

High-Performance Online Spatial and Temporal Aggregations on Multi-core CPUs
and Many-Core GPUs

Jianting Zhang

Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Motivated by the practical needs for efficiently

processing large-scale taxi trip data, we have developed
techniques for high performance online spatial, temporal and
spatiotemporal aggregations. These techniques include timestamp
compression to reduce memory footprint, simple linear data
structures for efficient in-memory scans and utilization of
massively data parallel GPU accelerations for spatial joins. Our
experiments have shown that the combined performance boosting
techniques are able to perform various spatial, temporal and
spatiotemporal aggregations on hundreds of millions of taxi trips
in the order of a few seconds using commodity personal
computers equipped with multi-core CPUs and many-core GPUs.
The high throughputs in a personal computing environment are
encouraging in the sense that high-performance OLAP queries on
large-scale data is feasible when the parallel processing power of
modern commodity hardware is fully utilized which is important
for interactive OLAP applications.

1. INTRODUCTION
 Multidimensional aggregation is considered as one of

the most important computational building block in Online
Analytical Processing (OLAP) [1]. Considerable works on
developing efficient data structures and algorithms have been
proposed for multidimensional aggregations on CPU
uniprocessors in the past few decades [2]. Modern hardware
architectures increasingly rely on parallel technologies to increase
the processing power due to various limits in improving the
speeds of uniprocessors [3]. Unfortunately, existing data
structures and algorithms that are designed for serial
implementations may not be able to effectively utilize the parallel
processing power of modern hardware, including multi-core CPUs
and many-core GPUs [3]. Despite the fact that parallel hardware
are already available in the majority of commodity computers,
there are still relatively few works in exploiting such parallel
processing power for OLAP queries, especially in the areas of
spatial and temporal aggregations of large-scale geographical data
where complex join operations are required in the aggregations.
For example, counting the number of taxi pickups at each of the
community districts or census blocks (spatial aggregation) and
generating hourly histogram of drop-offs near the JFK airport
(temporal aggregation).

In this study, we report our work on aggregating
hundreds of millions of taxi trip records in the New York City
(NYC) area which amount to approximately half a million taxi
trip records in a day on average. Using the approximately 170
million taxi trip records in 2009, each of which includes a pickup
location/time, a drop-off location/time and several additional data
attributes such as fare, trip distance and duration, we have
experimented various spatial and temporal aggregations on both
multi-core CPUs and many-core GPUs. By utilizing spatial joins
to support efficient online processing, we are able to achieve real-
time responses for spatial, temporal and spatiotemporal

aggregations at the different hierarchical levels. Compared with
traditional approaches that rely on relational databases and spatial
databases for aggregations, our techniques have reduced the
OLAP query response times from a few days to a few seconds.
This makes it possible for urban geographers and transportation
researchers to explore the large-scale taxi trip data online in an
interactive manner.

The rest of the paper is arranged as following. Section 2
introduces the background, motivation and related works. Section
3 presents the spatial and temporal hierarchies in aggregating taxi
trip data. Section 4 provides the details on the parallel
implementations of the aggregations on both multi-core CPUs and
many-core GPUs. Section 5 reports the experiment results. Finally
section 6 is the conclusion and future work.

2. BACKGROUND, MOTIVATION AND
RELATED WORK

Almost all taxi cabs in cities of the developed countries
have been equipped with GPS devices and different types of trip
related information are recorded. For example, the more than
13,000 GPS-equipped medallion taxicabs in the New York City
(NYC) generate nearly half a million taxi trips per day and
approximately 170 million trips per year serving 300 million
passengers. The number of yearly taxi riders is about 1/5 of that of
subway riders and 1/3 of that of bus riders in NYC, according to
MTA (Metropolitan Transportation Authority) ridership statistics
[4]. Taxi trips play important roles in everyday lives of residents
and visitors of NYC as well as any major city worldwide.
Exploring traffic and travel patterns from large-scale taxi trip
records is important in understanding human mobility and
facilitating transportation planning.

OLAP technologies are attractive to explore the possible
patterns from the large-scale taxi trip records. As the taxi trip data
has spatial dimensions and temporal dimensions for both pickup
and drop-off locations and conventional dimensions (e.g., fare and
tip), taxi trips can be naturally modeled as spatio-temporal data
which requires synergizing existing research on Spatial OLAP (or
SOLAP) [5][6] and temporal OLAP (TOLAP) [5][7] and their
combinations [5]. Due to the popularity of geo-reference data,
there are increasing research and application interests in SOLAP.
However, most of them focus on data modeling [5, 8], query
languages [5, 10] and applications on top of spatial databases and
Geographical Information System (GIS) [11-14]. A few
sophisticated indexing and query processing algorithms to speed
up certain analytical operations such as consolidation/aggregation,
drill-down, slicing and dicing have been proposed [2, 15-18].
SOLAP applications on top of spatial databases and GIS, while
easy to implement, impose additional I/O and computational
overheads which may further slow down spatial and temporal
aggregations and may not be suitable for our application given the
large number of data records. We also note that the existing
research on SOLAP mostly targeted at the traditional computing
framework, i.e., disk resident data on uniprocessors based on

serial algorithms, which makes them incapable of handling large-
scale data on parallel hardware architectures.

