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Abstract

Huge amounts of geo-referenced spatial location data and moving abjectory data are
being generated at ever increasing rates. Patterns discovenedhiese data are valuable in
understanding human mobility and facilitating traffic mitigatibmthis study, we propose a new
approach to mining frequent patterns from large-scale GP&:tiwey data after mapping GPS
traces to road network segments. Different from applying agswt rule-based frequent
sequence mining algorithms directly, which generally have highpatation overhead and are
not scalable, our approach utilizes hierarchies of road networks: édntracting nodes and
creating shortcuts by contraction hierarchies algorithms, igmakroad segment sequences are
transformed into sequences of shortcuts with much smaller dataealiBy using computed
shortest paths as simulated GPS trajectories, our experimehfs5a8 selected taxi trip records
in NYC in January 2009 have shown that runtimes of frequent sequena®y mmishortcut
sequences are orders of magnitude faster than on originale@gackist sequences. In addition,
frequent subsequences in shortcuts are more informative and intelgrétsed on the
betweenness centralities of the shortcuts than visualizing betese centralities of individual
road segments.

1 Introduction

Locating and navigation devices now are ubiquitous. Huge amounts of fgesnoed
spatial location data and moving object trajectory data are lggngrated at ever increasing
rates. Patterns discovered from these data are valuable in andargt human mobility and
facilitating traffic mitigation. The state-of-the-art tectmés in managing such data are based on
spatial databases and moving object databases to index and query igabroetrdinates
directly. However, as most of human movements are constrainédibyinfrastructures and
road networks, an alternative approach to matching the location andtargjelata with
infrastructure data for subsequent processing (Richter et al. 2@h2patentially be more
efficient from a computing perspective. For example, a GPStoajecan be transformed into a
sequence of road segments and thus it becomes possible to apgtudielli frequent sequence
mining algorithms (Agrawal and Srikant 1995) to identify popular rotdgeslifferent groups of
people at different scales for different purposes, e.g., riderngharailing taxies for riders,
making more profits for drivers and understanding functional zones iropoétan areas to
facilitate city planning and traffic mitigation.

While the idea is attractive, besides the technically chgdlen accurate map matching,
our preliminary results have shown that applying frequency countingl ssmciation rule



mining algorithms in a straightforward way may incur sigwifit computing overheads due to
the inherent combinatorial complexity of the algorithms. For biggopelitan areas such as New
York City (NYC) with a road network of hundreds of thousands of intéises and segments
and millions of trips a day, the computing overheads quickly bedptrectable even though
parallel and distributed computing resources are becoming morgsdteg¢han ever. By taking
advantage of the fact that many human trips follow shortest paitigdes in general (Eisner et
al 2011), we propose to utilize street hierarchies through network coorisa (Geisberger et al
2008) to effectively reduce the lengths of road segment sequeit@esnap-matching of trip
trajectories. Shortcuts derived from road networks naturally parstquences of road segments
into subsequences. These subsequences with high frequencies ar® lb@lhé whole or part
of frequent sequences. The complexity of counting the frequericiks shortcuts, on the other
hand, is linear with the number of original and shortcut road segments in the subsequigich

is much more efficient than classic sequence mining algorithntenWappropriate, classic
sequence mining algorithms can be applied on the frequent subsequentiesover longer
frequent sequences. As numbers of segments in shortcut sequentygscally much smaller
than the numbers of original sequences, the computing workloads of sequeimgealgorithms
on shortcut sequences are much lighter. We empirically evalmtproposed approach on a
subset of taxi trip records in NYC in 2009 (about 168 million recordstal) and report our
preliminary results.

The rest of the chapter is arranged as the following. Sectiotrd@uces background,
motivation and related work. Section 3 presents the prototype systemtecture and
implementation details of several components. Section 4 provides ragpénesults. Finally
Section 5 is the conclusion and future work directions.

