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ABSTRACT 
R-trees are popular spatial indexing techniques that have been 
widely used in many geospatial applications. The increasingly 
available Graphics Processing Units (GPUs) for general 
computing have attracted considerable research interests in 
applying the massive data parallel technologies to index and 
query geospatial data based on R-trees. In this paper, we 
investigate on the potential of accelerating both R-tree bulk 
loading construction and R-tree based spatial window query on 
GPUs.  Experiments show that our proposed GPU-based parallel 
query processing implementation achieves 6x~18x speedup over 
serial CPU implementations and is 2X faster on average over 8-
core CPU implementation using OpenMP. Our experiments also 
show that the speedups are significantly affected by R-tree 
qualities which warrants further investigations. Additional 
comparisons between the GPU R-tree implementation and a GPU 
single-level grid-file based indexing approach are performed to 
understand the relative advantages and disadvantages of the two 
popular spatial indexing approaches on GPUs.  
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1. Introduction 
 R-trees [1-3] are well known spatial indexing techniques and 
have been widely adopted in many applications for indexing 2-D 
or higher dimensional data. Several parallel R-Tree construction 
and query processing algorithms [4-9] have been proposed. While 
early research works mostly focused on shared-nothing computer 
clusters [4-8], a few recent works (e.g., [9]) have implemented R-
Tree based construction and query processing on GPUs based on 
the General Purpose computing on GPUs (GPGPU) technologies.  
Modern GPU architectures closely resemble supercomputers as 
both implement the Primary Parallel Random Access Machine 
(PRAM1) characteristic of utilizing a very large number of threads 
with uniform memory latency. Compared to modern CPUs, GPU 
devices usually have larger numbers of processing cores, greater 
memory bandwidth and higher computing power with more 
affordable prices. For example, the Nvidia GTX 690 GPUs2 has 
more than 3,000 processing cores, nearly 400 GB/s bandwidth, 
nearly 6 TFLOPS/s and can be purchased from the market around 
$1,000. As many commodity desktop computers have already 

been equipped with GPU devices that are capable of general 
computing, it is desirable to use GPUs to accelerate geospatial 
computing in general and R-based spatial data management in 
particular. Furthermore, GPUs have been extensively used to 
accelerating more computing intensive applications, such as 
nearest neighbor queries in databases and information retrieval 
and ray-tracing in computer graphics. Efficient indexing 
structures such as R-Trees are promising in speeding up the 
computing on GPUs are practically useful. As it is still quite 
expensive to transfer data between CPUs and GPUs through PCI-
E buses (limited to 4 GB/s on PCI-E 2 devices), being able to 
directly construct and query R-Trees on GPUs to avoid or reduce 
data transfer overheads is beneficial, even if the speedups of index 
construction and query processing themselves are not significant 
from a practical perspective.  
Towards this end, we have explored different design strategies on 
R-tree construction and query processing on GPUs and evaluated 
the performances using real datasets. Compared with the work 
reported in [9] that is most related to our work, in addition to the 
Breadth-First Search (BFS) tree traversal based query processing, 
we have also implemented the Depth-First Search (DFS) tree 
traversal based query processing which leads to a different 
overflow handling mechanism with certain advantages. While the 
R-Tree packing based bulk loading [10, 11] has been 
implemented in [9], the packed R-Tree was not used for query 
processing in [9]. In contrast, we have compared the performance 
of query processing using both bulk loaded R-Trees and 
dynamically generated R-Trees and revealed that the inferior 
quality of packed R-Trees (using different ordering) through bulk 
loading may contribute to poor performance of query processing 
on GPUs.  
While some of our designs and implementations have resulted 
significant speedups over serial CPU implementations on R-Tree 
based query processing (as reported in Section 4), we are more 
interested in understanding the relative advantages and 
disadvantages of GPU based R-Tree construction and query 
processing over CPU based ones and those over alternative 
choices (such as single-level grid-file used in our applications 
[14,15]) to provide insights and guidelines for more systematic 
and more efficient implementations. For testing purposes, we 
have experimented our implementations on the Minimum 
Bounding Boxes (MBRs) of two datasets that have 990,142 
MBRs (taxi quadrants) and 735,488 MBRs (tax lots) in the New 
York City (NYC), respectively. We report our experiment results 
and provide discussions on our findings. Our technical 
contributions in this paper can be summarized as follows: 
1) We have provided an improved R-tree node layout on GPUs 

which has lower memory footprint.  
2) We have implemented both a BFS and DFS R-Tree traversal 

based query processing designs on GPUs.  

 

 



3) We have presented a new overflow handling mechanism by 
combining BFS and DFS based query processing with 
certain advantages over [9].  

4) We have performed extensive experiments to compare the 
query processing performance among GPU-based R-Trees, 
CPU-based R-Trees and GPU-based single-level grid-file to 
support further investigations.  

The rest of this paper is organized as follows. Section 2 briefly 
introduces background and related work. Section 3 provides our 
GPU R-tree designs and implementations on GPUs, including 
bulk-loading and BFS and DFS based query processing 
approaches. Section 4 presents experiments and results. Finally 
Section 5 is the conclusion and future work discussions.   

