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ABSTRACT 
Motivated by the practical needs for efficiently 

processing large-scale taxi trip data, we have developed 
techniques for high performance online spatial, temporal and 
spatiotemporal aggregations. These techniques include timestamp 
compression to reduce memory footprint, simple linear data 
structures for efficient in-memory scans and utilization of 
massively data parallel GPU accelerations for spatial joins. Our 
experiments have shown that the combined performance boosting 
techniques are able to perform various spatial, temporal and 
spatiotemporal aggregations on hundreds of millions of taxi trips 
in the order of a few seconds using commodity personal 
computers equipped with multi-core CPUs and many-core GPUs. 
The high throughputs in a personal computing environment are 
encouraging in the sense that high-performance OLAP queries on 
large-scale data is feasible when the parallel processing power of 
modern commodity hardware is fully utilized which is important 
for interactive OLAP applications.  

1. INTRODUCTION 
 Multidimensional aggregation is considered as one of 

the most important computational building block in Online 
Analytical Processing (OLAP) [1]. Considerable works on 
developing efficient data structures and algorithms have been 
proposed for multidimensional aggregations on CPU 
uniprocessors in the past few decades [2]. Modern hardware 
architectures increasingly rely on parallel technologies to increase 
the processing power due to various limits in improving the 
speeds of uniprocessors [3]. Unfortunately, existing data 
structures and algorithms that are designed for serial 
implementations may not be able to effectively utilize the parallel 
processing power of modern hardware, including multi-core CPUs 
and many-core GPUs [3]. Despite the fact that parallel hardware 
are already available in the majority of commodity computers, 
there are still relatively few works in exploiting such parallel 
processing power for OLAP queries, especially in the areas of 
spatial and temporal aggregations of large-scale geographical data 
where complex join operations are required in the aggregations. 
For example, counting the number of taxi pickups at each of the 
community districts or census blocks (spatial aggregation) and 
generating hourly histogram of drop-offs near the JFK airport 
(temporal aggregation).  

In this study, we report our work on aggregating 
hundreds of millions of taxi trip records in the New York City 
(NYC) area which amount to approximately half a million taxi 
trip records in a day on average. Using the approximately 170 
million taxi trip records in 2009, each of which includes a pickup 
location/time, a drop-off location/time and several additional data 
attributes such as fare, trip distance and duration, we have 
experimented various spatial and temporal aggregations on both 
multi-core CPUs and many-core GPUs. By utilizing spatial joins 
to support efficient online processing, we are able to achieve real-
time responses for spatial, temporal and spatiotemporal 

aggregations at the different hierarchical levels. Compared with 
traditional approaches that rely on relational databases and spatial 
databases for aggregations, our techniques have reduced the 
OLAP query response times from a few days to a few seconds. 
This makes it possible for urban geographers and transportation 
researchers to explore the large-scale taxi trip data online in an 
interactive manner.  

The rest of the paper is arranged as following. Section 2 
introduces the background, motivation and related works. Section 
3 presents the spatial and temporal hierarchies in aggregating taxi 
trip data. Section 4 provides the details on the parallel 
implementations of the aggregations on both multi-core CPUs and 
many-core GPUs. Section 5 reports the experiment results. Finally 
section 6 is the conclusion and future work. 

2. BACKGROUND, MOTIVATION AND 
RELATED WORK 

Almost all taxi cabs in cities of the developed countries 
have been equipped with GPS devices and different types of trip 
related information are recorded. For example, the more than 
13,000 GPS-equipped medallion taxicabs in the New York City 
(NYC) generate nearly half a million taxi trips per day and 
approximately 170 million trips per year serving 300 million 
passengers. The number of yearly taxi riders is about 1/5 of that of 
subway riders and 1/3 of that of bus riders in NYC, according to 
MTA (Metropolitan Transportation Authority) ridership statistics 
[4]. Taxi trips play important roles in everyday lives of residents 
and visitors of NYC as well as any major city worldwide. 
Exploring traffic and travel patterns from large-scale taxi trip 
records is important in understanding human mobility and 
facilitating transportation planning.  