2 Background, Motivation and Related Work

Processing GPS data for various purposes has attracted significantivesterests, such
as compression, segmentation, indexing, query processing and data (dimemg and Zhou
2011). Most existing research is focused on the geometrical ssgach as range, nearest
neighbor and similarity queries, clustering and data miningndividual and group-based
patterns (e.g., convey and flock) (Zheng and Zhou 2011). Many appraaehgsneric for many
types of moving object trajectory data but can incur heavy comtputaverheads. Approaches
in map matching of GPS points to road network segments (Brakatsiudas2005), although
mostly developed for navigation purposes, are particularly relevaourtoresearch as our
approach relies on such techniques to transform point sequences thtsegraent identifier
sequences for frequent pattern mining. Several previous resedocts éfave proposed to
develop semantic data models to derive individual activities fror8 G&jectories (Yan et al.
2011, Richter et al. 2012). While our approach can be adapted to efficnimé frequent
sequences from GPS trajectories of individuals, our focus in thy s6 to understand
frequently-used paths from large-scale taxi trip data at ityelewel which is much more
computationally demanding and efficiency is overwhelmingly important.

Existing work on city-level trajectory data analytics can beuped into several
categories. Research in the first category focuses on idegtipppular routes from trajectories
(Chen et al 2011, Wei et al 2012) with applications to ridesharirgm@endations (He et al
2012). In contrast, the second category focuses on identifying anont@gaesories (Zhang et
al. 2011, Chen et al. 2013) with applications to taxi driving fraud dete@Be et al. 2011). The
third category is related to identifying Region of IntereBi®Ig) and their functions (Uddin et al
2011, Qi et al 2011, Huang and Powell 2012, Yuan et al. 2012). The fourth categesgartth



mainly is interested in analyzing Origin-Destination (O-@$ over space and time (Zheng et
al. 2011, Jiang et al. 2012, Yuan 2012). Finally, research in the fiftjorgtes interested in
deriving sophisticated knowledge from taxi GPS traces for taxedr (Li et al. 2011, Powell et
al 2011, Yuan et al. 2011a) and general drivers (Ziebart et al. 2088,efwal 2010, Yuan et al
2011b). Among these studies, except for Chen et al. (2011) that adoptedog reetpansion
approach, the majority of existing research adopted a unifodrbgged approach and many of
the grids are quite coarse. Although using coarse resolution grgsficantly reduces
computing complexity, it may also significantly reduce accurécpossible improvement is to
first use fine resolution grids and then to aggregate grid eglisrégions to reduce computing
overheads and maintain accuracy simultaneously (Yuan et al. 2012}oin&show surprising
that, while GPS trajectories are strongly constrained by matavorks, very few works
incorporate road network topology explicitly. Despite significantgpEss in map matching
(Zheng and Zhou 2011, Ali et al. 2012), the technical difficulties, comgpuiverheads and
qualify of the matching results might be some key factors inisgpwlown their practical
applications on large-scale GPS trajectory data. Nevesthelee believe that the synergized
hardware and software advances will significantly improve majchimgy accuracy. In this
study, we assume GPS trajectories are matched to roadrgsgind we will focus on frequent
trajectory pattern mining from road segment identifier sequences.

Frequent trajectory pattern mining from road segment idenséguences is naturally
abstracted as a frequent pattern mining problem (Han et al. 200¢g e Apriori-based
association rule mining approaches for frequent sequence miningdeesoped nearly two
decades ago (Agrawal and Srikant 1995), significant progress bBasniele in the important
data mining area. New strategies such as Eclat and Fp-Growth, nevwonargaitch as closed and
maximal itemsets and sequences, and new hardware platformassalusters, multi-core CPUs
and many-core Graphics Processing Units (GPUs), have been esiemrsiplored (Hipp et al
2000, Han et al 2007, Borgelt 2012). While Borgelt (2012) argued that therkttiearoom left
for speed improvements of existing efficient and optimized impleatiens of frequent pattern
mining, we believe exploring domain knowledge to effectively reduabl@m size and number
of frequent patterns can be a new growing point for empoweringngxdsdta mining algorithms
for large-scale datasets. Using road hierarchy derived frdmorie contractions is our first
attempt based on this idea. As our prototype system uses the Segpeia source frequent
sequence mining package, we next provide a brief introduction to freqemureee mining
based on the implementation in Sequoia.

