have been extensed|yfor
speeding up rendering high-quality images based on sophisticated physits
statistics at interactive frame rates, only a few mefeavorks have exploited GPU's
Single Instruction Multiple Data (SIMD) computing power (Kirk ahdu 2012) to
support query driven visual explorations (e.g. Gosink et al 2009). We hopealable
data parallel zonal statistics techniques that we have deveiopddis study can
accelerate the performance of the biodiversity data vistializand visual exploratory
analysis systems, e.g. those reported in (Zhang et al 2007, Zhdn@ruenwald 2008,
Zhang 2012), when applied to much finer resolution data at the gladal 3te GBIF
global species occurrence data, however, is significantly différemt the tree species
and bird species range map data that were used in these ptuidies: the data volume
is 1-2 orders of magnitude higher, the number of species is 2-3 ordemagoiitude
larger, and, more importantly point locations need to be aligned to zmngsghisequent
statistics which require computation intensive spatial operations.

The distinctions between data parallelisms and task paralleisenaell known
in parallel computing (Hills and Steele 1986, McCool 2012). While mdisath is
expressed using distinct tasks which may be different from et significantly in
task parallelisms, data parallelisms is driven by a caolieati data which typically have
regular data structures such as vectors or matrices. Wisleasy to assign the work on
processing a chunk of such homogenous data items as a task and ysealkiisms for
task parallelisms, the reverse is generally not true. Toadily task parallelisms are
extensively explored in distributed computing and multi-core CPUgr@asessors can
perform very different tasks without suffering performance degjadaHowever, data
parallelisms are becoming increasingly important in makingusg of the processing
power of modern parallel hardware, including GPUs and Vector Processing URiids)V
that come with multi-core CPUs (Hennessy and Patterson 2011). Waileenefits of



designing data parallel algorithms was not significant endogfustify the cost of
explicitly changing design patterns due to limited vectacessing power on previous
generations of CPUs, the widely adoptions of GPU computing teclmignd the
increasingly wider SIMD widths have made it necessary to attptparallel designs in
order to make full utilization of SIMD computing power on GPUs and ¥FKirk and
Hsu 2012, Hennessy and Patterson 2011). On the other hand, as modern Gis hea
rely on the cache subsystem to bridge the increasingly lgegebetween CPU speeds
and memory access latencies and to improve overall system panfmmvery often
good data parallel designs are naturally cache friendly and gaificsintly improve
system performance even on multi-core CPUs. According to BieACprogramming
model, the performance of GPUs is maximized when neighboring thraeckss
continuous memory addresses (coalesced memory accesses) an fedlowe execution
path within a warp of threads (low control divergence). Data pasatigltypically satisfy
such requirements very well on GPUs and are naturally caemellfyion both CPUs and
GPUs. The excellent scalability of data parallelisms besoamacially important for
modern parallel hardware to reach its potential and deliver thedédsgh performance.
Unfortunately, despite that there are some pioneering works on datkelpdesigns for
geospatial processing, such as polygonization (Hoel and Samet 2003), esuadged
spatial indexing (Hoel and Samet 1995) and spatial join (Hoel andtS&84), the
potential of exploring data parallel designs in geospatial praoxessi still largely
unclear, especially on modern commodity parallel hardware.

In our previous works, we have extensively investigated on the @i¢enf
GPU-based spatial indexing and spatial joins and many of thebased on data parallel
designs. In particular, we have developed data parallel desigosrsiructing quadtrees
(Zhang and You 2012a) and grid-files (Zhang et al 2014) for larde-poit data and
raster data (Zhang and You 2013a). We have also developed and evaludiple R-
Tree implementations on GPUs for polyline and polygon data (Zhah'eu 2013b). A
parallel binary search based spatial join framework (Zharaj 2014) is proposed for
joining indexed point data (using quadtree or grid-files) and irdlpréyline or polygon
data (using grid-files). Several applications that demonstiate effectiveness and
efficiency of the indexing and spatial join techniques have been reported, includirg point
in-polygon test based spatial association between taxi pickup/drop-atioles and
census tracks in the New York City (NYC) (Zhang and You 2012a), poipolyline
nearest neighbor search based spatial associations betweeankagidrop-off locations
and street network in NYC (Zhang et al 2014), and Hausdorff distzamsed trajectory
similarity queries in Beijing (Zhang et al 2012). While thetasets (especially for the
NYC taxi pickup location point dataset) used in these applicatiensoasiderably large,
fortunately, they can be fit into high-end GPUs, such as Nvidia QUi and GTX
Titan with 6 GB memory. However, as reported in (Zhang €0a&#), the limited GPU
memory has forced us to index large point dataset using gridHiléSPUs as the
underlying radix sort algorithm implemented in the Thrust libtahat comes with
Nvidia CUDA SDK* has a large memory footprint and cannot be done in-place on the
GPU device in our experiment machine (Quadro 6000, 6 GB). Indeed, itlsleot
absolutely necessary to materialize intermediate resulgasrs in implementing data

? https://github.com/thrust/thrust
* https://developer.nvidia.com/gpu-computing-sdk



parallel designs using parallel primitives, doing so typicalakes programming much
easier and implementations more interpretable. Otherwise,-lendli nested iterators
will be needed to provide “virtual” vectors as the inputs of the subsegqazatiel
primitives. However, materializing intermediate results ighat cost of large runtime
memory footprint which, unfortunately, is a bottleneck of GPU computingresent.
This research aims at providing a more systematic solutidmguttstanding research
issue from an application perspective by using the GBIF datatarmbmal statistics
applications as a case study. While using GPU mapped memory on (€&dJSection
3.1 for more details) has been supported by GPUs since Nvidia's &eatmtecture, to
the best of our knowledge, we are not aware of previous studies on GBd)gmospatial
processing that make use of GPU mapped memory for large tdttasés beyond the
GPU memory capacity.