OLAP technologies are attractive to explore the possible 
patterns from the large-scale taxi trip records. As the taxi trip data 
has spatial dimensions and temporal dimensions for both pickup 
and drop-off locations and conventional dimensions (e.g., fare and 
tip), taxi trips can be naturally modeled as spatio-temporal data 
which requires synergizing existing research on Spatial OLAP (or 
SOLAP) [5][6] and temporal OLAP (TOLAP) [5][7] and their 
combinations [5]. Due to the popularity of geo-reference data, 
there are increasing research and application interests in SOLAP. 
However, most of them focus on data modeling [5, 8], query 
languages [5, 10] and applications on top of spatial databases and 
Geographical Information System (GIS) [11-14]. A few 
sophisticated indexing and query processing algorithms to speed 
up certain analytical operations such as consolidation/aggregation, 
drill-down, slicing and dicing have been proposed [2, 15-18]. 
SOLAP applications on top of spatial databases and GIS, while 
easy to implement, impose additional I/O and computational 
overheads which may further slow down spatial and temporal 
aggregations and may not be suitable for our application given the 
large number of data records. We also note that the existing 
research on SOLAP mostly targeted at the traditional computing 
framework, i.e., disk resident data on uniprocessors based on 



 

serial algorithms, which makes them incapable of handling large-
scale data on parallel hardware architectures. 

Our experiments using the open source PostgreSQL 
database have shown that the performance of spatial aggregations 
on a large-scale dataset, which contains the hundreds of millions 
of record, using the traditional disk-resident database systems is 
too poor to be useful for our applications. We note that spatial 
queries are supported in PostgreSQL through the PostGIS 
extension [19]. The appendix at the end of the paper lists 16 SQL 
statements (Q1-Q16) that are involved in a database based 
implementation of spatial and temporal queries, where tables t and 
lion09C represent the taxi trip records data and street network data, 
respectively. Note that queries Q1 through Q8 are used for spatial 
associations (including indexing and spatial join). Q9 and Q10 are 
used for indexing materialized spatial relationships, i.e., PUSeg 
and DOSeg are indexed as relational attributes. Q11 and Q12 are 
used for spatial aggregations based on the materialized spatial 
relationships. Finally, Q13 and Q14 are used for temporal 
indexing and Q15 and Q16 are used for temporal aggregations. 
On a high-end computing node running PostgreSQL 9.0, Q1 
(|t|~=170 million and |lion09c|~=150 thousand) took 105.8 hours 
and Q5 took 34.43 hours. We note that Q5 is already an optimized 
SQL statement by using the non-standard “SELECT DISTINCT 
ON” clause in PostgreSQL and approximating the nearest-
neighbor query using the ST_DWithin function and the “ORDER 
BY distance” clause. Obviously the performance is far from 
satisfactory for online OLAP queries. As a matter of fact, we had 
decided to seek alternative solutions before all the 16 queries 
could complete during a reasonably long period because of the 
poor performance.  

While we are aware that certain optimization techniques, 
such as setting proper parameters and data partitioning, can 
potentially improve the overall performance, we have concluded 
that OLAP queries based on traditional database systems can not 
achieve the performance level that we are aiming at for the data at 
the scale. Our additional experiment results have also revealed 
that the performance can be drastically improved by utilizing 
large main-memory capacities and GPU parallel processing 
[20][21][22]. This has motivated us to investigate techniques in 
boosting the performance of spatial, temporal and spatiotemporal 
aggregations by making full use of modern hardware that have 
already been equipped in commodity personal computers.  

We refer to [1] for a brief review on parallel OLAP 
computation. We note that existing works on parallel OLAP 
mostly focused on parallelization on shared-nothing architectures 
while leaving parallelization on shared-memory SMP (Symmetric 
multiprocessing) architectures, including both multi-core CPUs 
and many-core GPUs, largely untouched. The number of 
processing cores on both single-node CPUs and GPUs are fast 
increasing. The mainstream Intel CPUs and Nvidia GPUs have 12 
and 512 cores, respectively. Devices based the Intel Many 
Integrated Coe (MIC) architecture will soon be available on the 
market with 48 or more cores [23] and devices based on Nvidia 
Kepler architecture equipped with more than 3,000 cores [24] is 
currently available in the market. These inexpensive devices 
based on the shared-memory SMP architectures are cost-effective 
and relatively easy to program. We believe it is an attractive 
alternative to cluster computing in solving many practical large-
scale data management problems when compared to MapReduce 
based cloud computing where computing resources are often 
utilized inefficiently [25]. Despite the fact that shared-nothing 
based architectures are often considered having better scalability 

than shared-memory based ones, we argue that, from a practical 
perspective, higher scalability can be achieved by integrating the 
two architectures when necessary. Fully utilizing the parallel 
processing power of SMP processors (including both CPUs and 
GPUs) will naturally improve the overall system performance in a 
cluster computing environment using grid or cloud computing 
resources. As a first step, we currently focus on parallel 
aggregations on multi-core CPUs and many-core GPUs equipped 
in a single computing node, i.e., in a personal computing 
environment that is more suitable for interaction-intensive 
applications such as OLAP queries.  