Our experiments using the open source PostgreSQL
database have shown that the performance of spatial aggregations
on a large-scale dataset, which contains the hundreds of millions
of record, using the traditional disk-resident database systems is
too poor to be useful for our applications. We note that spatial
queries are supported in PostgreSQL through the PostGIS
extension [19]. The appendix at the end of the paper lists 16 SQL
statements (Q1-Q16) that are involved in a database based
implementation of spatial and temporal queries, where tables t and
lion09C represent the taxi trip records data and street network data,
respectively. Note that queries Q1 through Q8 are used for spatial
associations (including indexing and spatial join). Q9 and Q10 are
used for indexing materialized spatial relationships, i.e., PUSeg
and DOSeg are indexed as relational attributes. Q11 and Q12 are
used for spatial aggregations based on the materialized spatial
relationships. Finally, Q13 and Q14 are used for temporal
indexing and Q15 and Q16 are used for temporal aggregations.
On a high-end computing node running PostgreSQL 9.0, Q1
(|t|~=170 million and |lion09c|~=150 thousand) took 105.8 hours
and Q5 took 34.43 hours. We note that Q5 is already an optimized
SQL statement by using the non-standard “SELECT DISTINCT
ON” clause in PostgreSQL and approximating the nearest-
neighbor query using the ST_DWithin function and the “ORDER
BY distance” clause. Obviously the performance is far from
satisfactory for online OLAP queries. As a matter of fact, we had
decided to seek alternative solutions before all the 16 queries
could complete during a reasonably long period because of the
poor performance.

While we are aware that certain optimization techniques,
such as setting proper parameters and data partitioning, can
potentially improve the overall performance, we have concluded
that OLAP queries based on traditional database systems can not
achieve the performance level that we are aiming at for the data at
the scale. Our additional experiment results have also revealed
that the performance can be drastically improved by utilizing
large main-memory capacities and GPU parallel processing
[20][21][22]. This has motivated us to investigate techniques in
boosting the performance of spatial, temporal and spatiotemporal
aggregations by making full use of modern hardware that have
already been equipped in commodity personal computers.

We refer to [1] for a brief review on parallel OLAP
computation. We note that existing works on parallel OLAP
mostly focused on parallelization on shared-nothing architectures
while leaving parallelization on shared-memory SMP (Symmetric
multiprocessing) architectures, including both multi-core CPUs
and many-core GPUs, largely untouched. The number of
processing cores on both single-node CPUs and GPUs are fast
increasing. The mainstream Intel CPUs and Nvidia GPUs have 12
and 512 cores, respectively. Devices based the Intel Many
Integrated Coe (MIC) architecture will soon be available on the
market with 48 or more cores [23] and devices based on Nvidia
Kepler architecture equipped with more than 3,000 cores [24] is
currently available in the market. These inexpensive devices
based on the shared-memory SMP architectures are cost-effective
and relatively easy to program. We believe it is an attractive
alternative to cluster computing in solving many practical large-
scale data management problems when compared to MapReduce
based cloud computing where computing resources are often
utilized inefficiently [25]. Despite the fact that shared-nothing
based architectures are often considered having better scalability

than shared-memory based ones, we argue that, from a practical
perspective, higher scalability can be achieved by integrating the
two architectures when necessary. Fully utilizing the parallel
processing power of SMP processors (including both CPUs and
GPUs) will naturally improve the overall system performance in a
cluster computing environment using grid or cloud computing
resources. As a first step, we currently focus on parallel
aggregations on multi-core CPUs and many-core GPUs equipped
in a single computing node, i.e., in a personal computing
environment that is more suitable for interaction-intensive
applications such as OLAP queries.

There are a few pioneering works on using multicore
CPUs and GPUs for OLAP queries including aggregations. The
design and implementation of the HYRISE system [26] has
motivated our work in many aspects, such as column-oriented
physical data layout, data compression and in-memory data
structures. However, most of the existing systems including
HYRISE are designed for traditional business data and do not
support geo-referenced data. There are also several attempts in
using GPUs for OLAP applications [2][27][28][29] with
demonstrable performance speedups. However, again, they do not
explicitly support spatial or spatiotemporal aggregations which
are arguably more computationally intensive. Furthermore, while
previous studies have shown that parallel scan based GPU
implementations can be effective in processing data records in the
order of a few millions [1][27], the number of data records in our
application is almost two orders larger which makes GPU
implementation more technically challenging.

3 SPATIAL AND TEMPORAL
AGGREGATIONS OF TAXI TRIPS

The raw taxi service data has a few dozens of attributes
and ten are considered most relevant to our analysis: driver
identifier (ID), pick-up time (PUT), drop-off time (DOT), trip
distance (DIS), trip fare (FARE), trip tip (TIP), pick-up latitude
(PULat), pickup longitude (PULong) , drop-off latitude (DOLat)
and drop-off longitude (DOLong). Various aggregations can be
performed based on these data attributes and the planned support
for spatial and temporal aggregations has been outlined in [20].
One of the primary focuses of this paper is to discuss the design
and implementation details of these aggregations. For the sake of
being self-content, we have replicated the design in Fig. 1 which
will be discussed in detail in the following subsections. As spatial
aggregations using uniform grids have been discussed in [20] in
details and they belong to a different set of technologies, we have
excluded them from the figure.

3.1 Spatial Associations and Aggregations
While the temporal aggregation hierarchy listed in Fig.

1 is relatively straightforward, more knowledge on the study area
and application background is needed to understand the presented
spatial hierarchy listed in the middle-left of the figure. There are
three types of urban infrastructure data involved in our application,
i.e., street networks (polyline), collectively exhaustive polygons
and non- collectively exhaustive polygons. The distinction
between the last two depends on whether the union of the
polygons in the respective dataset covers the study area
completely. Many administrative zones (such as community
districts and police precincts) and census blocks/tracts belong to
the first category. In this case, taxi trip locations can be associated
with the polygons through point-in-polygon test, i.e., based on
topological relationships [20][21]. For tax lots/blocks, they

represent the land parcels that are owned by individuals or
institutions and do not cover road beds. As such, the association
between taxi trip locations and the polygons is based on
geometrical distances, e.g., nearest neighbor principle [20][22].
For the street network, we use the LION dataset published by the
NYC Department of City Planning (DCP) [30] where street
segments are nicely associated with quite a few types of polygon
zones as shown in Fig. 1. To associate point locations with
community districts or police precincts, while it is possible to
spatially associate points with polygons though the point-in-
polygon tests directly [21], if a point location is associated with a
street segment first based on a distance measurement, an easier
solution is possible. With the help of the parent-child relationship
between community districts/police precincts and street segments
in the DCP LION dataset, spatial aggregation based on the
segment identifiers is much less computationally intensive than
through point-in-polygon tests.