2. Background and Related Work 
R-Tree based indexing has been extensively studied in spatial 
databases and quite a few variants have been proposed over the 
past two decades [1-3]. Although most existing R-Tree 
implementations are serial on a single CPU, there are several 
previous studies on parallel R-Tree construction and query 
processing based on different parallel hardware architectures with 
the ones based on shared-nothing clusters dominate [4-8]. In this 
study, we focus on the R-Tree based spatial indexing using 
GPGPU computing technologies that have a quite different 
parallel computing model. However, we argue that our work is 
complementary to cluster computing based distributed and 
parallel spatial query processing provided that the computing 
nodes are equipped with GPU devices which is becoming 
increasingly popular in both institutional grid computing 
resources and commercial cloud computing resources.  
The most related work to ours, which is reported in [9], has 
implemented a BFS traversal based query processing algorithm on 
modern GPUs. In addition to the differences that have been 
discussed in the introduction section, our implementations are 
also different from [9] in the following aspects. First, as discussed 
in details in Section 3.1, while both implementations use linear 
array structures to store R-Tree nodes in a BFS order and has a 
node field to indicate the array position of the first child node (in 
a way similar to the design of our GPU-based Binned Min-Max 
Quadtree BMMQ-Tree [13]), our node layout has a separate field 
to store the number of children of a R-Tree node. By using at 
most an extra byte (which can represent 256 children) in most 
cases, we are free of having to store non-exist child nodes which 
can save up to 50% of required memory for a whole R-Tree. 
Second, while the work in [9] focused on the performance of a 
single R-Tree query processing implementation, we have 
compared two different R-Tree query processing implementations 
and compared with single-level grid-file based query processing, 
all on GPUs.   
An interesting observation in [5] pointed out that space-driven 
indexes (e.g., quadtree variants) worked better than data-driven 
indexes (e.g., R-Tree variants) in a parallel context (e.g., the 
Thinking Machine CM-5 used in the experiments). However, it is 
unclear to what degree the observation still holds on modern 
GPUs which have a quite different parallel hardware architecture. 
Although we are only able to compare the R-Tree based 
implementations with a single-level grid-file based 
implementation on GPUs due to the complexities in implementing 
the PMR-quadtree used in [5] on GPUs, as quadtrees are closely 
related to grid-file, the comparison may shed some light on the 

comparisons between PMR-quadtree and R-Trees. A more 
comprehensive comparison is left for our future work.  
While the original R-Tree construction algorithms use dynamic 
insertions, several bulk loading approaches have been proposed 
[10-12, 8]. Bulk loading approaches usually adopt a packing 
technique to construct R-trees which maximize space utilization 
and reduce height of the resulting trees as much as possible. 
Packed R-tree guarantees better space utilization and query 
responses have been reported to be at least as fast as R-trees built 
from dynamic insertion [10, 11]. Bulk loading methods can be 
classified into two categories, i.e., top-down and bottom-up. 
Alborzi and Samet [12] discussed the difference between top-
down and bottom-up strategies. They claimed that the top-down 
method could potentially process queries faster but non-leaf nodes 
might be underpacked. On the other hand, R-trees constructed by 
bottom-up methods have fewer nodes than using top-down 
methods. On GPUs, Luo etc. argued that for both methods there 
are no fundamental differences as both of them were constructed 
by sorting and packing [9].   
Bulk loading is more suitable for static read-only data in OLAP3 
(Online Analytic Processing) settings in many applications. 
Assuming that MBRs of geospatial data can fit into processor 
memory (which is increasingly becoming practical due to the 
decreasing prices of memories), the cost of bulk loading is largely 
determined by in-memory sorting in the order of O(nlogn). The 
required sorting for bulk loading can be significantly accelerated 
on GPUs by utilizing the parallel computing power which makes 
GPU implementations attractive. However, for MBRs with varies 
sizes of degrees of overlapping, the qualities of constructed R-
Trees through bulk loading can be very different which may 
significantly affect query performance on both CPUs and GPUs. 
While a bulk loading algorithm has been implemented on GPUs, 
the bulk loaded R-Trees were not used for querying in [9]. In 
contrast, in this study, we compare the query performance of bulk 
loaded R-Trees using different orderings and provide discussions 
on the effects of query performance due to R-Tree qualities. A 
promising research idea is to exploit the parallel computing power 
of GPUs to improve the qualities during R-Tree bulk loading 
which is also left for future work.  
We have implemented a single-level grid-file based spatial 
indexing for the filtering phase of spatial joins and used it 
extensive in several applications [14,15,17]. As spatial filtering is 
closely related to batched spatial query, the comparison among 
the two classic spatial indexing approaches [2, 3] on GPUs are 
interesting. To be self-contained, we next briefly introduce our 
implementation of the single-level grid-file based spatial indexing 
and query processing on GPUs. The indexing approach is based 
on the decomposition of two sets of MBRs according to a uniform 
grid space whose resolution is pre-defined by users. Using the 
example shown in Fig. 1, we assume that {P1, P2} and {Q1, Q2} 
are the query MBRs and data MBRs, respectively. To find the P-
Q pairs that spatially intersect, first, Q1 and Q2 are decomposed 
onto the grid to generate two vectors, assuming they are VQQ and 
VQC, respectively. VQQ stores original identifiers of Q1 and Q2 
and VQC stores the corresponding grid cell identifiers (derived 
from x, y coordinates in the grid space) decomposed from Q1 and 
Q2. VQQ are sorted in parallel by using VQC as the key so that Q 
MBRs that overlap with a same grid cell are stored consecutively 
in VQQ. Second, P1 and P2 are decomposed in the same way and 
VPC and VPP are generated. Here VPC stores cell identifiers and 
VPP stores the original identifiers of P1 and P2. A MBR 
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decomposition kernel on GPUs is developed for the first two 
steps. Third, to query P MBRs over Q MBRs, two binary searches 
(one for lower bound search and one for upper bound search) of 
the elements in VPC over VPC are performed to match the MBRs 
stored in VPP and VQQ. Finally, duplicated pairs are removed by 
combining a parallel sort and a parallel unique operation. As all 
the involved operations except MBR decomposition, i.e., sort, 
search, unique, can be efficiently parallelized in quite a few 