There are a few pioneering works on using multicore 
CPUs and GPUs for OLAP queries including aggregations. The 
design and implementation of the HYRISE system [26] has 
motivated our work in many aspects, such as column-oriented 
physical data layout, data compression and in-memory data 
structures. However, most of the existing systems including 
HYRISE are designed for traditional business data and do not 
support geo-referenced data. There are also several attempts in 
using GPUs for OLAP applications [2][27][28][29] with 
demonstrable performance speedups. However, again, they do not 
explicitly support spatial or spatiotemporal aggregations which 
are arguably more computationally intensive. Furthermore, while 
previous studies have shown that parallel scan based GPU 
implementations can be effective in processing data records in the 
order of a few millions [1][27], the number of data records in our 
application is almost two orders larger which makes GPU 
implementation more technically challenging.  

3 SPATIAL AND TEMPORAL 
AGGREGATIONS OF TAXI TRIPS 

The raw taxi service data has a few dozens of attributes 
and ten are considered most relevant to our analysis: driver 
identifier (ID), pick-up time (PUT), drop-off time (DOT), trip 
distance (DIS), trip fare (FARE), trip tip (TIP), pick-up latitude 
(PULat), pickup longitude (PULong) , drop-off latitude (DOLat) 
and drop-off longitude (DOLong). Various aggregations can be 
performed based on these data attributes and the planned support 
for spatial and temporal aggregations has been outlined in [20].  
One of the primary focuses of this paper is to discuss the design 
and implementation details of these aggregations. For the sake of 
being self-content, we have replicated the design in Fig. 1 which 
will be discussed in detail in the following subsections. As spatial 
aggregations using uniform grids have been discussed in [20] in 
details and they belong to a different set of technologies, we have 
excluded them from the figure.  

3.1 Spatial Associations and Aggregations 
While the temporal aggregation hierarchy listed in Fig. 

1 is relatively straightforward, more knowledge on the study area 
and application background is needed to understand the presented 
spatial hierarchy listed in the middle-left of the figure. There are 
three types of urban infrastructure data involved in our application, 
i.e., street networks (polyline), collectively exhaustive polygons 
and non- collectively exhaustive polygons. The distinction 
between the last two depends on whether the union of the 
polygons in the respective dataset covers the study area 
completely. Many administrative zones (such as community 
districts and police precincts) and census blocks/tracts belong to 
the first category. In this case, taxi trip locations can be associated 
with the polygons through point-in-polygon test, i.e., based on 
topological relationships [20][21]. For tax lots/blocks, they 



 

represent the land parcels that are owned by individuals or 
institutions and do not cover road beds. As such, the association 
between taxi trip locations and the polygons is based on 
geometrical distances, e.g., nearest neighbor principle [20][22]. 
For the street network, we use the LION dataset published by the 
NYC Department of City Planning (DCP) [30] where street 
segments are nicely associated with quite a few types of polygon 
zones as shown in Fig. 1. To associate point locations with 
community districts or police precincts, while it is possible to 
spatially associate points with polygons though the point-in-
polygon tests  directly [21], if a point location is associated with a 
street segment first based on a distance measurement, an easier 
solution is possible. With the help of the parent-child relationship 
between community districts/police precincts and street segments 
in the DCP LION dataset, spatial aggregation based on the 
segment identifiers is much less computationally intensive than 
through point-in-polygon tests.  