While many existing studies rely on the underlying
spatial databases to compute spatial relationships on-the-fly (e.g.,
point-in-polygon test and nearest neighbor finding), these
computations are very expensive and should be accelerated to
improve the performance of online OLAP queries. Towards this
end, we have developed several GPU based modules to efficiently
compute the spatial relationships between the taxi trip
pickup/drop-off locations and different types of polygons based
on different criteria. The implementations details of the point-in-
polygon test and nearest neighbor based spatial joins for the

associations are described in detail in [21] and [22], respectively.
Following the same framework, we can associate the point
locations with street segments in the NYC DCP LION dataset
based on the nearest neighbor principle. Actually we can pretty
much re-use the nearest neighbor based association between
points and polygons [22]. This can be further explained by using
Fig. 2 where three types of spatial associations are illustrated. To
assign a polygon identifier to a point location based on the nearest
neighbor principle (Fig. 2C), all the polygons that intersect with
the window centered at the point is first identified. For each of the
intersecting polygon, the distance between the point and the
polygon is computed and the polygon that has the shortest
distance with the point is associated. To calculate the distance
between a point and a polygon, the shortest distance between the
point and all the edges of the polygons is used. The same
procedure can be used to associate points with street segments as
illustrated in Fig. 2A as both polygon boundaries and street
segments can be considered as polylines. Since the majority of the
street segments have only one edge while a polygon has at least
three edges, the computation overhead is smaller. The approach to
associate points with polylines can also be used for point-in-
polygon test as illustrated in Fig. 2B ([21] provides more details).
From now on, we assume that each point location is associated
with an identifier for each type of infrastructure data, such as
street segments in Fig. 2A, census blocks in Fig. 2B and tax
blocks in Fig. 2C.

-

Fig. 1 Illustration of Spatial and Temporal Aggregation Hierarchies
Clearly there is a tradeoff between materializing higher

levels of identifiers (e.g., census tracts and tax lots) and looking
them up on-the-fly based on the semantic hierarchical
relationships (e.g., parent child relationships in Census
Tract Census Block and Tax Lot Tax Block). Our design is to
materialize the high-level identifiers and store them on disks in
the same way as the bottom level identifiers but it is up to the
query optimizer to decide whether to use them by loading them

from disks to CPU/GPU main memories. When there are
sufficient memory capacities left, it may still be beneficial to load
the materialized high-level identifiers from disks. Given that
many high-level identifiers are duplicated, generic data
compression techniques can be applied to further reduce disk
storage and I/O overheads and we refer to [31][32] for CPU and
GPU based compressions on relational data in a database setting.

.

Fig.2 Illustration of Three Types of Point to Infrastructure Data Association for Spatial Aggregations

 Year

Month

Day
Hour

Day of the Year Week of the Year

Day of the Week

City

Borough
Community

District Police
Precinct

Census Tract

Census Block

Street Segment

Tax Lot

Tax block

Pickup/drop-off locations (lat/lon pairs)

1/5/15/30-minutes

Pickup/drop-off timestamps

NYC taxi trip records

Peak/off-peak

Auxiliary data (weather, events…)

B) Point-in-Polygon Topological Test A) Point-to-Segment Distance C) Point-to-Polygon Distance

3.2 Compression and Temporal Aggregations
After introducing the design considerations of spatial

aggregations, we now turn to temporal aggregations. Although the
temporal hierarchy shown in Fig. 1 is more universal and easier to
understand than the spatial hierarchy we have used in this study,
given that time functions are not supported on GPUs, a technical
challenge is to develop a compact time representation that has
small memory footprint and is GPU computing friendly when it
comes to temporal aggregation. We note that the text format of the
pickup and drop-off times converted from relational databases like
“2009-01-17 23:52:34” takes 20 bytes. While the format can be
easily converted to “struct tm” in the standard C language to
satisfy the needs of all temporal aggregations (e.g., month, day of
the week) on CPUs, we found that the data structure takes 56
bytes on 64-bit Linux and 44 bytes on 32-bit Linux platforms
which may be too much from a memory footprint perspective.
Furthermore, the time structure can not be used on GPUs directly
which brought a signficant compatibility issue. Our solution is to
compress the pickup and drop-off times (PUT and DOT) into 4-
byte (32 bits) memory variables using the following bit layout
starting from the most insignificant bit: 6 bits for second (0-59), 6
bits for minute (0-59), 5 bits for hour (0-23), 5 bits for day (0-30)
and 4 bits for month (0-11). The remaining 6 bits (0-63) can be
used to specify the year relative to a beginning year (e.g., 2000)
which should be sufficient for a reasonably long study period.
Retrieving any of the year, month, day, minute and second fields
can be easily done by bit shifting which is efficient on both CPUs
and GPUs. The straightforward technique has reduced memory
footprint to 1/5 (4/20) and is friendly to both CPUs and GPUs.

At the first glance, the design does not support temporal
aggregations based on “day of the week” and “day of the year”
very well as these two fields are not explicitly stored as in “struct
tm” in the standard C language. Computing the values of these
two fields, while feasible on CPUs (by using C/C++ mktime
function), can incur signficant overheads when the number of
records is huge. For example, our experiments have shown that
computing “day of the week” alone for 170 million records can
take 22 seconds, i.e., 100+ CPU cycles per timestamp on average.
However, we would like to draw attention to the fact that
timestamps can be aggregated by “year+month+day” before they
are further aggregated according to “day of the week” or “day of
the year”. Since the possible combinations of (year, month, day)
in a reasonably long period is limited (in the orders of a few
thousands), they can be aggregated to “day of the week” or “day
of the year” in a fraction of a millisecond using the C/C++ mktime
function on CPUs. The design also eliminates the need for GPU
implementation to compute “day of the week” or “day of the
year” from “year+month+day” which is nontrivial.