parallel libraries including Thrust4 that comes with CUDA SDK, 
the single-level grid-file based spatial query can be relatively 
easily implemented on GPUs. Despite that the implementation has 
been extensively used in our previous studies, it has not been 
compared with alternative implementations. The R-Tree 
implementations reported in this paper serve as a good 
opportunity. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Example of grid based index 
 

3. GPU Based R-tree Indexing and Querying 
In this section, we present our implementations of parallel 
construction of R-Trees and query processing based on R-tree 
indexing on GPUs. We will first introduce the node layout of our 
linearized R-tree design followed by the implementation details of 
R-Tree construction using parallel bulk loading. We then focus on 
both BFS and DFS R-Tree traversal based query processing on 
GPUs and discuss some of the design and implementation 
choices.  

3.1 Node Layout of Linearized R-tree 
We use simple array based linear data structures to represent an 
R-tree. Simple linear data structures can be easily streamed 
between CPU main memory and GPU memory without 
serialization and is also cache friendly (on both CPUs and GPUs). 
In our design, each non-leaf node is represented as a tuple {MBR, 
pos, len}, where MBR is the minimum bounding box of the 
corresponding node, pos and len are first child position and 
number of children, respectively. The node layout is illustrated in 
Fig. 2. The tree nodes are sequenced into an array based on the 
DFS ordering. The decision to record only the first child node 
position instead of recording the positions of all child nodes is to 
reduce memory footprint. Since sibling nodes are stored 
sequentially, their positions can be easily calculated by adding the 
offsets back to the first child node position. In addition to memory 
efficiency, the feature is desirable on GPUs as it facilitates 
parallelization by using thread identifiers as the offsets. In this 
study, we have used R-Trees constructed from two approaches: 
bulk loading on GPUs and dynamic insertions on CPUs. The 
algorithm to fill the pos and len fields using bulk loading on 
GPUs are discussed in Section 3.2. When the R-Tree is generated 
on CPUs, the two fields can be filled easily by sequentially 
looping through R-Tree nodes through pointer chasing.  
Both Array of Structures (AoS) and Structure of Arrays (SoA) can 
be adopted to physically store R-Tree nodes. We choose SoA on 
GPUs in this study as it is more beneficial for coalesced memory 

accesses to GPU global memory. As an example, assuming, two 
threads read two consecutive R-Tree nodes from global memory. 
In AoS, two structures representing the two nodes are loaded. 
Since each structure has a size of 24 bytes (4 floats for MBR, 2 
integers for pos and len), it will result in non-coalesced global 
memory access on the current GPU architecture. On the contrary, 
SoA splits the node structures into multiple single value arrays. 
With the same example, each time a single value (4 bytes for 
either floats or integers) is read and the accesses are coalesced.  
 
 
 
 
 
 
 
 
 
 

Fig. 2 Illustration of Linear R-tree Node layout 

3.2 Parallel Bulk Loading R-Tree on GPUs 
In this study, we have chosen to adopt the bottom-up approach 
that has also been used in [9] for bulk loading R-Tree with two 
phases: sorting and packing. However, instead of using CUDA 
programming directly, our implementation is built on top of the 
parallel primitives provided by Thrust that comes with CUDA. 
SDK. The decision has significantly reduced coding complexity 
and improved portability. In the sorting stage, the original data 
(MBRs) is sorted by applying a linear ordering schema using a 
sort_by_key primitive. We note that the linear ordering schema 
will directly impact the qualities of constructed R-trees and 
subsequently impact the query performance on R-Trees [10,11]. 
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This is because spatial adjacency in 2-D may not be well 
preserved in 1-D, an issue that has been well studied in spatial 
databases [16,2,3].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Implemenation of Parallel R-tree Bulk Loading on GPUs 
with a Running Example  