Given a set of sequences, frequent sequence mining algoritimas finding unique sets
of ordered itemsets whose frequencies are above a predefined thtesin@d as support value,
which can be either an absolute value or a percentage. The task betmpler when only one
item is allowed in the itemsets that are used as the buibdinalys for frequent sequences. While
allowing multiple items in itemsets provides higher flexibilitxging a single item per itemset
may actually be more suitable for trajectory data where regthents are typically unique in
simple frequent sequences. The Sequoia package by Borgelthly leiggineered from a
software development perspective. It is designed to find both non-coskdlosed frequent
sequences with unique occurrences of items, which matches our need ag fraguent
sequences of unique road segments very well. Sequoia adopts theaflirsgyte strategy (Han
et al. 2000) to efficiently prune the search space. Our experimbutsshow that Sequoia is
faster than alternatives, likely due to incorporating proven-eéffectata structures and highly
efficient memory and disk 1/Os, in addition to adopting efficient mining algogthm



Using betweenness centralities (Brandes 2008) provides anotlielowaderstand the
utilization and popularity of nodes and edges in a street networlef&szand Winter 2009,
Leung et al. 2011). More formally, the edge based betweennesalibeQig(e) is defined as the

following: C, (o) = Z Oy (e)

SEVALLV O-St

where s and t are the source and destination nodes in a path and function
o(e) accumulates numbers of paths that pass througheedde o is typically a constant for

road networks, we us{ag (v)directly in this study. Compared with associatiahesbased

frequent sequence mining algorithms, it is muchpé#mto compute edge centralities as the
complexity is bounded by the total number of edgethe path set. However, it is easy to see
that the betweenness centrality measurement isqggment based and do not identify frequent
sequences directly. Nevertheless, when betweemesesslities for a set of road segments are
visualized in a map, as neighboring segments tilpiteave similar betweenness centralities,
users might be able to identify consecutive roagihmemt sequences with high betweenness
centralities in a visual manner. As shall be clager, our approach provides a natural tradeoff
between per-segment based betweenness centrali@guneenent and per-sequence based
association mining by using shortcuts as the bagsits. The shortcuts are subsequences of
original sequences but require only linear scanrimgount their frequencies just like the
between centrality measurement. As the shortcetsl@rved through the contraction hierarchies
technique, we next provide more details on it.

Contraction hierarchies is a technique to speeshaptest path computing (Geisberger et
al 2008). The key idea is to heuristically ordee thetwork nodes by some measurements of
importance and contract them in this order. Whiéwork nodes are removed by contraction,
shortcuts are added to the network being exploretiat shortcut nodes do not need to be visited
during node expansion in computing shortest pathese shortcuts allow far fewer node visits
in computing shortest paths than the classic Dgkstshortest path algorithm (Geisberger et al
2008). Furthermore, the nodes ordered based on ithportance are much more cache and
parallelization friendly during edge expansion. Tdega layout of network nodes and edges
based on the order matches modern parallel hardaveingtectures very well. Experiments have
shown that shortest path computation using theractn hierarchies technique on modern
multi-core CPUs and many-core GPUs can be up tod8r® of magnitude faster than serial
Dijkstra’s algorithm (Delling et al. 2011). Whilehé contraction hierarchies technique is
primarily designed for speeding up shortest patmmaation, as human movements typically
follow the shortest path principles (Esiner et @l®), the constructed node hierarchy not only
can be used for routing purposes, but also foraieduthe lengths of trajectory sequences by
incorporating shortcuts. As many frequent sequengaeng algorithms are combinatorial in
nature and NP-hard in worst cases, reducing thebatsnof data items in sequences can
significantly reduce runtimes of frequent miningg@ithms. Furthermore, mined frequent
sequences consisting of important nodes naturabyige simplified frequent paths that are
more informative, easy to visualize and interpmatd thus are more preferable to end users.