As discussed previously, zonal statistics on GBIF species oncarrgata is
conceptually similar to the point-in-polygon test based spatial jdilchwmay suggest
that we can simply apply the techniques we have developed in (Zhdnga 2012a) to
this new dataset. However, first of all, the number of speciasgmerces in the dataset
(375+ million) is more than two times larger than the numbesafgickup locations we
have processed previously (~170 million) and it is impossible to intlegpacies
occurrences on GPUs completely due to their memory capacity Bacond, the
polyline/polygon/trajectory data that we have used in our previouscappfis are
considerably simpler than the World Wild Fund (WWF) ecoregion polytmig. The
average number of vertices per polygon in the WWF dataset (279) is nearlyrtteeasi
large as that of the NYC census block dataset (108) which brimgsexpected
computation intensity to be more than 6 times higher. Third, compatbdaxi pickup
locations that are mostly clustered in major street inteosesstthe distributions of
species occurrences are much more dispersed which are liketguse significant
divergences on GPUs, a typical problem in degrading GPU computingedfc{Kirk
and Hsu 2012). As such, effective optimization strategies are tkegshieving high
performance for large datasets at the scale in order to supperactive visual
explorations. Finally, perhaps more importantly, while the recent &l\Wdi0 GPUs set
GPU memory capacity (12 GB) to a new level, from a resgagcspective, it is crucial
to develop a scalable framework to support zonal statistics andtyplesrof geospatial
processing on large dataset that exceeds GPU memory capacity limit.

3. Efficient and Scalable Zonal Satistics on GPUs: Data
Parallel Framework and Techniques

We propose to follow the GPU-based spatial join framework we tiaveloped
previously (Zhang et al 2014) and reuse existing components, e.g., poinygopoést
GPU routine presented in (Zhang et al 2012a), whereas possiblae®@uwontributions
in this study are four-fold: 1) a framework to allow efficignise mapped CPU memory
as extended GPU memory automatically and support data paralggigld®) a scalable
and efficient point indexing technique to index large point dataseisghzeyond GPU
memory capacity, (3) an extended binary search based sp&tiahdlalgorithm to work
with the new point indexing technique, (4) a cell-in-polygon test basethipation

® http://worldwildlife.org/biomes



technique for advanced spatial filtering. The four new desigashahlighted and
numbered in Fig. 1. We next introduce our data parallel framewotkeasotherboard
for relevant techniques before the design and development de&itsesmented in the
following subsections.

3.1 TheData Parallel Framework for Zonal Satistics

The data parallel framework for scalable and high-performamcal statistics is
shown in Fig. 1. Note that we use solid arrows to show data pnogedsps and dashed
arrows to show the correspondences among data used in different componiets
framework. Following our previous study (Zhang and You 2012b), the point natedi
and polygon vertices are stored as arrays with each elemeaffirad length, instead of
storing them as objects that may have variable lengths. Althmeigthown in Fig. 1 due
to space limit, a polygon index array is constructed to storéirthevertex positions of
the polygons to efficiently access polygon vertex arrays on both @BtJsoalesced
memory accesses) and CPUs (for cache-friendly memory accedises the GPU-based
zonal statistics technique is built on top of the point-in-polygon tesgdbapatial joins,
we reuse the relevant data parallel designs presented in (Zhahg014) including sort-
based point indexing, grid-file based polygon MBB (Minimum Bounding Box)
rasterization and indexing and binary search based spatiah{lind nested-loop based
spatial refinement. The GPU-based point-in-polygon test technigo@ngZand You
2012a) is plugged into spatial refinement to implement the required ztatadtics
functionality. These designs are extended for scalability wheassary and will to be
described in their respective subsections next. As both the previplesmentations and
the implementations for new extensions can be realized using eitia parallel
primitives supported by parallel libraries (e.g., Thrust) or wekteps with regular data
access patterns and can be efficiently realized by usingen&PU programming
languages (e.g. CUDA), we consider both new designs for individugdaments and the
overall framework data parallel.

Our framework utilizes the Unified Virtual Addressing (UVAgature that is
available in newer generations of GPUs (Kirk and Hsu 2012), whichdadioth Fermi
and Kepler based Nvidia GPUs, to allocate chunks of CPU memorynadd them
accessible to both CPUs and GPUs. We term such CPU memory asuGkiaJ mapped
memory on CPUs, or simply GPU mapped memory when there arenfusioms. Using
GPU mapped memory virtually extends GPU memory capacitysinyg CPU memory
which can be two orders of magnitude larger (1-6 GB vs. 100-1000 GB)eudown a
way similar to using disks as virtual CPU memory (HennessyPatigrson 2011), using
GPU mapped memory in a naive way may perform poorly. For examgpt experiments
show that simply applying the parallel sort primitive on GPURBi¢lv is based on radix
sort algorithm) for point indexing using mapped memory can resudt much inferior
performance. Our data parallel framework allows effectiveljyize GPU mapped
memory for scalability without significant degrading overalifpenance when applied
to larger scale data. While we currently focus on efficieamgls-node computing for
interaction intensive applications (as discussed in Section 2), ptaadg, it is possible
to apply the same set of designs to larger but slower storadjamrmesuch as local disks
and distributed memory and disks, to achieve even larger scalability whenamgcess
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Fig. 1 Data Parallel Framework for Efficient Zonal Statistics on &PU

We also would like to note that, while not realized in this stuuy data parallel
framework also naturally supports heterogeneous computing lyratitey the parallel
computing power of multi-core CPUs, GPUs as well as other tgfekardware
accelerators (e.g., Intel Xeon Phi devf¢ebat share a same address space. For example,
in the context of zonal statistics, the vector of the cell-Mi#s derived from spatial
filtering can serve as a parallel workload queue to distribudekloads to different
processing units as shown in the top-right part of Fig. 1 whereasisignments are
illustrated using solid lines with a diamond ending style. We |#agenteresting study
to future work.

® http://www.intel.com/content/www/us/en/processresh/xeon-phi-detail. html



3.2 Scalable Point Indexing on GPUs using Batched Processing

As reported in (Zhang et al 2014), the Flatly Structured GleddiSG) approach
is much simpler than the Multi-Level Quadrant (MLQ) based appraaqgboint indexing
from both a design and implementation perspective. The load balanciragigeaof the
MLQ approach is not instrumental for large scale data to achieve good perferwiz
the number of (point quadrants, polygon) pairs after spatial fifesirmuch larger than
the number of processing units. The multi-core CPU implementaiging 8 Intel Xeon
E5405 CPU cores) of the FSG approach actually has achieved mterthpeetormance
than the MLQ approach on GPUs (using Nvidia Quadro 6000) despite tHaPthean
achieve a much higher sorting rate which is a key to the penaenaf both MLQ and
FSG implementations. The results suggest that the FSG apjsaagierior to the MLQ
approach for spatially joining large scale datasets. Theretbee,FSG approach is
adopted in this study for point indexing.