While many existing studies rely on the underlying 
spatial databases to compute spatial relationships on-the-fly (e.g., 
point-in-polygon test and nearest neighbor finding), these 
computations are very expensive and should be accelerated to 
improve the performance of online OLAP queries. Towards this 
end, we have developed several GPU based modules to efficiently 
compute the spatial relationships between the taxi trip 
pickup/drop-off locations and different types of polygons based 
on different criteria. The implementations details of the point-in-
polygon test and nearest neighbor based spatial joins for the 

associations are described in detail in [21] and [22], respectively. 
Following the same framework, we can associate the point 
locations with street segments in the NYC DCP LION dataset 
based on the nearest neighbor principle. Actually we can pretty 
much re-use the nearest neighbor based association between 
points and polygons [22]. This can be further explained by using 
Fig. 2 where three types of spatial associations are illustrated. To 
assign a polygon identifier to a point location based on the nearest 
neighbor principle (Fig. 2C), all the polygons that intersect with 
the window centered at the point is first identified. For each of the 
intersecting polygon, the distance between the point and the 
polygon is computed and the polygon that has the shortest 
distance with the point is associated. To calculate the distance 
between a point and a polygon, the shortest distance between the 
point and all the edges of the polygons is used. The same 
procedure can be used to associate points with street segments as 
illustrated in Fig. 2A as both polygon boundaries and street 
segments can be considered as polylines. Since the majority of the 
street segments have only one edge while a polygon has at least 
three edges, the computation overhead is smaller. The approach to 
associate points with polylines can also be used for point-in-
polygon test as illustrated in Fig. 2B ([21] provides more details). 
From now on, we assume that each point location is associated 
with an identifier for each type of infrastructure data, such as 
street segments in Fig. 2A, census blocks in Fig. 2B and tax 
blocks in Fig. 2C.  

 
 
 
 
 
 
 
 
 
 
- 
 
 

Fig. 1 Illustration of Spatial and Temporal Aggregation Hierarchies 
Clearly there is a tradeoff between materializing higher 

levels of identifiers (e.g., census tracts and tax lots) and looking 
them up on-the-fly based on the semantic hierarchical 
relationships (e.g., parent child relationships in Census 
Tract Census Block and Tax Lot Tax Block). Our design is to 
materialize the high-level identifiers and store them on disks in 
the same way as the bottom level identifiers but it is up to the 
query optimizer to decide whether to use them by loading them 

from disks to CPU/GPU main memories. When there are 
sufficient memory capacities left, it may still be beneficial to load 
the materialized high-level identifiers from disks. Given that 
many high-level identifiers are duplicated, generic data 
compression techniques can be applied to further reduce disk 
storage and I/O overheads and we refer to [31][32] for CPU and 
GPU based compressions on relational data in a database setting.  

.
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Illustration of Three Types of Point to Infrastructure Data Association for Spatial Aggregations 
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3.2 Compression and Temporal Aggregations 
After introducing the design considerations of spatial 

aggregations, we now turn to temporal aggregations. Although the 
temporal hierarchy shown in Fig. 1 is more universal and easier to 
understand than the spatial hierarchy we have used in this study, 
given that time functions are not supported on GPUs, a technical 
challenge is to develop a compact time representation that has 
small memory footprint and is GPU computing friendly when it 
comes to temporal aggregation. We note that the text format of the 
pickup and drop-off times converted from relational databases like 
“2009-01-17 23:52:34” takes 20 bytes. While the format can be 
easily converted to “struct tm” in the standard C language to 
satisfy the needs of all temporal aggregations (e.g., month, day of 
the week) on CPUs, we found that the data structure takes 56 
bytes on 64-bit Linux and 44 bytes on 32-bit Linux platforms 
which may be too much from a memory footprint perspective. 
Furthermore, the time structure can not be used on GPUs directly 
which brought a signficant compatibility issue.  Our solution is to 
compress the pickup and drop-off times (PUT and DOT) into 4-
byte (32 bits) memory variables using the following bit layout 
starting from the most insignificant bit: 6 bits for second (0-59), 6 
bits for minute (0-59), 5 bits for hour (0-23), 5 bits for day (0-30) 
and 4 bits for month (0-11). The remaining 6 bits (0-63) can be 
used to specify the year relative to a beginning year (e.g., 2000) 
which should be sufficient for a reasonably long study period. 
Retrieving any of the year, month, day, minute and second fields 
can be easily done by bit shifting which is efficient on both CPUs 
and GPUs. The straightforward technique has reduced memory 
footprint to 1/5 (4/20) and is friendly to both CPUs and GPUs.   