To provide a better understanding of the contractimerarchies technique, Fig. 1
illustrates a road network in Texas with 62 noded 420 edges. The nodes are symbolized



based on their importance after applying the teqpli The more important the nodes are, the
larger circles are used for symbolization. Clearlgde 46 in the center of the network is the
most important node while many nodes that are dim$lee boundary are least important. This is
understandable, as shortest paths will likely passugh node 46 and is least likely to be
shortcut. When computing the shortest path betweele 34 and node 60, the full path sequence
would be 34,36,57,61,22,23,53,50,11,60 whose lersgthhops. Using the derived contraction
hierarchy, there will be a shortcut between nodeid 22, and, node 61 is shortcut as it has a
lower importance than the two nodes. Similarly,hargut between node 11 and node 53 is
added as node 50 has a lower importance. It isiatsoesting to observe that there is also a
shortcut between node 57 and node 23 where nodesPdrtcut in this case. The node sequence
using the shortcuts turns out to be 34,36,57,2B1580 whose length is 6 hops. While only 3 out
of the 9 edges are reduced due to using shortcutss small network with a maximum level of
10, as the number of levels generally increaseritbgaically with the number of nodes in a
network (Abraham et al. 2010), the reduction caigeificant for long path sequences in large
networks, e.g., the North America road network weths of millions of nodes and edges.

Shortcut
"6
Contracted node

Fig.1 lllustration of Contraction Hierarchies Using a Texas Road Network

3 Prototype System Architecture

Although there are some fundamental research apubds in tightly integrating
frequent pattern mining and network contractioroatgms, as a first step, we integrate several
existing packages to realize our approach in atdime in this study. Our prototype system
architecture is shown in Fig. 2 where the shade@®indicate input data. Thé$0OD-DB data
management infrastructure (Zhang et al. 2012) exlus the prototype. We currently use the



Contraction Hierarchies module (CH) in the Open rBeuRouting Machine projectfor
constructing road network hierarchy and the Seqopen source frequent sequence mining
package for mining frequent sequence. The TrajgdmiSequence (T2S) converter module is
responsible for mapping GPS trajectories to segseraf road segments. The Sequence
Contraction (SC) module is designed to contractottiginal sequences. These two modules are
currently placeholders (indicated by the dashethés) as our experiment data has only Origin
and Destination (O-D) locations while the internadiGPS reading are not available. We have
developed the third module, i.e., Shortest Path @aation (SPC), to compute shortest paths
between O-D location pairs. The computed shortaigtspare subsequently used as the input data
for frequent sequence mining. Both the originalredgi path sequences and shortcut shortest
path sequences are output and they can be fethmteSM (Frequent Sequence Mining) module
(using Sequoia) to mine frequent sequences. We lads@ implemented the edge-based
Betweenness Centrality computing module (BC). Byinig into account the original shortest
path sequences, the BC module computes the betesementrality measurement for each
original road segments. Similarly, by taking intccaunt the shortcut shortest path sequences,
the BC module computes the betweenness centraégsurement for each shortcut. The FSM
and the BC modules in Fig. 2 are highlighted indbt indicate that they take both original
sequences and shortcut sequences.

-—r—————
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Fig. 2 Prototype System Architecture and Components

Several auxiliary modules for pre-processing anst-poocessing are also developed. In
particular, the Network Data Ingesting (NDI) modisedeveloped to ingest network data that
may be provided in different formats. The modulerently ingests the LION road network
dataset from the NYC Department of City PlanningCH), which is referred to as DCPLION
and is used in our experiments. The module alsp@tp NAVTEQ street network in the NYC
area. In addition to the major streets in the beeoughs of NYC, the NAVTEQ data also covers
several neighboring counties which is good for witugl taxi trips whose origin or destination



locations are outside of NYC's five boroughs. Iiéidn to generating node and edge lists and
computing different types of edge weights thatraguired by the CH module, the NI module
also adds node and edge identifier columns sortbdés and edges in the sequence mining
results can be mapped back to their geometry fatevisualization purposes. Subsequently, a
Data Bridger (DB) module is developed to combireertbde and edge identifiers that are output
by the Sequoia module and the related geometria ttatgenerate SQL statements. The
PostgreSQL/PostGIS spatial database can take the SQL statements,lgpeptables and
generate ESRI shapefileghat can be visualized in many Geographical Infiifom System
(GIS) software, including ESRI's ArcGiSThe DB module will be replaced by an integrated
module in the future to visualize frequent sequenaggng results without relying on third party
programs.