While it is interesting to implement the FSG approach on GRWs&s a much
larger memory footprint which limits the number of species occuer@omt records to
about 100 million when each record has a length of 12 bytes, i.e.e4lbogt for x/y
coordinate and 4 byte integer for taxon identifier. This is alsadhson that we were
forced to index 170 million taxi trip records on multi-core CPUsegsrted in (Zhang et
al 2014). The scalability issue of the existing point indexing techriiggemotivated us
to develop a more scalable parallel design for the FSG approachls) GiRce the total
data volume of the longitude/latitude coordinates is about 4.2 GB for the @B m
point data records which is well below the CPU memory capatigyreasonably up-to-
date workstation, we assume CPU has sufficient memory to holawhpaint data and
intermediate results.

Given a point dataset with N records with each record includes @udegnd
latitude pair (optionally with some other attributes such as tadentifier in the GBIF
dataset), the dataset is stored as an array of record€RUamemory block which is
mapped by GPU through the UVA mechanism (Kirk and Hsu 2012). Both theaG&U
the GPU in a computing node can access the memory block, not only fornatgxing
but also for point-in-polygon test in spatial refinement. When GPUssacthe mapped
memory in CPUs, as illustrated at the top of Fig. 1, theyeaqeired to transfer data in
small units from the mapped memory in CPUs to their processar\¢led the data
through a PCI-E bus dynamically. This is quite different fromdiwventional way that
transfers data from CPUs to GPUs in large chunks beforeatteeprocessed by GPUs.
Clearly the flexibility of being able to utilize larger CRhkemory is at the cost of lower
efficiency in data transfer, in a way very similar to vittoemory in traditional CPU
computing and buffer management in relational database systems.

One might attempt to apply the FSG design to GPU mapped meomnpimize
the effort of reimplementation which can be costly. However,whlisnot work for two
reasons. First, while the inputs and outputs of the FSG design canPisen@pped
memory, the implementations of many parallel primitives useithé design (including
sort in Thrust which is used by FSG) may use temporal GPU mentorgge for
intermediate results which is typically proportional to the inpaessi The required
temporal memory amounts are likely to exceed GPU mema@scids for large scale
data and the process will fail due to out of memory. For exaniptéeNvidia Quadro
6000 GPU can only sort about 200 million records (including longitudedatiand
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taxon identifier) which is well below our goal for a scalablaisoh. Second, even if
little intermediate results are produced and the GPU is foge the memory capacity
problem by putting both inputs and outputs in GPU mapped memory in CPEssiec
accesses to the mapped host memory in an uncoordinated manneigmégantly
degrade performance and make GPU implementations unattractivexdrple, sorting
a subset of 125 million GBIF point data records in a Quadro 6000 GPU msipged
memory needs 23.867 seconds while only 0.683 second is required if the sodiome
completely in GPU memory. This represents a 34.7X slowdown whicbtisurprising,
given that the underlying radix sort algorithm requires significamount of data
movements and PCI-E bus bandwidths are about 1-2 orders of magnduge #ian
GPU memory bandwidths.
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Fig. 2 Parallel Design for Indexing Point Data in Chunks

Our solution is to partition the input point data array into chunks andgsdce
chunks in batches. While we refer to (Zhang et al 2014) for treletbtdesign of the
original (i.e., single-chunk) FSG algorithm and a multi-cordJdmRplementation for
reference, we next briefly repeat the key ideas of thegaldstfore presenting design
details of the multi-chunk FSG algorithm and its GPU implentemtdor the purpose of
being self-contained. As discussed earlier, the FSG algorhoint indexing actually
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is much simpler than the MLQ algorithm presented in (Zhang2@Xta) and requires a
simple chaining of only four parallel primitives, i.eansform, sort, reduce (by key) and
scan. The transform primitive derives a cell identifier for each pdased on its
(longitude, latitude) pair. Given a grid cell size, row-majoreoirty is used to compute
the cell identifier for easy calculation. The next step isax the points based on their
cell identifiers to put all points that fall within a grid celbse to each other. Clearly,
points within a grid cell are not sorted for performance concernsedéce (by key)
primitive is used to count the numbers of points within all grid cellsich are
subsequently used to compute the positions of the first points among iite that are
within the corresponding grid cells. As shown in the middle part of Figjv@n an input
arrayPntRec, four arrays will be in the output list. In addition to the soRatRec array,
we also hav@ntCID that stores grid cell identifierBntLen array that stores the numbers
of points in cells andntPos array that stores the positions of first points among the
points in a grid cell in the sorté&thtRec array.

When there are multiple chunks in a point data array, thanks to oupatatéel
design, each chunk can be processed independently, either using @&s§thiglehere the
chunks are processed sequentially, or using multiple GPUs wherehtinks are
processed in parallel, or in a way that combines the two option&Mds with smaller
memory capacities, we can simply decrease batch sizesaledthe technique scalable.
The performance will degrade gracefully for very small GP&hory capacities but the
tradeoff can be justified in this case. The design is sirtoldhe mapping phase in the
MapReduce computing model (Dean and Ghemawat 2010) in the sense thatazkunks
processed independently and no communications are required in this step.