At the first glance, the design does not support temporal 
aggregations based on “day of the week” and “day of the year” 
very well as these two fields are not explicitly stored as in “struct 
tm” in the standard C language. Computing the values of these 
two fields, while feasible on CPUs (by using C/C++ mktime 
function), can incur signficant overheads when the number of 
records is huge. For example, our experiments have shown that 
computing “day of the week” alone for 170 million records can 
take 22 seconds, i.e., 100+ CPU cycles per timestamp on average. 
However, we would like to draw attention to the fact that 
timestamps can be aggregated by “year+month+day” before they 
are further aggregated according to “day of the week” or “day of 
the year”. Since the possible combinations of (year, month, day) 
in a reasonably long period is limited (in the orders of a few 
thousands), they can be aggregated to “day of the week” or “day 
of the year” in a fraction of a millisecond using the C/C++ mktime 
function on CPUs. The design also eliminates the need for GPU 
implementation to compute “day of the week” or “day of the 
year” from “year+month+day” which is nontrivial.  

The distinctions between “peak” and “off-peak” are 
often combined with the distinctions among week days and 
weekends as well as different types of holidays which make 
temporal hierarchies a little more complex in this case. However, 
the possible number of combinations does not depend on the 
number of data records and can be hardcoded into lookup tables to 
keep track of the child-parent relationships (m:1) when necessary 
on both CPUs and GPUs. In particular, these read-only, small 
sized lookup tables can be stored in special read-only texture 
memories to speed up the lookups on Nvidia GPUs.  

4 IMPLEMENTATION DETAILS 

4.1 Overview 
It is beyond our scope to implement all the types of the 

spatial, temporal and spatiotemporal aggregations that have been 
modeled in the literature [5][33]. Instead, we focus on the 
implementations of aggregations along the spatial and temporal 
hierarchies shown in Fig. 1 and discussed in Section 3. We divide 
an aggregation into two phases, i.e., the association phase and the 
counting phase. The association phase, typically implemented as a 
join, can be performed either offline or online. The advantage of 
materializing spatial, temporal or spatiotemporal relationships 
offline is that, as computing the relationships typically is 
expensive, directly accessing the materialized relationships can 
significantly improve the overall performance. However, when 
dynamic query criteria are imposed (such as those based on fare 
and tip), offline materialization becomes infeasible and fast real-
time online aggregations become critical. In addition, when the 
spatial aggregations are combined with temporal aggregations (i.e., 
spatiotemporal aggregations) at arbitrary levels, the possible 
number of aggregations grows quickly which makes offline 
materialization less attractive due to disk storage, I/O and 
maintenance overheads. Online associations are more desirable in 
such cases.  

In this study, as discussed in Section 3.1, we will re-use 
the framework of GPU-based spatial join to associate taxi pickup 
and drop-off locations with their nearest street segments or 
polygons for further aggregations along the spatial and temporal 
hierarchies. Due to space limit, we will not repeat the 
implementation of the GPU based spatial join algorithms but we 
refer to [21] and [22] for details. We will report the experiment 
results on spatially joining pickup locations with street segments 
in Section 5.1 as the experiments have not been done previously. 
Before we introduce the implementation details of the counting 
phase on both multi-core CPUs and many-core GPUs in the next 
two subsections, we would like to note that the number of bins 
involved in the aggregations listed in Fig. 1 range from a few 
hundreds of thousands (e.g., tax block and street segments) to a 
few (e.g., days of the week) and some are fixed (e.g., 24 hours in a 
day) while some others are variable (e.g., street segments) 
depending on data semantics.  

4.2 Parallel Counting on Multi-Core CPUs  
Although it is more convenient to use Standard 

Template Library (STL) [34] map data structure to store (key, 
count) pairs for counting, we have found that using simple linear 
data structures such as arrays is much more efficient. While using 
arrays requires knowing array lengths beforehand, typically this is 
not a problem for OLAP applications as the metadata information 
of each dimension is often known (or the upper bound can be 
estimated). For comparison purposes, we have implemented a 
same aggregation using both the STL map data structure and 
arrays on CPUs as reported in Section 5. To parallelize the 
counting phase on CPUs, we have used OpenMP directives (e.g., 
pragma omp for). To avoid write conflicts, each thread is given its 
own private variables (arrays or STL maps) before the individual 
aggregated results are combined into the final results. Note that 
this is only possible when the number of threads is small (i.e., on 
CPUs). The approach to avoid write conflicts is not scalable in 
general and can not be applied to GPUs where hundreds of 
thousands of threads may be launched simultaneously. Since a 



 

dual quadcore machine has 8 cores and each core supports 2 
software threads using the Intel hyper-threading technology, we 
have varied the numbers of threads from 1, 2, 4, 8 to 16 for 
comparison purposes. Using 16 threads, which is twice the 
number of cores, may or may not improve overall performance 
depending on the degree of resource contentions. 