4 Experiments and Results

The more than 13,000 GPS-equipped medallion tagicalNYC generate nearly half a
million taxi trips per day and more than 168 mitlimips per year serving 300 million passengers
in 2009. The number of yearly taxi riders is abblf of that of subway riders and 1/3 of that of
bus riders in NYC, according to MTA ridership sstitis'. Taxi trips play important roles in
everyday lives of NYC residents (or any major euyridwide). Understanding the trip purposes
is instrumental in transportation modeling and plag. In our previous work, we were able to
compute the shortest paths between all the 168omiD-D pairs in within two hours using a
single Intel Xeon E5405 CPU (2.0 GHZ) by utilizitige contraction hierarchies technique. The
performance is orders of magnitude faster tharsthee-of-the-art (Zhang 2012). However, the
computed shortest path sequences are too voluminoemnipulate (with respect to streaming
disk-resident files among different modules) and tmmbersome for visualization (data and
patterns are cluttered when displays have limitecten resolutions). As a result, we have
selected a subset of 2009 data for a case study.

We are particularly interested in the taxi tripgvieen Manhattan and the LaGuardia
airport (LGA) located in Northern Queens, anothemoligh of NYC. As one of the three major
airports in the NYC metro area, the airport accomated 24.1 and 25.7 million passengers in
2011 and 2012, respectively. We extracted all the taxi tripsnfirall the 13 community districts
in Manhattan to community district 403 in Queensi¢ve LGA is located) in January 2009 and
the number of trips is 17,558. As discussed ini&e&, we computed the shortest paths between
the pickup and drop-off locations of the trips andput the segment identifiers in the computed
shortest paths for association rule-based freqgegtience mining. We also apply the BC
module to compute the edge-based betweennesslitmstiior all the edges using the original
shortest path sequences. To test the effectiveniessir proposed approach, we output the
shortcut sequences and apply the BC module to centpe edge-based betweenness centralities
for all the shortcuts. These shortcuts are unpacdkethe DB (Data Bridger) module for
subsequent visualization purposes. We next prabenexperiments and results for the three
modules and compare them where appropriate.

4.1 Results of BC on Original Sequences

Fig. 3 visualizes the distributions of edge-basetwbenness centralities with non-
involving edges (betweenness centrality = 0) grayed The figure clearly shows that the road
segments of the four bridges and tunnels play itaporoles in the traffic between Manhattan
and the airport area as indicated by their higlveenhness centralities. There are 2,620,636 road



segments in the 17,558 shortest paths (~150 segmentpath on average) which only take a
fraction of a second to compute betweenness cgi@sal\While the approach is efficient and
provides valuable information for visualization pases, it cannot be used to identify frequent
sequences directly.

4.2 Results of Association Rule Mining on Original Sequences

Table 1 lists the runtimes and several other measemts output by the Sequoia package
using support values ranging from 50 to 5. Herentfidate frequent sequences” refers to
sequences consist of no road segments whose fragaeme below the respective support value
and thus cannot be pruned by single item frequenaynting. The candidate frequent sequences
need to be fed into the FP-growth algorithm impletad in Sequoia for sequence expanding and
pruning. As can be seen from Table 1, the runtigresv super-linearly as the support values
decrease. The computing is orders of magnitudeesitivan computing betweenness centralities.
The numbers of frequent sequences also increasdicagtly as the support values decrease and
many of them overlap. The numbers of average setgmerthe identified frequent sequences,
however, do not increase as significantly as tidimes and the numbers of frequent sequences.
The results indicate that, as the support valuesrbe lower, both the numbers of frequent
sequences and the average numbers of segments fietfuent sequences increase. For this
particular dataset, the total number of frequegimsnts grows 3-4 order§*@0 vs. 1018*57),
although the support value only decreases 10 t{B@ss. 5). In addition, although the resulting
frequent sequences do provide useful informatioriuidher processing, they are not suitable for
interactive visualization as there are significdegrees of overlap among the frequent road
segments, especially when support values are low.