While it seems that we will need to rearrange the sorted poiay in multiple
chunks to proceed to the spatial filtering step, our design asas data movements
(which could be expensive for hundreds of millions records) by only matimuide
three arrays at the grid cell level, i.entCID, PntLen and PntPos arrays. Since the
number of the grid cells for indexing is typically much smakemntthe number of point
record, the costs for manipulating such arrays are much lowes.igtthe key to the
scalability and efficiency of our new design for indexing pointaddihe steps are
illustrated in the lower part of Fig. 2. First of all, theatatumber of points in each chunk
is collected for all chunks and stored in tleen array. Similar to computing tHentPos
array from thePntLen array by using acan (prefix-sum) primitive, we can compute the
CPos array from theCLen array. Note that the lengths of t@ken andCPos arrays are
the same as the number of chunks which are typically very small and the cbststd
are negligible. Next, the value of ea€lifos array element is added back to all the
elements in théPntPos array within each chunk (bottom part of Fig. 2), so that the
elements in théntPos array correctly index points in grid cells after concategathe
PntRec, PntLen and PntPos arrays in all chunks. Again, since all the steps are
implemented using parallel primitives, the design is highly datallpaand can be
implemented on top of parallel libraries that support these fundanpentatives in a
straightforward manner. Experiments on the GBIF pint data showsati@ut 1/3 of the
total processing time is spent on transferring data betw&érs@nd CPUs while the rest
2/3 of the time is spent on sorting among all batches. The runtimdee akst steps
(including transform, reduce and scans) are relatively insignificant. Given that GPUs
have excellent performance on sorting (Merrill and Grimshaw, 2Qh& new design,
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termed as Multi-Chunked FSG for point indexing, is expected to be noscaligble but
also highly efficient.

Comparing with our previous design on point indexing that requires all gaiat
fit in GPU memory capacity, our new design not only solves theamalisty scalability
problem but also has the following two advantages that are worthmgfioning. First,
the inputs and outputs are stored in GPU mapped memory in CPUsuartiéhmemory
pressure on GPUs is significantly reduced. The reduced memoryemaeguir allows a
larger chunk size in a batch and/or supports more sophisticated prgdbsginequires
more temporal GPU memory. Second, while not implemented in thig &sdhe end-
to-end performance of point indexing is already satisfactorthtoGBIF point data), it is
possible to put the task of processing each batch into a GPthstcethat data transfer
latency between CPUs and GPUs can be hidden by computing in mG@iplestreams
on a single GPU device (Kirk and Hsu 2012). Based on our experinteatbatched
GPU implementation is able to index the 375+ million species occerrecords with 3
batches in about 4.5 seconds. The performance amounts to an impressive throtighput
83 million records (about 1 GB data volume in total) per second.

3.3 Extending Spatial Filtering to Support Chunked Point
Indexing

The binary search based spatial filtering design and its GP&dibas
implementation (Zhang and You 2012a, Zhang et al 2014) does not allowadeglcell
identifiers which means that the technique will not work for thetinsblunked point
indices using the technique presented in Section 3.2. For a grid cell appdamuinks,
there will beK duplicated cell identifiers in thentCID array. We next present details on
how binary search based spatial filtering can be extended to wodkidl-file indexed
point data in multiple chunks.

First, the PntLen and PntPos arrays derived from Multi-Chunked FSG point
indexing approach are sorted by using BmCID array as keys to make the same cell
identifiers appear next to each other in BreCID array. Note that the positions of the
elements in th&ntLen andPntPos arrays are changed according to the key-value based
sorting. Next, as shown in Fig. 3, for each of the element in tli2 diay, our spatial
filtering algorithm binary searches tRatCID array by using the corresponding element
in the MC array as the key. Recall that the MID array and the M@yastore the
correspondences between polygon MBB identifiers and cell identifienasterized
polygon MBBs (Zhang et al 2014). The key extension is to matchdagitifiers in the
MC array and the sorted PntCID array by using three parallighitives, i.e.,
binary search, lower_bound and upper_bound, as a bundle for binary searches. While
the lower_bound and upper_bound primitives returns the first and the last positions
where values could be inserted without violating the ordering during bseanching,
the binary_search primitive returns whether the values being searched are ooaia
the array being searched. The resulting position vectors fimmer bound and
upper_bound primitives need to be filtered out by the resulting boolean veatar the
binary _search primitive to eliminate unsuccessful searches while keepingupper
bounds and lower bounds of successful searches. Note that it is notanet¢esgse
upper_bound primitive if cell identifiers in thé>ntCID array are guaranteed to be unique,
which is the case if the point dataset is not chunked. This idlyxhe original FSG



13

design for spatial filtering presented in (Zhang et al 2014). Igjnf@r each matched
(MIDj, lower_bound upper_boundl triple, we can use MIDand lower_boundand
upper_boundvalues to access polygon vertex arrays and point coordinates asay
following. Assuming arrays that store vertex positions and the nundfep®lygon
vertices arePlyPos and PlyLen, respectively, then the polygon vertices will be at the
position PlyPog[idx(MID;)] .. PlyPog[idx(MID;)+1]-1 with PlyLen[i] vertices. Function
idx(i) maps polygon identifier to an index in thé&lyPos or PlyLen array, which can be
as simple asdx(i)=i. Similarly points that fall within the grid cell whose iderdifiis
being searched are distributed upper_bound; - lower_bound, +1 blocks. Note that
blocks are combinations of chunks and grid cells, i.e., a bock of poatsithin a grid
cell in a chunk. For eacp= lower _bound, . upper_bound;, the starting position and
number of points in these blocks are recorde@rnitiPog[j] and PntLen[j], respectively.
They can be used to access t@Rec array to retrieve point coordinates or other
information for further processing. While supporting multiple data pominks has
added significant complexity to our original spatial filteringida, it eliminate the need
to actually sort point records in multiple chunks as it would have teee for a single
chunk. We note that data movements are typically expensive in vasanisg
implementations on both CPUs and GPUs and should be avoided as mucsilae s
large scale data.

To better illustrate our extended design, an example is provided.ir3.Hin the
top part of the figure, after binary searching each cell identif theMC array from the
PntCID array, while there are two matched cell identifiers in EmCID array (at
position 1 and 2 and shaded with light and dark gray color, respettarelyaired with
cell identifier 2 in theMC array, there is only one match for cell identifiers 6 and 8,
respectively, and there are no match for cell identifiers 5, 4 as khown in the
bottom part of Fig. 3, the three points in the first chunk and the four poittie second
chunk in grid cell #2 can be accessed by combining the correspondingnédeim the
PntPos and thePntLen arrays. The point data records are colored in light and dark gray in
a same way as the two matched elements irPth€lD, Pntlen and PntPos arrays are
colored.