In the packing phase, as shown in Fig. 3, the R-tree is constructed 
by packing MBRs bottom-up. Every d items are packed into one 
node at the upper level until the root is created. We first calculate 
the number of levels and the number of nodes at each level for 
memory allocation and addressing during the packing iteration. 
We then construct the R-tree level by level from bottom up using 
a reduce_by_key primitive. For the algorithm shown in the top of 
Fig. 3, Steps 1 to 6 calculate the number of levels and the number 
of nodes at each level. Steps 7 to 11 construct the tree level by 
level. In step 9 and 11, same keys are need to be generated every 
d items for parallel reduction purpose. This can be achieved by 
combining transform_iterator and counting_iterator primitives 
provided by Thrust. The MBRs, first child positions and numbers 
of children are evaluated from the data items at the lower levels as 
follows. For the d items with a same key, the MBR for the parent 
node is the union of MBRs of the children nodes. For each R-Tree 
node, the first child position (pos) is computed as the minimum 
sequential index of lower level nodes (by using a 
counting_iterator) and the length (len) is calculated as the sum of 
1s (by using a const_iterator set to 1) for each child node. While 
we have skipped the details of the auxiliary iterators (which are 
nonessential to understanding the implementation of the 
construction process) for the interests of space, we would like to 
note that reduce_by_key and min/sum based scans are well 
supported by parallel libraries (e.g. Thrust). A running example is 
included in bottom of Fig. 3.  

3.3 Parallel Query on R-Trees 
Different from bulk-loading, we have chosen to implement R-
Tree based queries on GPUs using CUDA for both efficiency and 
flexibilities. This is partially because the difficulties in mapping 
irregular tree-traversals that are required for processing spatial 
queries that involve 2D operations while the parallel primitives in 
parallel libraries that predominately support 1D structures only.  
For GPUs that support Nvidia CUDA programming model, there 
are two levels of parallelism, i.e., computing block level and 
thread level. In a way similar to the strategy adopted in [9], 
queries are assigned to computing blocks to utilize the first level 

parallelism. Each computing block processes a batch of queries 
by coordinating the threads within the computing block to utilize 
the second level of parallelism. The query problem can be 
formulated as the following. Given a set of query rectangles Q 
and a set of MBRs P that has been indexed, a query on an R-Tree 
returns a list of pairs {(q, p) | q  Q, p  P, q and p intersects. 
Without further optimization at the computing block level (which 
is left for future work), by sequentially assigning every S queries 
to a computing block, we next present two approaches, i.e., DFS 
and BFS based batched query processing algorithms on R-Trees 
within a computing block  

3.3.1 Depth First Search Based Query 
In this approach, each thread processes a query in a DFS manner 
and thus a stack is required to track visited nodes. A naïve 
implementation can be maintaining the stack on global memory 
and each thread does its own work. Observing that the stack is 
frequently read and write but the global memory access pattern is 
not coalesced, we utilize per-block shared memory for the stack 
structure instead. While it is well known that GPU shared 
memory is usually limited for many applications, we show that 
this is not a disabling factor for DFS based R-Tree query 
processing although it does affect the scalability of the approach. 
For an R-tree has a depth of l, a stack with size larger than l is 
sufficient. Since our construction algorithm guarantees the depth 
of R-tree to be logd (n), an appropriate fanout d value will give a 
reasonable depth less than l. For example, with a fanout of 8, the 
R-tree of a dataset with 990,141 items (a dataset that will be used 
in the experiments) only has 7 levels.  
 
 
 
 
 

 
Figure 4 A Running Example of Batched DFS Queries 

For batched query within a computing block, the number of 
batched queries m is determined by size of available shared 
memory (sm_sz) in a computing block using a stack size stack_sz, 
m = floor(sm_sz/stack_sz). To keep track of visited information in 
DFS traversals, the data items in the stack are organized using 
two fields, index and visit. index is the index to the R-tree node 
array that provides access to the corresponding R-tree node. The 
other field visit is used for recording the number of visited 
children under the current R-Tree node. Fig. 4 (best viewed in 
color) is a running example of the batched DFS based query 
processing where three queries (Q1, Q2 , Q3) are executed in 
parallel, each by a thread. In the example, grey nodes indicate 
nodes that have been visited by at least one thread while white 
nodes indicate pruned nodes. A stack pool is maintained in shared 
memory where each query/thread works on its own stack. Among 
the three queries, Q1 requires back tracing to B after visiting E 
before finally reaching F by using the stack of the corresponding 
thread. E and F are the leaf R-Tree nodes that should be returned. 
Differently, Q2 and Q3 only follow a single path and results the 
queries result in a single R-Tree leaf node.  
The DFS based query is divided into two phases which follows 
the “count and write” pattern. Two kernels are launched during 
the query process. The first one, termed as “count”, is to count the 