0
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e 2501 - 10000

Fig. 3 Visualization of Edge-based Betweeness Centrality of Orighwatest Paths



Table 1 Results of Frequent Sequence Mining usetg8ia with Different Support Values

Support Runtime #of candidate #of frequent #of average
(seconds) frequent sequences segments
sequences
50 0.12 3624 6 20
25 4.42 5470 36 38
10 37.64 10077 275 41
5 129.64 12771 1018 57

4.3 Results of the Proposed Approach

Recall that our proposed approach computes the-leaigpd centralities of shortcuts and
use frequent shortcuts as the approximations ouéet sequences. The approach also allows
apply the classic association rule-based frequemience mining algorithm to further identify
sequences of shortcuts with lower computing ovetfieAmong the 17,558 shortest paths, 2,204
shortcuts are derived. There are 149,536 segmémtisher original road segments or shortcuts
among the 17,558 shortest paths. The average nurhisegments per shortest path is thus less
than 9. Compared with the original shortest patjusaces with about 150 segments per path on
average (c.f. Section 4.1), the average path leisgthduced by almost 16 times. The reduction
is considerably significant with respect to botlorage and frequent pattern mining. By
significantly reducing the number of segments @gfrent sequences and overlap among frequent
sequences, as shown in Fig. 4, it is easier toalimi and interpret the identified frequent
sequences in a GIS environment (ESRI ArcMap inqaer).

To better understand the derived shortcuts, theluisions as well as major statistics are
shown in Fig. 5. We can see that, while the averagaber of road segments per shortcut is
close to 9, there are a few shortcuts that hage laumbers of road segments. This may partially
due to the unique road network topology in NYC vehigre connections between Manhattan and
Queens (and also the rest of the three borougbanastly through a limited number of bridges
and tunnels. Expressways (e.g., Interstate 49%)cttvanect the bridges/tunnels and the airport
area are likely to be major parts of the shorteshg for the taxi trips between the origins and
destinations. While it is still possible to disco¥eequent sequences that consist of more than
one shortcut, it is unlikely that all the shortcutssuch sequences have large numbers of road
segments. For shortcuts with long sequences of seggnents, it might be advantageous to
visually explore them directly and exclude themnfrdrequent sequence mining on such
shortcuts.

By applying the Sequoia module on the 17,558 shorpaths with shortcuts, our
approach is able to compute frequent sequencesgimgible runtime for all support values (as
low as 1). This is much more efficient than minthg original shortest path sequences, which
took more than 2 minutes with the support valuetséd as shown in Table 1. We note that
mining the shortcut sequences will likely miss freqt sequences in several cases when
compared with mining original sequences directlyghsas those that cover only parts of the road
segments in neighboring shortcuts. Another casehtmiig subsequences that overlap with
multiple shortcuts. When the shortcuts are notifjedlas frequent sequences, the subsequences
will not be identified as frequent ones within mdual shortcuts. However, subsequences might
be frequent across multiple shortcuts which cardestified if mining on the original sequences



directly. We are working on techniques that canichew reduce the chances of such cases, for
example, by limiting the lengths of road segmentshortcuts. We will report the efficiency and
effectiveness of these techniques in our futurekwor
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Fig. 4 Examples of Visualizing Identified Frequent Sequences (Shortcuts)
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Fig. 5 Frequency Distribution against Number of Road Segments in Shortcuts



5 Conclusion and Future Work

In this study, we have proposed a new approachinongfrequent patterns from large-
scale GPS trajectory data after mapping GPS tréma®ad network segments. Instead of
applying association rule-based frequent sequenoegnalgorithms directly which generally
have high computation overhead and are not scalahle approach utilizes the inherent
hierarchies of road networks. After contracting e®dand creating shortcuts by applying
contraction hierarchy algorithms, the original roselgment sequences are transformed into
sequences of shortcuts and the data volumes obrigenal sequences can be significantly
reduced. Edge-based betweenness centrality measuisencan be directly computed on
shortcuts efficiently with a linear time complexignd, frequent sequence mining algorithms can
be applied to the shortcut sequences to identdguent patterns with significantly reduced
complexity. By using computed shortest paths asllsitad GPS trajectories, our experiments on
17,558 taxi trip records have shown that compubegveenness centrality measurements of
shortcuts and frequent sequence mining on shosgeguences incur negligible computing
overheads. The runtimes of frequent sequence miamghortcut sequences are orders of
magnitude faster than on original road segmentesgmgs. In addition, frequent subsequences in
shortcuts are more informative and interpretableeaon the betweenness centralities of the
shortcuts than visualizing betweenness centralitiésdividual road segments.