[tfs1]2]1]2]2][2]2][2] MID -- MID
PntCID
[2]6]5] |4|1|18| | MC :‘“ Lower bound index
\\\\ \\\\ Binary Searc E 3 Upper bound index
\ hlS v E ............. Lower bound binary search
| | 2 4 | | 6 | 8 | | PniCID (key) ! . — — —Upper bound binary search
4 A A
Key-value sorted| PntLen(value) [ [ 3] 4] | [ ]
PntPos (value)| J2J14] [ [ [ [ ]
OO OO0 DOOO OO dEmmm OO0 OO0 000000000000 e,
NN A 55 5§

Fig. 3 Data Parallel Design for Spatial Filtering with Chunked Point index
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3.4 Parallel Cell-in-Polygon Test for Optimization

The tradeoffs between spatial filtering and spatial refimgrmespatial joins are
well studied in spatial databases (Jacox and Samet 2007). In oundpBaach, clearly,
using a high resolution grid for point/polygon indexing will increase aheunt of
workload in indexing and spatial filtering but is likely to reduoe workload in the final
spatial refinement phase. However, for heavily clustered regiomsjumbers of points
that fall within some grid cells are likely to be large. Asswgrthat there ar& points in
a grid cell, directly applying the point-in-polygon test would regu@(K) tests, each
requires OY) operations wher¥ is the number of vertices in the polygon to be tested.
WhenK is large in such grid cells, directly performing point-in-polygast tan be very
expensive.

By observing that if the grid cell is completely inside or outside a polygon, we can
directly assign results to all points in the grid cell withaguiring any point-in-polygon
test. Although a cell-in-polygon test is generally more expenbiae & cell-in-polygon
test, whenK is large, the optimization is likely to be beneficial. From abpbilistic
perspective, if the probability that the grid cell is completsithin or outside of a
polygon is high, the overall computing cost can be significantly deseceby performing
a single cell-in-polygon test instead of multiple point-in-polyliests. We consider this
optimization technique as part of spatial filtering and refasiadvanced spatial filtering
in this study.

Several well-established computational geometry principles can be usstl ttoet
relationships between a rectangle (including a squared grid aed) a polygon.
Motivated by the procedure used in (Wang et al 2012), we have weséalldwing two
steps to determine whether a grid cell intersects, is withjnis @utside of a polygon.
Note that multi-rings are allowed in our technique by sepayatngs with the origin of
the underlying coordinate system. Our technique extends the workaing(ét al 2012)
that only supports single-ring polygons and the extension is necessayWWF
ecoregion data as polygons in this dataset are complex andaihdmgm have multiple
rings. As shown in Fig 4A, the first step for cell-in-polygon iedb check whether any
of the grid cell's four edges intersect with any of the gayedges, or, whether any of
the polygon's vertices are within the cell, to determine whdtteegrid cell intersects
with the polygon. If the grid cell does not intersect with the polygoen tit is either
completely inside (Fig. 4B) or completely outside the polygon (H@). We
subsequently test whether any of the cell's corners are withipolygon. If the test is
true then the grid cell is inside the polygon otherwise the gridi€ outside of the

polygon.

(C) Outside

(A) Intersec (B) Inside

Fig. 4 Three Cases in Cell-in-Polygon Tests
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Assuming that there arl+1 polygon vertices, then the total number of edge
intersection tests between the 4 cell edges and the N polygors isdiil and the total
number of vertex-in-cell test i+1. Our GPU implementation requires ab&i=25
arithmetic operations for edge intersection test and about C2=Rfhetit operations for
vertex-in-cell test. As such, the total number of operations djfior a cell-in-polygon
test is around (421+C2)*N. In contrast, a single point-in-polygon test requires about
C2*N operations while testing points requiresC2*K*N operations. Assuming the
probability of the grid cell that is completely within or outswfethe polygon i, then
the expected number of operations for applying the optimization techrigue
(4*C1+C2)*N*p+ C2*K*N* (1-p). The simple cost model allows us to further explore the
performance of the optimization technique with respebt, { C1 andC2.

First of all, in order for the optimization technique to be berafithe number of
operations with the optimization should be less than the number of opsratithout the
optimization, i.e., (4*C1+C2)*N*p+ C2*K*N*(1-p)<C2*K*N. A simple derivation
shows that the necessary condition K&4*C1/C2+1. The condition, which is
surprisingly simple and is irrelevant pois fairly easy to achieve. This is becauseCas
andC2 are comparable, the condition can be further reduc&a%o which should hold
for most grid cells. Even €1 is much larger tha@2 for some hardware instruction sets,
there is a high chance thatis still bounded by a relatively small number in order for the
condition to hold. Second, we would like to compute the speedup due to theaftim
and see how it changes with p, C1 and C2. Further assumin@2=w*C1, the speedup
can be simply calculated as

S- C2*K* N
(4*C1+C2)* N*p+C2*K*N *(1-p)
_ K*w*C1* N
- 4*Cl+w*CL)*N*p+w *C1*K* N *(1-p)
K*w
(4+w)*p+K*w*(1-p)

Although unlikely in real geospatial data, whers close to 1, i.e., almost all grid
cells completely fall within polygons, we can see thhecomes proportional ¥ which
indicates a linear speedup wikh By settingw=20/25=0.8 and plugging=0.85 and
K=364 (measured values, see Section 4.4), the theoretical siisdaipout 6.1X, which
agrees with the experiment results (6.4X on GPUs at the gril18yevery well on an
average basis at the dataset level (Section 4.4). Whemnelatively large, th&*w*(1-p)
part will dominate the denominator in the cost model. As such, the lopeid ofS
becomess=1/(14) which is much easier to estimate. In this simplified c&3a¢creases
with p as expected. When pluggipg0.85,S becomes 6.7 which is still very close to the
experiment results reported in Section 4.4. We expect that asdHewgl increases and
grid cells become smallegp,will increase whileK will decrease. This makes it interesting
to choose a grid level to maximize performance speedup.
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4. Experiments

Our primary goal in this study is to develop high-performance computing tools for
zonal statistics of large-scale species occurrence dataexperiments in this section
thus focus on the GBIF species occurrence dataset, although #ngnsdeand
implementations can be extended to other types of data and additeospagal
operations. We will first provide a description of the datasetslanéxperiment settings
in Section 4.1. As it is impossible to report the experiment resitil&dl the proposed
parallel techniques due to space limit, we will be focusing on thelbperformance in
Section 4.2, the performance of the cell-in-polygon optimization techmagedvanced
spatial filtering in Section4.3 and comparisons with serial imphatens using
traditional techniques in Section 4.4.