4.3 Parallel Counting on Many-Core GPUs 
Two options are available to implement 

multidimensional aggregations on GPUs, one is based on native 
parallel programming languages such as CUDA [35] and one is 
using parallel primitives that are developed on top of the native 
parallel programming languages. The first option, which requires 
a deep understanding of GPU hardware details and high parallel 
programming skills, has been adopted in [1]. Even though parallel 
reduction is a well-studied problem and the mapping between the 
reduction primitive and OLAP aggregations is relatively 
straightforward, it remains non-trivial to implement the 
aggregations with good performance using native programming 

languages as reported in [1]. Another research effort on MOLAP 
cube [27] is closely related to OLAP processing. The research 
utilizes parallel primitives that have been implemented in the 
CUDPP parallel library [36] which has allowed the authors to 
focus on high-level constructs without diving into too many 
hardware details. Based on these two pioneering works, we have 
decided to adopt a parallel primitive based approach by using the 
Thrust parallel library [37] as much as possible for fast 
prototyping and future portability. We note that Thrust is now part 
of CUDA SDK and the functionality and efficiency have been 
significantly enriched in its recent releases. That being said, we 
are aware that there are tradeoffs between code efficiency and 
coding complexity of parallel primitives based implementations 
versus native CUDA based implementations and we plan to 
compare the performance differences in our future work. We next 
introduce the parallel primitive based GPU implementation using 
the Thrust library in more details.  

 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Algorithm Design and Code Segment of a Spatiotemporal Aggregation using Parallel Primitives 

Since 1-dimensional arrays work best for the current 
generations of Nvidia GPUs, the data arrays on CPUs that have 
been used for aggregations are copied to GPUs. The aggregations 
can be nicely mapped to the reduce_by_key parallel primitive that 
is supported by Thrust. Together with some other parallel 
primitives (such as transform and sort), iterators (such as constant, 
and zip) and user defined functors (C++ function objects), these 
aggregations typically can be implemented in a few lines. The 
Thrust library handles all thread organization, kernel launching 
and performance optimization issues transparently to developers. 
While it is beyond the scope of this paper to present the details of 
primitives based parallel programming, we refer to the Thrust 
website [36] for more details. The appendix of [21] also provides 
a brief introduction to several parallel primitives that are involved 
in the GPU implementation of the aggregations and can be a 
source of reference if interested.  

Assume we want to perform a spatiotemporal 
aggregation on the street segment and hour, i.e., counting the 
number of taxi pickup locations at each of the street segments at 
the each of the 24 hours. We are given two vectors with the first 
storing the street segments (after spatial association) and the 
second storing the pickup time in the compressed form (Section 

3.2) for all taxi trip records using a column-oriented data layout. 
The task can be completed using a few parallel primitives as 
illustrated in the algorithm design and code segment given in Fig. 
3. Note that the zip iterator is used to combine the elements in the 
two input vectors into tuples in the temp_keys vector so that they 
can be used in the required functor in the transform primitive to 
convert the segment identifiers and pickup hours into keys for 
reduction. The last five bits in a resulting key are allocated to hour 
(24<25) and the rest of the bits are allocated to segment identifier 
which allows up to 227 segment identifiers and is sufficient in our 
application. The same procedure can be applied when variables of 
higher dimensions are involved in key formations.   