The reported work naturally leads to several futesearch directions. First, we would
like to evaluate and validate the assumption tkat world GPS trajectories in urban areas
follow the shortest path principle with differentetrics, especially for long trajectories. While
we currently do not have access to complete GR®&dren NYC, we plan to use the publically
available T-Drive datasét for this purpose. Second, among the 168 milliom tigps in NYC in
2009, we have used only a small fraction of theaskttand we plan to evaluate our proposed
approach on larger subsets to test its efficiemy scalability. Finally, the prototype we have
developed so far is loosely coupled in nature. Wan o tightly integrate the essential
components in the prototype and automate the Wig-alaalytics process. We strongly believe
that by integrating road network hierarchies imegtient pattern mining algorithms, specialized
and highly efficient trajectory frequent sequencaing algorithms can be developed and
tailored for parallel computing.

References

Agrawal, R. and Srikant, R., 1995. Mining sequdrg&iterns. Proceedings of the IEEE Eleventh
International Conference on Data Engineering, ICBH4.

Ali, M., Krumm, J., et al., 2012. ACM SIGSPATIAL GICup 2012. Proceedings of the ACM
International Conference on Advances in Geograptfrmation Systems, ACM-GIS,
597-600.

Borgelt, C., 2012. Frequent item set mining. Wileterdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(6), 437-456.

Brakatsoulas, S., Pfoser, D., et al., 2005. On mafehing vehicle tracking data. Proceedings of
the 31st international conference on Very larga thaises, VLDB, 853-864.

Brandes, U. 2008. On variants of shortest-path é&etwess centrality and their generic
computation. Social Networks 30, 136-145

Chen, C., Zhang, D., et al.,, 2013. iBOAT: IsolatBased Online Anomalous Trajectory
Detection. IEEE Transactions on Intelligent Tramsgeon Systems (To Appear).



Chen, Z., Shen, H.-T. and Zhou, X., 2011. Discowgrpopular routes from trajectories.
Proceedings of the IEEE International Conferenc®aita Engineering, ICDE, 900-911.

Delling, D., Goldberg, A. V., et al., 2011. PHASHardware-Accelerated Shortest Path Trees.
Proceedings of the 2011 IEEE International ParaBel Distributed Processing
Symposium, IPDPS, 921-931

Eisner,. J., Funke, S., et al., 2011. Algorithms Katching and Predicting Trajectories.
Proceedings of the Workshop on Algorithm Enginegeand Experiments, ALENEX, 84-
95.

Ge, Y., Xiong., H., et al., 2011. A Taxi Driving &rd Detection System. Proceedings of IEEE
International Conference on Data Mining, ICDM, 1B40.

Geisberger, R., Sanders, P., et al., 2008. Comdrabterarchies: faster and simpler hierarchical
routing in road networks. Proceedings of the T7therimational conference on
Experimental algorithms, WEA, 319-333

Han, J., Cheng, H., et al., 2007. Frequent patt@mng: current status and future directions.
Data Mining and Knowledge Discovery, 15(1), 55-86.

Han, J., Pei, J. and Yin, Y., 2000. Mining frequeuatiterns without candidate generation.
Proceedings of the 2000 ACM SIGMOD internationahfeoence on Management of
data, SIGMOD, 1-12.

He, W., Li, D., et al, 2012. Mining regular routdgsom GPS data for ridesharing
recommendations. Proceedings of the ACM SIGKDDrir@gonal Workshop on Urban
Computing, UrbComp, 79-86.

Hipp, J., Guntzer, U. and Nakhaeizadeh, G., 200§othms for association rule mining- a
general survey and comparison. SIGKDD Explorati@wsletter, 2(1), 58-64.

Huang, Y. and Powell, J. W., 2012. Detecting regioh disequilibrium in taxi services under
uncertainty. Proceedings of the ACM Internationabnférence on Advances in
Geographic Information Systems, ACM-GIS, 139-148.

Jiang, S., Ferreira, Jr., et al., 2012. Discoveungan spatial-temporal structure from human
activity patterns. Proceedings of the ACM SIGKDDRehmational Workshop on Urban
Computing, UrbComp, 95-102.

Kazerani, A. and Winter, S, 2009. Can betweennesgsality explain traffic flow. Proceedings
of the 12th AGILE International Conference on GIS.