1. R_sz = 0; num_lev = 0;  
2. while(length != 1)  
3.   length = ceil(length/d); 
4.   nodes_by_lev.push_back(num_nodes); 
5.   num_lev++; 
6.   R_sz += length; 
7. for level = num_lev decreasae to 1 
8.   if (num_lev == num_lev) 
9.     reduce_by_key from original data 
10.  else  
11.    reduce_by_key from lower level  
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numbers of hits (leaf R-Tree nodes whose MBRs intersect with 
query windows) for all individual queries in order to output query 
results in parallel. Fig. 5 is the detailed implementation of the 
“count” phase. In addition to the stack pool structure in shared 
memory discussed before, an array Pos is allocated for counting 
results. After the counting phase completes, a parallel prefix scan 
is performed on the Pos array to compute the output positions for 
the second phase which actually outputs the query results in 
parallel based on the computed positions. Since the length of 
output array can be derived by the prefix scan results before 
memory allocation, no memory space is wasted in the DFS query 
approach which is a desirable feature. The implementation of the 
“write” phase is almost identical to the “count” phase with some 
modification in Steps 16 and 19, i.e., instead of simply counting 
number of hits, the query results are output to the allocated array.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 5 Implementation of the Counting Phase of the DFS based 
Query Processing on GPUs 

As the alert readers might have observed, the duplicated processes 
may hurt the performance of the DFS based query processing 
implementation. The counting phase is essentially the overhead 
for thread coordination in parallel computing. In addition to the 
fact that the parallelism of DFS based query is limited by the size 
of shared memory in terms of the available number of threads in a 
computing block (as discussed earlier), workloads among the 
threads in a computing block may be imbalanced as threads work 
independently. When large query windows such as Q1 in Fig. 4 
(which requires significant back tracking) and small query 
windows such as Q2 and Query 3 in Fig. 4 (which usually follow 
a single query path) are assigned to the same computing block, 
the imbalanced workloads may significantly hurt the 
performance.  

3.3.2 Breadth First Search Based Query 
Similar to [9], a global queue in a computing block is used for all 
threads inside the block to process all the batched queries 
assigned to a computing block. The queue node is represented in 
the form of {index, qid} where index is the index to the R-tree 
node array so that the corresponding R-Tree node can be retrieved 
(the same as in DFS based one). qid represents the identifier of 
the query that is being processed. R-Tree nodes whose MBRs 
intersect with any of the queries are expanded in parallel and 
stored in the queue level by level.  
Unlike DFS based query processing where the sizes of outputs are 
computed in a separate phase for each query/thread, in BFS-based 

query processing a computing block has its own global memory 
space for writing out query results which are predefined. In our 
implementation, the size is set to the same as the queue capacity 
in shared memory so that computing blocks that successfully 
complete their BFS queries can easily copy the queue, which 
represent the query results, to global memory by synchronizing all 
the threads assigned to the computing block. Since the memory 
accesses are coalesced, the cost of copying the query results to 
global memory is minimized. However, as the queries may vary 
in window sizes and large query windows may intersect with a 
large number of R-Tree nodes, during level-wise query 
expansions, there are chances that the pre-allocated memory space 
to a computing block may overflow. As such, a per-block flag is 
needed to indicate whether BFS based query processing in a 
computing block is successful. The flag will be set if an overflow 
happens and the query process in the computing block will stop.  
If one or more overflows happens during BFS based query 
processing among all computing blocks, an overflow handling 
mechanism is needed to complete the query process. The solution 
adopted in [9] is to launch new kernels repetitively until no 
overflow happens. The queue size is increased for each successive 
round of kernel launch to reduce the probability of overflows 
while minimizing wasting global memory. In this study, we have 
adopted a different strategy to handle overflows by integrating 
DFS and BFS based query processing. When an overflow happens 
in a computing block, the overflow flag is set and the current BFS 
queue in the computing block is copied to global memory. After 
the BFS kernel is complete, a DFS kernel introduced in Section 
3.3.1 is then started by assigning each queue node of blocks that 
overflow to a thread and the query process continues by switching 
to DFS based query processing. As DFS query processing adopts 
the “count-and-write” pattern, there will be no more overflow 
happens. As such, the combined BFS+DFS based query 
processing (herein referred as the hybrid approach) only needs 
two kernel launches. Correspondingly, only one additional global 
memory allocation is needed after the “count” phase is completed 
in the DFS based query processing. In contrast, the solution in [9] 
needs more kernel launches and more memory allocations whose 
numbers cannot predetermined.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Implementation of the BFS based Query Processing on 
GPUs 

1. //count 
2. __shared__ STACK_POOL[] 
3. i = get_thread_index(); 
4. STACK[] = &STACK_POOL[i*STACK_SZ]; 
5. Push(STACK, {0, 0}); //push root to stack 
6. Hit = 0 
7. while (Size(STACK)>0) 
8.   {index, visit} = Pop(STACK) 
9.   if (R[index].len == visit)  
10.     continue; //all children are visited 
11.   next = R[index].pos + visit; 
12.   visit++; 
13.   Push(STACK, {index, visit}); 
14.   if (intersect(MBR[i], R[next].MBR)) 
15.     if (Leaf(R[next])) 
16.       Hit++;  
17.     else 
18.       Push(STACK, {next, 0}); 
19. Pos[i] = Hit; 