The reduce_by_key primitive in Thrust is a segmented 
version of the regular reduce primitive. To help understand the 
procedure, a simple example is provided in the top-right part of 
Fig. 3. After the sorting in Step 2, the same keys are arranged 
consecutively in the temp_keys vector. For each of the unique 
keys in the temp_keys vector (which is output to the pu_keys 
vector), the count in the pu_count vector is increased (defined by 
the thrust::plus functor) by 1 (as defined by the 
hrust::constant_iterator). The primitive allows user to define how 
to determine whether two keys are equal by providing a functor to 

Inputs: vectors pu_seg and pu_t  
Outputs: vectors pu_key and pu_count representing aggregated keys and counts 
 
Step 1:  transform pu_seg and pu_t into a vector of bin keys as the following:  
thrust::transform ( 

thrust::make_zip_iterator(thrust::make_tuple(pu_seg.begin(),pu_t.begin()), 
thrust::make_zip_iterator(thrust::make_tuple(pu_seg.end(),pu_t.end()), 
temp_keys.begin(), 
make_key() 
); 
 

Step 2: in-place sort the key vector to get ready for reduction  
thrust:sort(temp_keys.begin(),temp_keys.end()); 
 

Step 3: reduce by key to count the number of trips in each bin and output the results to 
pu_count as the following:  
int num_keys=thrust::reduce_by_key( 

temp_keys.begin(),temp_keys.end(),hrust::constant_iterator<int>(1) 
pu_keys.begin(), pu_count.begin(),  
thrust::equal_to<uint>(),  thrust::plus<int>() 
).pu_keys.begin() 

struct make_key 
{ 
     
    __host__ __device__ 
    uint operator()(thrust::tuple<uint, uint> v) 
    {  
         uint segid=(thrust::get(0)(v))  &0x07FFFFFF 
         uint hour  =(thrust::get(1)(v)>>12)&0x0000001F; 
        return ((segid<<5)|hour); 
    } 
}; 

3 1 2 1 3 1 1 2 3 3
sort 

1 2 3
2 2 1

reduce_by_key

key
count



 

replace the thrust::equal_to functor and how to perform the 
reduction by providing a functor to replace thrust::plus functor 
and thus is very flexible. Since thrust::make_tuple takes up to 10 
parameters to make tuples, it should be more than sufficient to 
combine dimensional values to make keys in most cases. 
Experiments have shown that the sorting time usually dominates 
the whole aggregation processes and we would like to discuss the 
suitability of using GPU for sorting. For this purpose, we refer to 
[38] for benchmarking results on GPU-based sorting for 32/64 bit 
keys. The results have shown that more than 1 billion per second 
sorting rate has been achieved on Nvidia GTX 480 for 32 bit keys 
which is considerably faster than single core CPUs can achieve. 
We also note that the primitive based implementation does incur 
some overheads that can be avoided if implemented directly on 
top of native parallel programming languages. For example, the 
temp_keys vector is accessed multiple times when different 
primitives are invoked. Nevertheless, we consider the tradeoff is 
well justified from several practical aspects. 

5 EXPERIMENTS AND RESULTS 

5.1 Data and experiment setup  
Through a partnership with the New York City (NYC) 

Taxi and Limousine Commission (TLC), we have access to 
roughly 300 million GPS-based trip records collected during a 
period of about two years (2008-2010). In this study, we use the 
approximately 170 million pickup locations and times in 2009 for 
experiments. The performance of associating the pickup locations 
with census block polygons and tax block polygons for spatial 
associations have been reported in [21] and [22], respectively. The 
GPU performance has been compared with CPU or hybrid 
implementations as well. In this study, the GPU-based 
implementation on associating the taxi pickup locations with 
147,011 street segments to compute the spatial relationships 
between taxi pickup locations and street segments follows a very 
similar approach as discussed in Section 3.1. All experiments are 
performed on a Dell Precision T5400 workstation equipped with 
dual quadcore CPUs running at 2.26 GHZ with16 GB memory, a 
500GB hard drive and an Nvidia Quadra 6000 GPU device. The 
sustainable disk I/O speed is about 100 megabytes per second 
while the theoretical data transfer speed between the CPU and the 
GPU devices is 4 gigabytes per second through a PCI-E card. 