4.1 Data and Experiment Setting

The GBIF global species occurrence dataset has 375+ milliorespmgurrences
records as of 08/02/2012. Our preprocessing results have shown tHatabet contains
1,487,496 species, 168,280 genus, 1,142 families in 262 classes, 109 phyla and 9
kingdoms. The majority (95.7%) of the records is related to aniamasplants. A large
portion (74.1%) is geo-referenced (with latitude/longitude coordinatesifferent
accuracy levels) and can be associated with terrestrialegoans. The WWF ecoregion
dataset comes in ESRI shapefile format and has 14,458 polygons, 16,83&nthgs
4,028,622 points. The ecoregion data volume is relatively small when omonpa
today's CPU memory capacities. However, the raw GBIF specmsrence data we
received is in the form of a relational database dump with 3o and has a total data
volume of 180 GB. Many of these columns use the variable chatggeewhich makes
random accesses very difficult. We have extracted individual ecauamd converted
them into binary format for further processing. In this studypvimarily focus on three
attributes, i.e., latitude, longitude and taxon identifier. As the ttdgd volume of the
three attributes is less than 1/3 of the CPU memory in our expetrisystem (16 GB),
hereafter we assume that all data involved are memory-resident.

We have empirically set the data grid resolution to 1 arc-mimapier¢ximately 2
kilometers around the equator) primarily because this mighbddnest resolution for
global biodiversity studies and it may already be beyond the agcofassome species
occurrence records. The width and height of the resulting grid are02ar&D 10,800,
respectively. The gridded coordinates of a point location can hg stsied as a 2-byte
short integer along both longitude and latitude dimensions. As the indegxidg
resolutions are allowed to be coarser than the data grid resolutidrgweechosen three
grid resolutions for spatial indexing, i.e*2" for n=13, 14 and 15, to investigate how
various performance measurements change with indexing grid resolutions.

All experiments are performed on a Dell Precision T5400 workstatoipped
with 16 GB memory and a 500 GB 7200 RPM hard drive. The workstationluss
guad-core Intel E5405 CPUs (8 cores in total) running at 2.00 GHZ an®bMBhL2
cache per core pair, 128 KB L1 cache per core and 12.8 GB/s méwamwdyidth per
CPU. The workstation is also equipped with an Nvidia Quadra 6000 GPUedgitft
448 CUDA cores (1.15 GHz), 6 GB GDDR5 memory and 144 GB/s memory tdthdwi
The sustainable disk 1/0O speed is about 100 MB/s while the theobretita transfer
speed between the CPU and the GPU is 8 GB/s through PCI-E. €hantesoftware
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installed on the workstation are Nvidia CDUA SDK 5.0 (with Thrustally 1.6), g++
4.6.3 and Intel TBB 4.1. All programs, including the two serial implgatens using
traditional technologies (Section 4.3), are optimized with -O3 during conopitator fair
comparisons.

4.2 Overall Experiment results

The runtimes of the four components in our GPU-based zonal statstesque,
i.e., point indexing, polygon MBB indexing, spatial filtering and spatedinement,
under the three grid resolutions are plotted in Fig. 5. We do not inphiggon MBB
indexing runtimes as they are negligible when compared to ofB&rs197 and 787
milliseconds for the three grid cell levels). Note that tpatial filtering runtimes are
measured with the optimization technique described in Section 3.4. The rsmnpa
with non-optimized implementations are discussed separately in Section 4.3.

From Fig. 5 we can see that, the runtimes of spatial ifileand spatial
refinement dominate the overall runtimes under all the three gswmlutions. From an
application perspective, the most significant conclusion we can dram the
experiments is that, zonal statistics on the 375+ million speciesrrences over the 15
thousand complex ecoregion polygons based on point-in-polygon test spatiahsslip
can be completed on a commodity workstation equipped with a singled®Rté in the
order of 100 seconds.
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Fig. 5 Plots of runtimes of Point Indexing, Spatial Filtering and Spatial
Refinement on GPUs using three grid resolutions

Our data parallel designs make it relatively easy to empht the designs in
multiple parallel hardware platforms. For demonstration and cosgmapurposes, we
have also implemented the designs on multi-core CPUs. To minitmézedditional
implementation efforts, since the Thrust parallel library plsavides interfaces to Intel
Thread Building Block (TBB) library that is known to be efficient on multi-core CPUs,
we recompile our GPU-based Thrust code to use TBB and link it W88 runtime
library to utilize multi-core CPUs, in a way similar to therk reported in (Zhang et al
2014) for point-to-polyline nearest neighbor search based spatial joinsyitbutwo
exceptions. The first exception is on point indexing where we have tbahthe GNU
parallel mode librafy’is more efficient for multi-core CPU based sorting and weituse

" https://www.threadingbuildingblocks.org/
8 http://gcc.gnu.org/onlinedocs/libstdc++/manualgiiet_mode.html
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instead for fair comparisons. The second exception is related toathee CUDA
implementation of the point-in-polygon test module as reported in (ZhadgYau
2012a). Also fore fair comparisons, we have implemented the point-in-pokggdn
module using the native TBB programming model by assigningnger of (polygon,
block) pairs as a task and let a single CPU core loop througiregtioints in the polygon
for point-in-polygon test.

As expected, the GPU-based implementations are significaagtgrfthan their
peer multi-core CPU implementations with speedups ranging from 8. AX7X for the
three major components (point indexing, spatial filtering and spafimement) under
the three grid resolutions, as shown in Fig. 6. The speedups arefoigheatial filtering
and spatial refinement as they are more computing intensiveaantetter use GPU'’s
massive floating point computing power better. Please note th@tRbleperformance is
measured when all the 8 cores are fully utilized and the nmaréi-CPU implementations
have been optimized as much as possible for fair comparisons. Ots eggeke with the
rigorous performance analysis on quite a few non-geospatial berichimaLee et al
(2010) when comparing the performance of GPUs and multi-core CPUke
comparisons may also suggest that our data parallel designshtawedaigh efficiency
on both GPUs and multi-core CPUs by using parallel primitives that areipgdirfor the
respective hardware platforms. As such, they are less likelgefgend on the
programming skills of individual programmers and are more prefefatin a software
development perspective.
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Fig. 6 Plots of GPU over multi-core CPU speedups of Point Indexing, Spatial
Filtering and Spatial Refinement using three grid resolutions