The distinctions between “peak” and “off-peak” are
often combined with the distinctions among week days and
weekends as well as different types of holidays which make
temporal hierarchies a little more complex in this case. However,
the possible number of combinations does not depend on the
number of data records and can be hardcoded into lookup tables to
keep track of the child-parent relationships (m:1) when necessary
on both CPUs and GPUs. In particular, these read-only, small
sized lookup tables can be stored in special read-only texture
memories to speed up the lookups on Nvidia GPUs.

4 IMPLEMENTATION DETAILS

4.1 Overview
It is beyond our scope to implement all the types of the

spatial, temporal and spatiotemporal aggregations that have been
modeled in the literature [5][33]. Instead, we focus on the
implementations of aggregations along the spatial and temporal
hierarchies shown in Fig. 1 and discussed in Section 3. We divide
an aggregation into two phases, i.e., the association phase and the
counting phase. The association phase, typically implemented as a
join, can be performed either offline or online. The advantage of
materializing spatial, temporal or spatiotemporal relationships
offline is that, as computing the relationships typically is
expensive, directly accessing the materialized relationships can
significantly improve the overall performance. However, when
dynamic query criteria are imposed (such as those based on fare
and tip), offline materialization becomes infeasible and fast real-
time online aggregations become critical. In addition, when the
spatial aggregations are combined with temporal aggregations (i.e.,
spatiotemporal aggregations) at arbitrary levels, the possible
number of aggregations grows quickly which makes offline
materialization less attractive due to disk storage, I/O and
maintenance overheads. Online associations are more desirable in
such cases.

In this study, as discussed in Section 3.1, we will re-use
the framework of GPU-based spatial join to associate taxi pickup
and drop-off locations with their nearest street segments or
polygons for further aggregations along the spatial and temporal
hierarchies. Due to space limit, we will not repeat the
implementation of the GPU based spatial join algorithms but we
refer to [21] and [22] for details. We will report the experiment
results on spatially joining pickup locations with street segments
in Section 5.1 as the experiments have not been done previously.
Before we introduce the implementation details of the counting
phase on both multi-core CPUs and many-core GPUs in the next
two subsections, we would like to note that the number of bins
involved in the aggregations listed in Fig. 1 range from a few
hundreds of thousands (e.g., tax block and street segments) to a
few (e.g., days of the week) and some are fixed (e.g., 24 hours in a
day) while some others are variable (e.g., street segments)
depending on data semantics.

4.2 Parallel Counting on Multi-Core CPUs
Although it is more convenient to use Standard

Template Library (STL) [34] map data structure to store (key,
count) pairs for counting, we have found that using simple linear
data structures such as arrays is much more efficient. While using
arrays requires knowing array lengths beforehand, typically this is
not a problem for OLAP applications as the metadata information
of each dimension is often known (or the upper bound can be
estimated). For comparison purposes, we have implemented a
same aggregation using both the STL map data structure and
arrays on CPUs as reported in Section 5. To parallelize the
counting phase on CPUs, we have used OpenMP directives (e.g.,
pragma omp for). To avoid write conflicts, each thread is given its
own private variables (arrays or STL maps) before the individual
aggregated results are combined into the final results. Note that
this is only possible when the number of threads is small (i.e., on
CPUs). The approach to avoid write conflicts is not scalable in
general and can not be applied to GPUs where hundreds of
thousands of threads may be launched simultaneously. Since a

dual quadcore machine has 8 cores and each core supports 2
software threads using the Intel hyper-threading technology, we
have varied the numbers of threads from 1, 2, 4, 8 to 16 for
comparison purposes. Using 16 threads, which is twice the
number of cores, may or may not improve overall performance
depending on the degree of resource contentions.

4.3 Parallel Counting on Many-Core GPUs
Two options are available to implement

multidimensional aggregations on GPUs, one is based on native
parallel programming languages such as CUDA [35] and one is
using parallel primitives that are developed on top of the native
parallel programming languages. The first option, which requires
a deep understanding of GPU hardware details and high parallel
programming skills, has been adopted in [1]. Even though parallel
reduction is a well-studied problem and the mapping between the
reduction primitive and OLAP aggregations is relatively
straightforward, it remains non-trivial to implement the
aggregations with good performance using native programming

languages as reported in [1]. Another research effort on MOLAP
cube [27] is closely related to OLAP processing. The research
utilizes parallel primitives that have been implemented in the
CUDPP parallel library [36] which has allowed the authors to
focus on high-level constructs without diving into too many
hardware details. Based on these two pioneering works, we have
decided to adopt a parallel primitive based approach by using the
Thrust parallel library [37] as much as possible for fast
prototyping and future portability. We note that Thrust is now part
of CUDA SDK and the functionality and efficiency have been
significantly enriched in its recent releases. That being said, we
are aware that there are tradeoffs between code efficiency and
coding complexity of parallel primitives based implementations
versus native CUDA based implementations and we plan to
compare the performance differences in our future work. We next
introduce the parallel primitive based GPU implementation using
the Thrust library in more details.