1. __shared__ QUEUE[] 
2. for each query i parallel do 
3.   QUEUE[i] = {0, qid};  
4. while (!done & !overflow) 
5.   for each thread parallel do 
6.     {index, qid} = QUEUE[threadIdx] 
7.     hit = 0 
8.     for each child i of R[index] 
9.       if (intersect(MBR[qid], R[i].MBR)) 
10.         hit++ 
11.   pos = Prefix_Scan(hit) 
12.   if (threadIdx == NUM_THREADS‐1) 
13.     if (pos+hit == 0) done = true 
14.     if (pos+hit > Q_SZ) overflow = true 
15.   if (!done & !overflow) 
16.     for each thread parallel do 
17.     {index, qid} = QUEUE[threadIdx] 
18.     for each child i of R[index] 
19.       if (intersect(MBR[qid], R[i].MBR)) 
20.         QUEUE[pos++] = {i, qid} 
21. for each thread parallel do 
22.   save QUEUE to global memory 



 
The implementation of the BFS based query processing design is 
listed in Fig. 6. Note that the algorithm presented in Fig. 6 is only 
for BFS based query processing and a complete listing of the 
hybrid approach for end-to-end application would require 
combining the algorithms listed in Fig. 6 and Fig. 5. In Fig. 6, 
during the initialization phase (line 2~3), each query is loaded 
into the per-block queue in parallel with the index field set to 0 to 
start from the root of the R-tree. Line 4~20 process the batched 
queries in parallel on the R-Tree tree level by level with each 
thread works on an entry of the queue. Each thread first 
determines how many nodes need to be expanded for the next 
level by accessing the len field of the R-tree node whose array 
index is the value in the index field of the queue node. A 
computing block level prefix scan is then used to computes the 
positions for outputting the child nodes of the current R-Tree 
node whose MBRs intersect with the window of the query that is 
assigned to the thread. The process is repeated for all R-Tree 
levels until either the R-Tree leaf nodes are reached (with a done 
flag) or overflows are detected (with an overflow flag). Finally, in 
the normal termination case, the queue is saved from shared 
memory to global memory as the output (Line 21 and 22). In the 
overflow case, a DFS based query processing is started to 
continue the query processing as discussed previously.   
To better illustrate the BFS based query processing and the hybrid 
approach, Fig. 7 provides a running example for the BFS based 
query processing with no overflows and Fig. 8 provides a running 
example for the hybrid BFS+DFS approach where an overflow 
happens. The two figures are best viewed in color. In both figures, 
grey nodes represent non-leaf R-Tree nodes whose MBRs 
intersect with query windows and their child nodes should be 
further testes for spatial intersection tests on the respective MBRs. 
The white nodes represent the opposite case and they should be 
pruned for further tests. In addition, black nodes represent the leaf 
nodes whose MBRs intersect with query windows and the pairs of 
the corresponding R-Tree node identifiers and the query window 
identifiers should be returned. In both examples, we assume there 
are two batched queries (whose query paths are symbolized using 
red and green arrows, respectively) in a computing block (with 
two threads) and the queue capacity is 3.  
  
 
 
 
 
 
 
Fig. 7 Running Example for BFS based Query Processing without 

Overflows 
In Fig. 7, as the MBRs of the two queries intersect with node A 
(root node) at the level 0, two queue nodes {A,1} and {A, 2} are 
enqueued. Thread 1 processes query 1 by dequeuing {A,1} and 
tests whether the MBRs of the three child nodes (B,C,D) intersect 
with the MBR of query 1. Assuming that only the MBRs of node 
B intersects with the MBR of query 1, {B,1} is thus enqueued. 
Similarly, thread 2 dequeues {A,2} and enqueus {C,2} at the 
level 1. Following the same procedure, thread 1 dequeues {B,1} 
and enqueues {F,1} and thread 2 dequeues {C,2} and enqueues 

{G,2} and {H,2}, respectively, at the level 2. Since the capacity 
of the queue is 3, no overflows happen.  
In Fig. 8, following the same BFS based query processing 
procedure, the queue at the level 1 would be {B,1}, {C, 1} and 
(D,2). We have abbreviated {index, qid} as index qid.in Fig. 8 due 
to space limit for presentation. For example, {B,1}is abbreviated 
as B1. However, following the same procedure, there would be 4 
nodes in the queue at the level 2 which is beyond the capacity of 
the queue size. As such, the previous queue state (B1 C1 D2) is 
copied to GPU global memory and the BFS stage for the 
computing block terminates. When the DFS stage in the hybrid 
approach begins, the batched queries that have overflow flags are 
processed by first copying back the respective queue to shared 
memory and then using the values of the index field of the queue 
nodes as the stack tops (c.f. Fig. 4). For this particular example, 
the leaf nodes F and G are reached by an one-step node expansion 
from B and C, respectively. Differently, for node D, a back 
tracking process is needed to retrieve its two child nodes as both 
of their MBRs intersect with the MBR of query 2.  
 