After comparing with multi-core CPU implementations based on dar mhrallel
designs, we would like to comment on the relationships betweeinfijitand refinement
using different grid resolutions in our GPU-based implementation asrvalasin the
experiments before we move to experiments on the cell-in-polygoonggstizations in
the next subsection. First of all, from Fig. 5, it is easy totkatthe filtering runtimes
increase with grid resolutions while the refinement runtimes edser with grid
resolutions for both CPU and GPU implementations. This is expectedirg finer
resolution grid for filtering reduces false positives and requee®r point-in-polygon
tests in the refinement phase. Since cell-in-polygon test is used ing¢hadilphase as an
optimization technique, which is also computation intensive, the runtimteg filtering
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phase are comparable with the runtimes in the refinement phéaseighitthe computing
workload for the basic spatial filtering design cam be quite l{ghiang et al 2014).
While the runtime of spatial filtering is about 1/5 of the runtiofespatial refinement at
the grid level 13, the ratio quickly increases to 1.6 at the gviel 5. The totals of the
filtering and refinement runtimes (and hence the end-to-end runtan@sninimized at
the grid level 14. The results indicate that choosing proper gril ls important in

improving the system performance and we leave a more comprehgnvasggation for

future work.

4.3 Experiments on Cell-in-Polygon Test based Optimization

Recall that when pairing grid cells for points with grallg for polygon MBBs in
the cell-in-polygon test based optimization for advanced spatiatitidf (Section 3.3),
there are three cases for non-empty point grid cells. Thecéis/ is that point grid cells
are not in the polygons corresponding to the paired MBBs and the naméech grid
cells is measured as B=Cell-Outside. The second case is that point cells complete fall
within polygons and the number is measured adl-@ell-Inside. The rest of the grid
cells belong to the third category whose number is measuré&tkNsCell-Intersect.
Subsequently the total numbers of points that fall within these gifslaan be computed
by summing up all the points in the respective types of grid aetlsare referred as R=
Point-Outside, B=N-Point-Inside and D=N-Point-Intersect, respectively. The numbers of
grid cells and the numbers of points are plotted in Fig. 7. Clear; @ I-Intersect is
much smaller than both=N-Cell-Inside andE=N-Cell-Outside (left of Fig. 7 andD=N-
Point-Intersect is much smaller thaB=N-Point-Inside and F=N-Point-Outside (right of
Fig. 7). This is the foundation of our optimization technique and will be furtlsaudsed
from a probabilistic perspective shortly. An interesting obseymats that, species
occurrences that fall in the first category of grids (outsade)mostly for non-terrestrial
species. While the numbers of occurrences are relatively grdil-Point-Outside), i.e.
the species distributions in these grid cells are sparse, the number of dumdigiE-N-
Cdl-Outside) is large. Fortunately, we can simply discard such grid calid the
associated species occurrence records after the advanced fdpatiiad) as they are
deemed not to be associated with any polygons representing igrexsiregions that are
paired with as a result of the basic spatial filtering.

To support the analysis based on the cost model and help validate the
optimization technique, we have also computedkhendp values (defined in Section
3.4) at the three levels as following. At the dataset lé¢ean be intuitively defined as
the total number of points (i.e., NP=B+D+F) divided by the total nurobeells (i.e.,
NC=A+C+E), where the values A through F are plotted in FigiV&.can comput
based on either cells (i.g;Cell=(A+C)/NP) or points (i.e.p-Point=(B+D)/NP). When
points are uniformly distributed, the two measurements should be cloaever, this is
not the case for the GBIF data as the numbers of species oceuremmrds vary
significantly across the world due to various ecological and gpbiga reasons and
human factors in collecting the data. From the left plot in Fig. é,can see tha
decreases from 364 at the level 13 to 112 at the level 15, which igteckp@/hilep-Cell
values are larger thgmPoint values, all the ratios are above 0.8 as shown in the right
part of Fig. 8. This clearly indicates the effectiveness ofafhiemization technique as
only points in the "intersect" cells need to be actually testateéwoints in the "inside"
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and "outside" cells can be assigned polygon identifiers directlysandly discarded,
respectively.
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Fig. 7 Plots of numbers of grid cells (left) and numbers of points (right) in grid
cells that are inside, intersect and outside of paired polygons at three gndioasol
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The left part of Fig. 9 plots the total runtimes of spatiaéfihg on GPUs with
and without the optimization technique for advanced spatial filtefiiogvalidate the
effectiveness of the cost model presented in Section 3.4, we halvbaike-Cell andp-
Point agp values and pluggeld values (Fig. 8) into the cost model and term the resulting
speedups aS-Cell andS-Point (v has been set to 0.8 as explained in Section 3.4). From
the results we can see that both the computed and measured speedsse ias the
grids get finer. The measured speedup due to the optimization techsigbeled a&
GPU and they are plotted in the right part of Fig. 9. We caths¢&GPU agrees with
SPoint pretty well althouglS-Cell is generally over estimated. The results clearly
demonstrate the effectiveness of our cost model presented iornSée by using point
level statistics. This can be useful for guiding query optinoratiand we will explore it
further in our future work.
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Fig. 9 Plots of total runtimes of optimized and non-optimized GPU
implementations (left) and their relative speedups (right) at thiréeegpolutions

4.4 Comparisons with alternatives using traditional technologies

It is not our intention to directly compare our memory-resident inelgsdata
parallel technique with serial implementations using traditiapedspatial software
packages that are designed for uniprocessors and disk-residemsy$his is because
the two techniques are developed for different applications targetingifferent
hardware. Nevertheless, we report performance comparisons with Swvial
implementations using libspatialindefor R-Tree based polygon indexing and GBDAL
(through GEOS) for point-in-polygon test for reference purposes. The deommcan
also help understand the level of performance that our technique haseddhie to data
parallel designs and optimized implementations on GPUs.