Fig. 3 Algorithm Design and Code Segment of a Spatiotemporal Aggregation using Parallel Primitives

Since 1-dimensional arrays work best for the current
generations of Nvidia GPUs, the data arrays on CPUs that have
been used for aggregations are copied to GPUs. The aggregations
can be nicely mapped to the reduce_by_key parallel primitive that
is supported by Thrust. Together with some other parallel
primitives (such as transform and sort), iterators (such as constant,
and zip) and user defined functors (C++ function objects), these
aggregations typically can be implemented in a few lines. The
Thrust library handles all thread organization, kernel launching
and performance optimization issues transparently to developers.
While it is beyond the scope of this paper to present the details of
primitives based parallel programming, we refer to the Thrust
website [36] for more details. The appendix of [21] also provides
a brief introduction to several parallel primitives that are involved
in the GPU implementation of the aggregations and can be a
source of reference if interested.

Assume we want to perform a spatiotemporal
aggregation on the street segment and hour, i.e., counting the
number of taxi pickup locations at each of the street segments at
the each of the 24 hours. We are given two vectors with the first
storing the street segments (after spatial association) and the
second storing the pickup time in the compressed form (Section

3.2) for all taxi trip records using a column-oriented data layout.
The task can be completed using a few parallel primitives as
illustrated in the algorithm design and code segment given in Fig.
3. Note that the zip iterator is used to combine the elements in the
two input vectors into tuples in the temp_keys vector so that they
can be used in the required functor in the transform primitive to
convert the segment identifiers and pickup hours into keys for
reduction. The last five bits in a resulting key are allocated to hour
(24<25) and the rest of the bits are allocated to segment identifier
which allows up to 227 segment identifiers and is sufficient in our
application. The same procedure can be applied when variables of
higher dimensions are involved in key formations.

The reduce_by_key primitive in Thrust is a segmented
version of the regular reduce primitive. To help understand the
procedure, a simple example is provided in the top-right part of
Fig. 3. After the sorting in Step 2, the same keys are arranged
consecutively in the temp_keys vector. For each of the unique
keys in the temp_keys vector (which is output to the pu_keys
vector), the count in the pu_count vector is increased (defined by
the thrust::plus functor) by 1 (as defined by the
hrust::constant_iterator). The primitive allows user to define how
to determine whether two keys are equal by providing a functor to

Inputs: vectors pu_seg and pu_t
Outputs: vectors pu_key and pu_count representing aggregated keys and counts

Step 1: transform pu_seg and pu_t into a vector of bin keys as the following:
thrust::transform (

thrust::make_zip_iterator(thrust::make_tuple(pu_seg.begin(),pu_t.begin()),
thrust::make_zip_iterator(thrust::make_tuple(pu_seg.end(),pu_t.end()),
temp_keys.begin(),
make_key()
);

Step 2: in-place sort the key vector to get ready for reduction
thrust:sort(temp_keys.begin(),temp_keys.end());

Step 3: reduce by key to count the number of trips in each bin and output the results to
pu_count as the following:
int num_keys=thrust::reduce_by_key(

temp_keys.begin(),temp_keys.end(),hrust::constant_iterator<int>(1)
pu_keys.begin(), pu_count.begin(),
thrust::equal_to<uint>(), thrust::plus<int>()
).pu_keys.begin()

struct make_key
{

 __host__ __device__
 uint operator()(thrust::tuple<uint, uint> v)
 {
 uint segid=(thrust::get(0)(v)) &0x07FFFFFF
 uint hour =(thrust::get(1)(v)>>12)&0x0000001F;
 return ((segid<<5)|hour);
 }
};

3 1 2 1 3 1 1 2 3 3
sort

1 2 3
2 2 1

reduce_by_key

key
count

replace the thrust::equal_to functor and how to perform the
reduction by providing a functor to replace thrust::plus functor
and thus is very flexible. Since thrust::make_tuple takes up to 10
parameters to make tuples, it should be more than sufficient to
combine dimensional values to make keys in most cases.
Experiments have shown that the sorting time usually dominates
the whole aggregation processes and we would like to discuss the
suitability of using GPU for sorting. For this purpose, we refer to
[38] for benchmarking results on GPU-based sorting for 32/64 bit
keys. The results have shown that more than 1 billion per second
sorting rate has been achieved on Nvidia GTX 480 for 32 bit keys
which is considerably faster than single core CPUs can achieve.
We also note that the primitive based implementation does incur
some overheads that can be avoided if implemented directly on
top of native parallel programming languages. For example, the
temp_keys vector is accessed multiple times when different
primitives are invoked. Nevertheless, we consider the tradeoff is
well justified from several practical aspects.

5 EXPERIMENTS AND RESULTS

5.1 Data and experiment setup
Through a partnership with the New York City (NYC)

Taxi and Limousine Commission (TLC), we have access to
roughly 300 million GPS-based trip records collected during a
period of about two years (2008-2010). In this study, we use the
approximately 170 million pickup locations and times in 2009 for
experiments. The performance of associating the pickup locations
with census block polygons and tax block polygons for spatial
associations have been reported in [21] and [22], respectively. The
GPU performance has been compared with CPU or hybrid
implementations as well. In this study, the GPU-based
implementation on associating the taxi pickup locations with
147,011 street segments to compute the spatial relationships
between taxi pickup locations and street segments follows a very
similar approach as discussed in Section 3.1. All experiments are
performed on a Dell Precision T5400 workstation equipped with
dual quadcore CPUs running at 2.26 GHZ with16 GB memory, a
500GB hard drive and an Nvidia Quadra 6000 GPU device. The
sustainable disk I/O speed is about 100 megabytes per second
while the theoretical data transfer speed between the CPU and the
GPU devices is 4 gigabytes per second through a PCI-E card.