 
 
 
 
 
 

Fig. 8 Running Example for BFS based Query Processing with 
Overflows – the Hybrid Approach 

3.3.3 Discussions 
3.3.3.1 Comparing DFS and BFS based Approaches 
For BFS based query processing, the memory access pattern is 
generally better than that of DFS based one. First, DFS traversal 
order does not match the level-by-level (BFS) based R-tree node 
sequence where BFS traversal is a better match. BFS based query 
processing may better utilize the L2 cache introduced in Fermi 
GPU architecture better. As BFS uses a global queue for all 
threads that process all batched queries simultaneously, 
workloads are better balanced among threads. At any tree level, if 
a queue has N nodes and there are K threads assigned to a 
computing block, then the N expansion tasks are almost evenly 
distributed to the K threads although the workload within an 
expansion might be uneven as R-Tree nodes may have different 
numbers of child nodes whose MBRs are needed to be checked 
with the MBR of the query window that is assigned to the 
corresponding thread. That being said, as the number of child 
nodes of an R-tree node is between M/2 and M, the degree of 
imbalance is well bounded which makes BFS based query 
processing desirable from a load balancing perspective which 
usually have a positive impact on overall performance. 
Furthermore, as neighboring threads access neighboring nodes in 
the queue, memory accesses are better coalesced for DFS based 
query processing.  
On the other hand, as discussed earlier, DFS based query 
processing has a better memory utilization because the output 
memory is allocated after first counting the size of results. In 
contrast, DFS-based query processing is prone to either overflows 
or memory underutilization. For applications where GPU memory 
capacity is a limiting factor, DFS based method can be a choice. 
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However, due to the duplicated computing overheads, unbalanced 
workloads and limited scalability, the performance of DFS based 
query processing is expected to be inferior to BFS based ones 
which is supported by our experiments. This makes the hybrid 
approach attractive by balancing probabilities of memory 
underutilization and overflows. In general, when memory is not a 
limiting factor, BFS based query processing will have better 
performance and should be preferred.  

3.3.3.2 Impacts of R-tree Quality 
The qualities of R-trees are known to have great impacts on query 
performance on CPUs. The same effect remains true on GPUs. 
For BFS based method, R-trees with large overlapping MBRs 
cannot prune branches at the top levels. Thus, more nodes need to 
be loaded into the queue and tested for intersections. As the 
number of nodes that are loaded into the queue increases, more 
global memory accesses are needed which are quite expensive on 
GPUs. Even worse, the probability of queue overflowing will also 
increase as more nodes are loaded at each level. For the example 
shown in Fig. 9, assume two packed R-trees are constructed using 
the Z-order (left) and lowx ordering (right), respectively. Further 
assume that two queries whose MBRs are represented by the red 
and green rectangles, respectively, are provided. Also assume the 
queue capacity is 3. The BFS query processing on the R-Tree in 
the left of Fig. 9 will result in enqueuing 4 nodes (A1, B1, A2, B2) 
which leads to an overflow. On the contrary, the BFS based query 
processing using the R-Tree in the right part of Fig. 9 will only 
enqueue two entries (B1, B2) are and thus no overflow will occur. 
For DFS based query processing, more node examinations are 
needed when querying the low quality R-Tree (left) than the high-
quality R-Tree (right). The analysis highlights the needs to 
construct high quality R-Trees to improve query performance and 
to make tradeoffs between R-Tree construction time and R-Tree 
query time which is left for future work.  
 
 
 
 
 
 
 
 
 
 

Fig. 9 Examples Showing the Impacts of R-Tree Qualities 

4. Experiments 
All experiments are performed on a workstation with two dual 
quadcore Intel E5405 processors at 2.0 GHz (8 cores in total) and 
a Nvidia Quadro 6000 GPU. For all experiments, -O2 flag is used 
for optimization. Two MBR datasets are used for evaluations. 
One (taxi quadrants or simply taxi) consists of 990,142 MBRs is 
derived from the quadrants of about 170 million taxi pickup 
locations in 2009 in NYC. The details of generating the quadrants 
are provided in [17]. The other dataset (pluto tax lots or simply 
pluto) has 735,488 MBRs, which comes from the NYC MapPluto5 
tax lot dataset. Because both taxi and pluto datasets are in the 
NYC area, experiments can be performed by using one as the 
query dataset the other and as the indexed dataset among the four 

possible combinations (taxi-taxi, pluto-pluto, taxi-pluto, and 
pluto-taxi). In all experiments, the batch size m is empirically set 
to 16, i.e., 16 queries are processed within a computing block.  

Table 1 Results of CPU and GPU queries 

   CPU-1 
(ms) 

CPU-8 
(ms) 

GPU 
(ms) 

Speedup 

taxi-taxi 1925 290 105 18.33 
pluto-taxi 833 220 130 6.41 
taxi-pluto 1494 253 124 12.05 
Pluto-pluto 1711 269 169 10.12 

 

Our experiments include three groups. The first group 
experiments (Section 4.1) are designed to compare the 
performance of query processing on R-Trees using the DFS and 
BFS+DFS (or hybrid) approaches. We do not experiment on the 
BFS based query processing alone as the overflows need to be 
handled. The second group of experiments (Section 4.2) compares 
the many-core GPU based hybrid implementation with an open 
source serial CPU-based R-Tree implementation from [18] as well 
as its multicore CPU accelerated implementation based on 
OpenMP6 directive based parallelization to compare the 
performance under different computing settings. We note that the 
R-Tree implementation from [18] was also used in [9] for 
comparison purposes. Finally, the third group experiments 
(Section 4.3) compare the GPU hybrid implementation with an 
alternative single-level grid-file based implementation. We note 
that while we have tested the performance of GPU based R-Tree 
bulk loading implementation, we have found that the query 
performance on bulk loaded R-Trees are much inferior to that on 
R-Trees using dynamic insertion on CPUs. As such, we will only 
use the dynamically generated R-Tree using [18] for 
experimenting the performance of query processing in the first 
two groups of experiments. The performance of queries on bulk 
loaded R-Trees based on two orderings are provided in the third 
experiment group.  