Leung, I. X. Y., Chan, S.-Y., et al.,2011. IntrayCUrban Network and Traffic Flow Analysis
from GPS Mobility Trace. http://arxiv.org/abs/118839

Li, B., Zhan, D., et al., 2011. Hunting or waitin@?scovering passenger-finding strategies from
a large-scale real-world taxi dataset. IEEE Inteonal Conference on Pervasive
Computing and Communications Workshops, PerCom\A§&63

Powell, J. W., Huang, Y., et al., 2011. Towards l&ag Taxicab Cruising Time Using Spatio-
Temporal Profitability Maps. Proceedings of Intdimiaal Symposium on Advances in
Spatial and Temporal Databases, SSTD, 242-260.

Qi, G., Li, X., et al, 2011. Measuring social fuocis of city regions from large-scale taxi
behaviors. IEEE International Conference on Pevea€iomputing and Communications
Workshops, PerComW, 384-388.

Richter, K.-F., Schmid, F. and Laube P., 2012. Sgimdrajectory compression: Representing
urban movement in a nutshell. Journal of Spatirination Science (4).




uddin, M.R. and Ravishankar, C. and Tsotras, \2011. Finding Regions of Interest from
Trajectory Data. Proceedings of IEEE Internatio@nference on Mobile Data
Management, MDM, 39-48.

Wei, L.-Y., Zheng, Y., Peng, W-C, 2012. Construgtipopular routes from uncertain
trajectories. Proceedings of the ACM Internatic@ahference on Knowledge Discovery
and Data Mining, KDD, 195-203.

Yan, Z., Chakraborty, D., et al., 2011. SeMiTri:framework for semantic annotation of
heterogeneous trajectories. Proceedings the Inienah Conference on Extending
Database Technology, EDBT, 259-270

Yuan, J., Zheng, Y. and Xie. X, 2012. Discoveriregions of different functions in a city using
human mobility and POIs. Proceedings of ACM Intéoral Conference on Knowledge
Discovery and Data Mining, KDD, 186-194.

Yuan,J., Zheng,Y., et al., 2011a, Driving with knledge from the physical world. Proceedings
of the ACM International conference on Knowledgscdvery and data mining, KDD,
316-324

Yuan, J., Zheng, Y., et al., 2011b. Where to fing mext passenger. Proceedings of the 13th
international conference on Ubiquitous computingid@édmp, 109-118.

Yuan, J., Zheng, Y., et al., 2010. T-drive: drivimliyections based on taxi trajectories.
Proceedings of the ACM International Conference Advances in Geographic
Information Systems, ACM-GIS, 99-108.

Zhang, D., Li, N., et al., 2011. iBAT: detectingoamalous taxi trajectories from GPS traces.
Proceedings of the 13th international conferenceJbmuitous computing, UbiComp,
99-108.

Zhang, J., Camille, K. et al., 2012.230DD-DB: a database system to manage large-scale
Ubiquitous Urban Sensing Origin-Destination Dateodeedings of the 1st International
workshop on Urban Computing, UrbComp,163-171.

Zhang, J. 2012. Smarter outlier detection and deepderstanding of large-scale taxi trip
records: a case study of NYC. Proceedings of théntarnational workshop on Urban
Computing, UrbComp, 157-162.

Zheng, Y., Liu, Y., et al.,, 2011. Urban computingthwtaxicabs. Proceedings of the 13th
international conference on Ubiquitous computingi@émp, 89-98.

Zheng, Y. and Zhou, X., 2011. Computing with Sgafrajectories. Springer.

Ziebart, Brian D., et al., 2008. Navigate like &lu@: probabilistic reasoning from observed
context-aware behavior. Proceedings of the 10#rmational conference on Ubiquitous
computing, UbiComp, 322-331

' http://www.borgelt.net/sequoia.html

" http://project-osrm.org/

" http://postgis.net/

v http://en.wikipedia.org/wiki/Shapefile

¥ http://www.esri.com/software/arcgis

' http://www.mta.info/nyct/facts/ridership/

! http://en.wikipedia.org/wiki/LaGuardia_Airport

V' http://research.microsoft.com/apps/pubs/?id=152883