5.2 Results on Spatial Association on GPUs
Among the 168,379,168 taxi pickup locations in NYC,

the majority are successfully associated with their nearest street
segments within D=250 feet. However, there are 867,163
locations have computed shortest distances that are more than 250
feet which are considered as outliers (0.515%) and are excluded
from subsequent analysis. With respect to runtime, similar to
what have been discussed in detail in our previous works [21][22],
there are three components involved, i.e., generating point
quadrants (t1), filtering bounding boxes of both point quadrants
and street segments (t2) and distance computation and identifier
assignment (t3). Using the maximum point quadrant size K= 512,
the runtimes for the three components are listed in Table 1 where
the columns indicate the numbers of months in the year (2009)
that are used in the spatial associations. We can see that t1
dominates the total runtime in all tests and increases almost
linearly with the number of point locations. We note that t1 has
already included data transfer times between CPUs and GPUs
which count nearly 25% of the end-to-end runtime using 12

months data (the whole year of 2009). Since it takes about 15
seconds for 12 months and less than 5 seconds for 3 months, we
conclude that spatial associations on GPUs can achieve near real-
time responses and are suitable for online aggregations (the
counting time is negligible as can be seen from the results in the
next two subsections).

These results, together with our previous results in
associating the 168.38 million point locations with 43,252 census
block polygons (11.165 seconds) [21] and 735,488 tax block
polygons (33.110 seconds) [22] suggest that the performance
boosting techniques on modern hardware can have great potentials
in speeding up processing of large-scale geo-referenced data.
Given the performance at the yearly level (in the order of 10-40
seconds), we are positive that interactive spatial associations
(spatial join queries) may be possible at the monthly level on low-
end commodity GPUs with small memory capacities (e.g., 1 GB).
This also makes it possible to scale-out to larger datasets by
adopting distributed computing using a shared-nothing framework
as discussed in Section 2 and we leave it for our future work.

Table 1 Results on Spatial Associations on GPUs
of Months 1 2 3 4 6 9 12
N1 (*106) 13.84 27.00 41.17 55.23 83.81 124.64 168.38
N2 (*106) 0.155 0.306 0.496 0.676 0.982 1.358 1.747
t1 (second) 0.955 1.876 2.908 3.915 5.986 9.001 12.233
t2 (second) 2.059 1.615 1.472 1.495 1.123 1.176 1.221
t3(second) 0.200 0.343 0.519 0.677 0.941 1.270 1.601
T=t1+t2+t3 3.214 3.834 4.899 6.087 8.050 11.447 15.055
Note: N1- # of point locations; N2- # of point quadrants

5.3 Results on Parallel Counting on CPUs
We have performed six groups of aggregations on

multi-core CPUs with three types of aggregations and two types
of data structures (STL container class and array). The three types
of aggregations are the following: counting on the 147,011 street
segments using both STL and array (spatial aggregation),
counting on the 24 hours (temporal aggregation) and counting on
both street segments and hours (spatiotemporal aggregation). We
note that the street segment identifiers in the DCP LION dataset
are not numbered continuously due to regular quarterly updates.
However, the largest number is 175,440 which is not far way from
the number of street segments identifiers and we can use a
dynamically allocated array for the counting purpose. The
purposes of the experiments are the following (1) Is it feasible to
perform real-time aggregations on CPUs? (2) What are the
differences in using STL container classes that requires extensive
dynamic memory allocations and simple linear data structures like
arrays? (3) What is the scalability of using multiple threads on
multi-core CPUs for the aggregations? Clearly, the number of bins
in the spatial aggregation based on segment identifiers is 3-4
orders larger than the number of bins in the temporal aggregations
based on hours and can be used to represent the two extremes in
aggregations with respect to cardinality. The results are
summarized in Table 2 where columns 1T/2T/4T/8T/16T refer to
using 1, 2, 4, 8 and 16 threads, respectively.

From Table 2 we can see that, the array based serial
implementations are about 23X, 13X and 29X faster than the STL
based serial implementations for the three types of aggregations.
The same trends can be observed when comparing parallel
implementations using different numbers of threads although the
speedups decrease as the numbers of threads increase. The results
seem to suggest that the larger the bins, the greater the speedups
for array based implementations over the STL based

implementations. This is not surprising in the sense that memory
accesses are becoming increasingly expensive on modern
processors when compared to computing [3]. Dynamic memory
allocations and deallocations are not only costly but also result in
“pointer-chasing” problem especially when memory footprints are
large. This may in turn incur signficant cache misses due to
irregular memory accesses. We thus, from a practical perspective,
advocate simple linear data structures for fast in-memory scans
and avoid complex data structures (e.g., indexing trees and
aggregation trees) unless there are clear performance advantages.

From Table 2 we can also see that the performance of
the six parallel aggregations increases sub-linearly with the
number of threads on multi-core CPUs, especially when the
number of threads is increased from 8 to 16 where performance
can even drop. This is expected as threads, especially the two
software threads within a single core, may compete for resources,

including memory bandwidth. It can also be observed that the
speedups (up to 7X) for counting using STL are generally higher
than that of using array (about 2X). This might be due to the
reason that the intensity of memory bandwidth competitions for
the array based implementations are higher as the processing
speed (and hence data movement along the memory bandwidth)
13-29 times higher. The memory bandwidth limit may be an
important factor in fully utilizing the parallel processing power of
multi-core CPUs. Given that counting on 170 million records only
requires about 1/4 second for both spatial and temporal
aggregations, which amounts to a 680 million per second rate on a
dual quadcore commodity machine, we are positive that a single
multi-core machine can achieve signficant throughputs in OLAP
processing if the parallel processing power of SMP parallel
hardware is fully utilized.