4.1 Comparison between DFS and the Hybrid  
Because the DFS approach has two phases, i.e., “count” and 
“write”, we report the running times for both phases when DFS 
based query processing is used. The results are shown in Table 1. 
Clearly the hybrid BFS+DFS approach outperforms DFS 
approach significantly in all the four experiments.  
Table 1 Runtimes of DFS and Hybrid Approaches of Four Tests  

DFS BFS+DFS   
Runtimes 

(ms) count write BFS DFS count DFS write 

taxi-taxi  141 136 105 0 0 

pluto-taxi  317 276 89 20 21 

taxi-pluto 111 108 106 8 10 

pluto-pluto  313 302 163 3 3 

4.2 Comparisons between CPU and GPU 
Implementations  
 The experiment results are reported in Table 2 where “CPU-1” 
denotes the serial CPU implementation and “CPU-8” stands for 8-
Core CPU implementation. The runtimes of the GPU 
implementation are based on the hybrid BFS+DFS 
implementation. As can be seen from Table 2, the hybrid 
approach has achieved 6X~18X speedups over serial CPU 
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implementation and is about 2X faster over the 8-core CPU 
implementation. As one single E5405 has 820 million transistors 
and Fermi GPUs have about 3 billion transistors, we conclude that 
CPUs and GPUs have comparable per transistor performance as 
3/(0.82*2)≈ 2.  

Table 2 Runtimes of of CPU and GPU queries 
 Runtime (ms) CPU-1  CPU-8  GPU  Speedup 
taxi-taxi 1925 290 105 18.33 
pluto-taxi 833 220 130 6.41 
taxi-pluto 1494 253 124 12.05 
pluto-pluto 1711 269 169 10.12 

4.3 Comparison between R-trees and Single-
Level Grid-file based Indexing on GPUs 
The runtimes of query processing using the hybrid BFS+DFS 
approach on the dynamically generated R-Tree (column R-tree-0) 
and the single-level grid-file based indexing (column Grid) are 
shown in Table 3. Note that since the dynamic R-Tree is created 
on CPUs, we have included the data transfer time to the end-to-
end query processing times for fair comparison. As such, the 
runtimes listed in the R-tree-0 column of Table 3 are slightly 
larger than the runtimes listed in the GPU column of Table 2. 
From the results we can see that R-Tree based query processing is 
about an order (10X) times faster than the single-level grid-file 
which makes it attractive in many applications.  
Table 3 Runtimes of Query Processing on Dynamically Generated 

R-Tree, Single-Level Grid-File and Two Bulk Loaded R-Trees 
Runtime (ms) R-tree-0 Grid R-Tree-1 R-Tree-2 

taxi-taxi 133 1544 5722 1768 

pluto-taxi 145 1007 8453 1048 
taxi-pluto 143 1420 41218 6247 
pluto-pluto 185 1440 72322 18279 
R-Tree-0: Dynamically Generated R-Tree on CPUs 
R-Tree-1: Bulk Loaded R-tree using  Z-order 
R-Tree-2: Bulk Loaded R-tree using  lowx ordering 
To better understand the impacts of R-Tree qualities on query 
processing on GPUs, we have also included the runtimes of query 
processing on two bulk loaded R-Trees, one is based on Z-
ordering and the other is based on lowx ordering where MBRs are 
sorted based on x1 values of MBRs defined as (x1,y1,x2,y2) 
tuples. From table 3, we can see that the performance of the two 
bulk loaded R-Trees are significantly worse than the dynamically 
generated R-Tree which warrants further research.    

5. Conclusion and Future Work 
In this study, we have implemented designs to bulk load R-Trees 
and query constructed R-Trees on GPUs based on different 
strategies. Our extensive experiments have shown that the hybrid 
BFS+DFS approach can achieve 6-18X speedup over a main-
memory based serial CPU R-Tree implementation which makes it 
attractive for many real world applications. Our experiments also 
have shown that R-Tree qualities can have signficant impacts on 
query performance. The query performance of bulk loaded R-
Trees on GPUs are far inferior to the serial CPU implementation 
which necessitates the need to seek approaches to building high-
quality R-Trees. Intelligently using massively data parallel 
computing power for R-Tree bulk loading to generate high-
quality R-Trees and support efficient query processing on GPUs 
is an interesting research topic.  

For future work, in addition to further investigations on GPU 
based bulk loading that have been discussed inline, we also plan 
to compare R-Tree based indexing approaches with quadtree 
based ones on GPUs to explore their advantages and 
disadvantages. Another research direction is how to reorder or 
index the query windows for more efficient parallel query 
processing on GPUs. Finally, as the batched queries on R-Trees 
are closely related to spatial joins, we also would like to 
incorporate the R-tree implementations into spatial joins. 
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