The major difference between the two serial implementat®onbkat the second
implementation incorporates an optimization heuristic in hope to imploveoverall
performance while the first serial implementation simply qgueryolygon MBBs that
intersect with each and every point before performing point-in-polygirbegween the
point and the polygons whose MBBs intersect with the querying point. Ghagn
guerying the polygon R-Tree for 375+ million points can be expensive wheersing
the polygon R-Tree individually, the heuristic is to locate allMiBBs in the polygon R-
Tree leaf nodes that intersect with grid cells of groups of poihtsevonly a single R-
Tree query is needed for the groups of points within the grics.céhe second
implementation clearly requires grid-based indexing of points bupatamtially save R-
Tree query time as the number of accesses to R-Tree nald® significantly reduced
through point grouping. Although it is possible to use R-Tree to index pgoyrteating
each point as a degenerated MBB, the high index construction cdsthesto decide to
either not index the point data (implementation 1) or re-use twtseof our grid file
based indexing (implementation 2).

We believe the first serial implementation represents aomebty efficient
implementation by apply spatial filtering before refinemest a typically trained
geospatial programmer would do. We also expect the secondisgli@mentation to be

® http://libspatialindex.github.io/
10 http://www.gdal.org/
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more efficient by incorporating the optimization heuristic. Hogvethe results are quite
the opposite as detailed below. The code for the two serial implenogistand the three
subsets of point data are publically available oftiaed we encourage interested readers
to cross-examine the implementations, validate the experimenttsreand make
independent comparisons.

First of all, neither implementation is as efficient as lvewe expected. It takes
18.77 hours to process a subset of approximately 10 million point recordsawit
throughput in the order of 139 points per second. Additional experiments using tw
smaller subsets of species with 279,808 and 746,302 points result im penf@mance,
i.e., 138 points per second for both smaller datasets. By usingaa ér&apolation, it
would take 600+ hours to complete the 375 million points using the serial
implementations, although the implementation does exhibit excaltatability and is
suitable for MapReduce/Hadoop systems. However, the performanck mrdéers of
magnitude slower (138 points per second) than our GPU based impleme(@aton
million points in about 100 seconds) which is inferior from both a usakihtya finical
perspective.

Second, the experiments show that the optimization heuristic empioysn
second serial implementation is largely ineffective. While suesd accesses to the
polygon R-Tree has been dramatically reduced by the optimizationytbimes do not
get improved noticeably. Further investigations have revealed thpolygon R-Tree is
fairly small (a few megabytes) and can be completely chanenemory which makes
reducing accesses to R-Tree insignificant as in disk-restdesets. Since querying cells
boundaries against the polygon R-Tree will inevitably cause natse positives when
compared with directly querying points and point-in-polygon test wtsamuch more
expensive than accessing memory-resident R-Tree nodes, theibeaes not work as
expected. Since point data are also made memory resident in batingelementations,
we can conclude that the low performance of the serial impletmrgais largely
unrelated to disk 1/Os in our experiments.

While we are still in the process of fully understanding the dr8ers of
magnitude of performance differences, we believe that excessinamory
allocation/deallocation to accommodate for low memory capacitoeary overheads for
generality (e.g., object-oriented abstractions) and mismatchebeetiraditional data
structures and algorithms with modern hardware architectures daape unfriendliness
in depth-first tree traversals) are among the factorsctirdtibute to the low performance
of the two serial implementations by using traditional geospatial technigutisermore,
it is interesting to observe that, even assuming that our nau#i-€CPU-based
implementations have achieved perfect scalability (8X for 8 Lotles performance of
the corresponding serial implementations of our data parallel degnswultiple the
number of cores with the measured runtimes) are still about tindees of magnitude
faster than using traditional technologies. This may sugbasttiere is a huge room to
improve traditional spatial data processing technologies by adagdiagparallel designs
and hardware architecture aware implementations. We leave theyesting
interdisciplinary research topic for our future work.

M http://www-cs.ccny.cuny.edu/~jzhang/zs_gbif.html.
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5 Summary and Conclusions

In this study, we have significantly extended our previous techniquesifarin-
polygon test based spatial joins on GPUs for large scale dag¢ainfegrated scalable
designs and their GPU implementations have successfully pedaromal statistics on
375+ million global species occurrence records over 15 thousand comptegiens in
facilitating exploring global biodiversity explorations. First, ilave developed a
scalable data parallel framework by using GPU mapped mem&@Us for large-scale
data that may exceed GPU memory capacity. Second, we have éxtdeded our point
data indexing and binary search based spatial filtering dessgascommodate multi-
chunked point data indexing while achieving much higher efficiencynwdoenpared
with using mapped memory naively. Third, the cell-in-polygon test bapgthization
technique for advanced spatial filtering is highly effective authieves 6.4-8.2x
speedups. The measured speedups match with our cost model very wielbpdns the
possibility for predictive optimization. The combined improvements hadeced the
total runtime to about 100 seconds using a single GPU device. Thenparta is
several orders of magnitude faster than two reference serm@émentations using
traditional open source geospatial techniques. The realized hifghrp@nce on top of
scalable designs is not only significant for practical appdina in exploring increasingly
larger global biodiversity data but also suggests that theteugeerooms to improve the
performance of traditional geospatial technologies on modern paralleldrardw

For future work, first of all, we would like to integrate our tecjus with data
management and visualization frontends for practical applicationen&esince the
scalable data parallel framework is also applicable to offpestof spatial processing, it
is thus interesting to examine its scalability in additional iappbns with larger scale
data. For example, spatially and temporally associating 2.7 bllé8& points deposited
to Openstreetmap Plangtwith global road networks by using the point-to-polyline
nearest neighbor search based spatial joins (Zhang et al 2014). Bhiscassed in
Section 3.1, our new data parallel framework allows integratei-oark CPUs and
multi-GPUs as well as other types of hardware acceler#ttatsshare a same address
space to synergistically process large scale datadiyrérsg chunks of array elements to
multiple processors in a straightforward manner. We plan to iaaerthe design which
essentially allows heterogeneous computing and implement it loybrad CPU-GPU
system for performance evaluation using the GBIF data and teas@petmap Planet
GPS location data. Finally, while it is certainly a challeggiask that requires significant
effort, we plan to investigate the mismatches between the desigrimplementations of
traditional geospatial processing software packages and the manatyen of parallel
hardware in a systematic manner. The findings may not only teadnproved
performance but also may provide new insights on how to make bstéef commodity
parallel hardware and enable larger scale geospatial processingghigh éificiency and
better scalability.
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