Table 2 Experiment Results for Different Aggregations on Multi-Core CPUs (in Seconds)

Implementation Aggregation Serial 1T 2T 4T 8T 16T
1 Pickup Segment (spatial) 12.519 19.776 9.768 4.992 2.513 1.721
2 Pickup Hour (temporal) 7.043 6.089 4.347 2.121 1.186 0.907

STL

3 Pickup Segment+Hour (Spatiotemporal) 17.128 24.238 12.522 6.707 3.803 3.781
4 Pickup Segment (spatial) 0.550 0.548 0.228 0.212 0.206 0.215
5 Pickup Hour (temporal) 0.524 0.511 0.644 0.477 0.356 0.258

ARRAY

6Pickup Segment+Hour (Spatiotemporal) 0.582 0.587 0.322 0.279 0.324 0.446

5.4 Results on Parallel Counting on GPUs
We have performed the same spatial, temporal and

spatiotemporal aggregations on GPUs. The results show that the
hourly temporal aggregation requires 0.257 second which is 2X
faster than the serial array based CPU implementation but is
comparable to the best parallel CPU implementation using 4/16
threads. The spatial aggregation requires 0.188 second which is
about 3X times faster than the array based serial implementation
but is only marginally better than the best parallel CPU
implementation using 16 threads. For the spatiotemporal
aggregation, the GPU runtime is 0.274 second which is 2.14X
faster than the serial CPU implementation but again it is
comparable with the best parallel CPU implementation using 4
threads. While the comparisons do not suggest that many-core
GPU is a clear winner over multi-core CPU as previous research
has suggested, we have to bear in mind that our aggregation
implementations are based on high-level parallel primitives in a
way similar to STL classes. If we compare the respective
runtimes for GPU and STL implementations, the GPU
implementations still gain 9.2X, 3.5X and 13.8X for spatial,
temporal and spatiotemporal aggregations.

Although the parallel primitives based
implementations on many-core GPUs are only reasonably better
than multi-core CPUs in the counting phase, our implementation
of the spatial associations have achieved 3-4 orders better
performance on many-core GPUs than the implementation using
an existing database. Since the runtimes of the counting phase
are fairly insignificant when compared with that of the
association phase (1/4 second v.s. 15 seconds), the overall
speedups are still signficant with respect to the end-to-end
performance. On the other hand, if only the runtimes in the
counting phase are included in the query times, which is typical
in the cases where spatial relationships are materialized in a
static setting as discussed in Section 5.1, since the performance
of many-core GPUs and multi-core CPUs are comparable,

integrating the two types of SMP processors to further improve
the overall performance is desirable. However, the approach can
be technically challenging and is left for our future work.

6 CONCLUSION AND FUTURE WORK
In this study, we report our designs, implementations

and experiments on spatial, temporal and spatiotemporal
aggregations of hundreds of millions of taxi trip records in an
OLAP setting. By utilizing the massively data parallel GPU
processing power, we were able to spatially associate nearly 170
million taxi pickup location points with their nearest street
segments among 147,011 candidates in about 15 seconds.
Spatial, temporal and spatiotemporal aggregations can be
processed in a fraction of a second on both multi-core CPUs and
many-core GPUs. The experiment results support the feasibility
of building a high-performance OLAP system for processing
large-scale taxi trip data for real-time, interactive data
explorations by intelligently integrate the two types of SMP
processors with distinct hardware features.

For future work, first of all, to scale up, we would like
to further reduce the processing times for both spatial
association and counting. Second, to ensure usability, we would
like to adopt an engineering approach to investigate the
appropriate spatial and temporal scales so that interactive OLAP
processing can be smoothly performed on commodity personal
computers with different hardware configurations. Finally, to
scale-out, we plan to explore cluster computing technologies to
process larger scale data, for example, multi-year and multi-city.

References
1. Tobias, L., Amitava, D., Zurab, K. and Christoffer, A. (2010).

Exploring graphics processing units as parallel coprocessors for
online aggregation. Proceedings of ACM DOLAP Workshop.

2. Wrembel, R., Aufaure, M.-A. and Zimányi, E. (2012). Data
Warehouse Performance: Selected Techniques and Data Structures.
Proceedings of eBISS 2011 (Springer LNBIP 96), 27-62.

3. Hennessy, J.L. and Patterson, D. A, 2011. Computer Architecture:
A Quantitative Approach (5th ed.). Morgan Kaufmann.

4. Metropolitan Transportation Authority (2012). Subway and Bus
Ridership. http://www.mta.info/nyct/facts/ridership/index.htm

5. Vaisman, A. and Zimnyi, E. (2009). What Is Spatio-Temporal Data
Warehousing? Proceedings of DaWak Conference.

6. Rivest S., Bédard Y., Marchand P., 2001, Toward Better Support
For Spatial Decision Making: Defining the Characteristics of
Spatial On-Line Analytical Processing (SOLAP), Geomatica, 55(4),
539 -555

7. Alberto, O. M. and Alejandro, A. V. (2000). Temporal Queries in
OLAP. Proceedings of VLDB Conference.

8. Fidalgo, R., Times, et al(2004). GeoDWFrame: A Framework for
Guiding the Design of Geographical Dimensional Schemas.
Proceedings of DaWak Conference.

9. Kamal, B., Sandro, B., Hadj, M. and Francois, P. (2010). Towards
the definition of spatial data warehouses integrity constraints with
spatial OCL. Proceedings of ACM DOLAP workshop.

10. Gomez, L., Haesevoets, S., Kuijpers, B. and Vaisman, A. A.
(2009). Spatial aggregation: Data model and implementation.
Information Systems 34(6): 551-576.

11. Ariel, E., Leticia, G., Bart, K. and Alejandro, A. V. (2007). Piet: a
GIS-OLAP implementation. Proceedings of ACM DOLAP.

12. Bimonte, S., Tchounikine, A. and Miquel, M. (2007). Spatial
OLAP: Open Issues and a Web Based Prototype. Proceedings of
the AGILE Conference on GIS.

13. Scotch, M. and Parmanto, B. (2005). SOVAT: Spatial OLAP
Visualization and Analysis Tool. Proceedings of the Hawaii
International Conference on System Sciences.

14. Octavio, G., Jose-Norberto, et al (2010). Using web-based
personalization on spatial data warehouses. Proceedings of the
EDBT/ICDT Workshops

15. Siqueira, T. L., Ciferri et al (2012). The SB-index and the HSB-
index: efficient indices for spatial data warehouses.
Geoinformatica 16(1): 165-205.

16. Brito, J. J., Siqueira, T. L. L., et al (2011). Efficient processing of
drill-across queries over geographic data warehouses. Proceedings
of DaWaK Conference.

17. Kenneth, C. and Wo-Shun, L. (2008). Processing Aggregate
Queries on Spatial OLAP Data. Proceedings of DaWaK.

18. Dimitris, P., Panos, K., Jun, Z. and Yufei, T. (2001). Efficient
OLAP Operations in Spatial Data Warehouses. Proceedings of
SSTD Conference.

19. http://postgis.refractions.net/

20. Zhang, J., Gong, H. et al (2012). U2SOD-DB: A Database System
to Manage Large-Scale Ubiquitous Urban Sensing Origin-
Destination Data. To appear in the Proceedings of ACM SIGKDD
Workshop on Urban Computing.

21. Zhang, J. and You., S. (2012). Speeding up Large-Scale Point-in-
Polygon Test Based Spatial Join on GPUs. Technical report online
at http://geoteci.engr.ccny.cuny.edu/pub/pipsp_tr.pdf

22. Zhang, J, You, S. and Gruenwald, L. (2012). High-Performance
Spatial Join Processing on GPGPUs with Applications to Large-
Scale Taxi Trip Data. Technical report online at
http://geoteci.engr.ccny.cuny.edu/pub/nnsp_tr.pdf

23. http://en.wikipedia.org/wiki/Intel_MIC
24. http://en.wikipedia.org/wiki/GeForce_600_Series
25. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D. and Moon, B.

(2012). Parallel data processing with MapReduce: a survey.
SIGMOD Record, 40 (4), 11-20.

26. Grund, M., Kruger, J., Plattner, H.,et al (2010). HYRISE: a main
memory hybrid storage engine.Proceedings of the VLDB
Endowment 4(2): 105-116.

27. Krzyszto, K. and Rudny, T. (2011). MOLAP cube based on
parallel scan algorithm. Proceedings of ADBIS.

28. Kaczmarski, K. (2011). Comparing GPU and CPU in OLAP cubes
creation. Proceedings of SOFSEM.

29. Sitaridi, E. A. and Ross, K. A. (2012). Ameliorating memory
contention of OLAP operators on GPU processors. Proceedings of
DaMoN.

30. http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
31. Holloway, A. L., Raman, V., et al. 2007. How to Barter Bits for

Chronons: Compression and Bandwidth Tradeoffs for Database
Scans. Proceedings ACM SIDMOD Conference.

32. Fang, W., He, B. and Luo, Q. (2010). Database compression on
graphics processors. Proceedings of VLDB Endowment.3(1-2):
670-680

33. Ines Fernando Vega, L., Richard, T. S. and Bongki, M. (2005).
Spatiotemporal Aggregate Computation: A Survey. IEEE TKDE,
17(2): 271-286.

34. http://www.sgi.com/tech/stl/
35. http://www.nvidia.com/object/cuda_home_new.html
36. http://code.google.com/p/cudpp/
37. http://thrust.github.com/
38. Merrill, D. and Grimshaw, A. (2011). High Performance and

Scalable Radix Sorting: A case study of implementing dynamic
parallelism for GPU computing. Parallel Processing Letters 21(2):
245-272. Also online at
http://code.google.com/p/back40computing/wiki/RadixSorting

Appendix SQL Statements for spatial/temporal aggregations in PostgreSQL (Q11 and Q15 are used as examples in the experiments)

Q1: UPDATE t SET PUGeo = ST_SetSRID(ST_Point("PULong","PuLat"),4326);
Q2: UPDATE t SET DOGeo = ST_SetSRID(ST_Point("DOLong","DOLat"),4326);
Q3: CREAT INDEX ti_pugeo ON t USING GIST (PUGeo);
Q4: CREAT INDEX ti_dogeo ON t USING GIST (DOGeo);
Q5: SELECT DISTINCT ON (ID, PUT) ID, PUT, segmentid,
ST_Distance (ST_Transform (PUGeo,2263), the_geom) as ndis INTO temp_PU FROM t, lion09c
WHERE ST_DWithin (ST_Transform (PUGeo, 2263), the_geom, 100) ORDER BY PUT, ID, ndis
Q6: UPDATE t set PUSeg=(SELECT segmentid From temp_PU WHERE t.ID=temp_PU.ID AND t.PUT=temp_PU.PUT;
Q7: SELECT DISTINCT ON (ID, DOT) ID, DOT, segmentid,
ST_Distance (ST_Transform (DOGeo,2263), the_geom) as ndis INTO temp_DO FROM t, lion09c
WHERE ST_DWithin(ST_Transform(DOGeo,2263), the_geom, 100) ORDER BY DOT, ID, ndis
Q8: UPDATE t set DOSeg=(SELECT segmentid From temp_DO WHERE t.ID=temp_DO.ID AND t.DOT=temp_DO.DOT;
Q9: CREAT INDEX ti_pus ON t(PUSeg);
Q10: CREAT INDEX ti_dos ON t(DOSeg);
Q11: SELECT PUSeg, COUNT(*) FROM t GROUP BY PUSeg ORDER BY PUSeg;
Q12: SELECT DOSeg, COUNT(*) FROM t GROUP BY DOSeg ORDER BY DOSeg;
Q13: CREAT INDEX ti_put ON t (PUT);
Q14: CREAT INDEX ti_dot ON t (DOT);
Q15: SELECT EXTRACT (hour FROM PUT) as hour, count(*) FROM t GROUP BY hour ORDER BY hour
Q16: SELECT EXTRACT (hour FROM DOT) as hour, count(*) FROM t GROUP BY hour ORDER BY hour

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