5.2 Results on Spatial Association on GPUs 
Among the 168,379,168 taxi pickup locations in NYC, 

the majority are successfully associated with their nearest street 
segments within D=250 feet. However, there are 867,163 
locations have computed shortest distances that are more than 250 
feet which are considered as outliers (0.515%) and are excluded 
from  subsequent analysis. With respect to runtime, similar to 
what have been discussed in detail in our previous works [21][22], 
there are three components involved, i.e., generating point 
quadrants (t1), filtering bounding boxes of both point quadrants 
and street segments (t2) and distance computation and identifier 
assignment (t3). Using the maximum point quadrant size K= 512, 
the runtimes for the three components are listed in Table 1 where 
the columns indicate the numbers of months in the year (2009) 
that are used in the spatial associations. We can see that t1 
dominates the total runtime in all tests and increases almost 
linearly with the number of point locations. We note that t1 has 
already included data transfer times between CPUs and GPUs 
which count nearly 25% of the end-to-end runtime using 12 

months data (the whole year of 2009). Since it takes about 15 
seconds for 12 months and less than 5 seconds for 3 months, we 
conclude that spatial associations on GPUs can achieve near real-
time responses and are suitable for online aggregations (the 
counting time is negligible as can be seen from the results in the 
next two subsections).  

These results, together with our previous results in 
associating the 168.38 million point locations with 43,252 census 
block polygons (11.165 seconds) [21] and 735,488  tax block 
polygons (33.110 seconds) [22] suggest that the performance 
boosting techniques on modern hardware can have great potentials 
in speeding up processing of large-scale geo-referenced data. 
Given the performance at the yearly level (in the order of 10-40 
seconds), we are positive that interactive spatial associations 
(spatial join queries) may be possible at the monthly level on low-
end commodity GPUs with small memory capacities (e.g., 1 GB). 
This also makes it possible to scale-out to larger datasets by 
adopting distributed computing using a shared-nothing framework 
as discussed in Section 2 and we leave it for our future work.  

Table 1 Results on Spatial Associations on GPUs 
# of Months 1 2 3 4 6 9 12 
N1 (*106) 13.84 27.00 41.17 55.23 83.81 124.64 168.38 
N2 (*106) 0.155 0.306 0.496 0.676 0.982 1.358 1.747 
t1 (second) 0.955 1.876 2.908 3.915 5.986 9.001 12.233 
t2 (second) 2.059 1.615 1.472 1.495 1.123 1.176 1.221 
t3(second ) 0.200 0.343 0.519 0.677 0.941 1.270 1.601 
T=t1+t2+t3 3.214 3.834 4.899 6.087 8.050 11.447 15.055 
Note: N1- # of point locations; N2- # of point quadrants 

5.3 Results on Parallel Counting on CPUs  
We have performed six groups of aggregations on 

multi-core CPUs with three types of aggregations and two types 
of data structures (STL container class and array). The three types 
of aggregations are the following: counting on the 147,011 street 
segments using both STL and array (spatial aggregation), 
counting on the 24 hours (temporal aggregation) and counting on 
both street segments and hours (spatiotemporal aggregation). We 
note that the street segment identifiers in the DCP LION dataset 
are not numbered continuously due to regular quarterly updates. 
However, the largest number is 175,440 which is not far way from 
the number of street segments identifiers and we can use a 
dynamically allocated array for the counting purpose. The 
purposes of the experiments are the following (1) Is it feasible to 
perform real-time aggregations on CPUs? (2) What are the 
differences in using STL container classes that requires extensive 
dynamic memory allocations and simple linear data structures like 
arrays? (3) What is the scalability of using multiple threads on 
multi-core CPUs for the aggregations? Clearly, the number of bins 
in the spatial aggregation based on segment identifiers is 3-4 
orders larger than the number of bins in the temporal aggregations 
based on hours and can be used to represent the two extremes in 
aggregations with respect to cardinality. The results are 
summarized in Table 2 where columns 1T/2T/4T/8T/16T refer to 
using 1, 2, 4, 8 and 16 threads, respectively.  

From Table 2 we can see that, the array based serial 
implementations are about 23X, 13X and 29X faster than the STL 
based serial implementations for the three types of aggregations. 
The same trends can be observed when comparing parallel 
implementations using different numbers of threads although the 
speedups decrease as the numbers of threads increase. The results 
seem to suggest that the larger the bins, the greater the speedups 
for array based implementations over the STL based 



 

implementations. This is not surprising in the sense that memory 
accesses are becoming increasingly expensive on modern 
processors when compared to computing [3]. Dynamic memory 
allocations and deallocations are not only costly but also result in 
“pointer-chasing” problem especially when memory footprints are 
large. This may in turn incur signficant cache misses due to 
irregular memory accesses. We thus, from a practical perspective, 
advocate simple linear data structures for fast in-memory scans 
and avoid complex data structures (e.g., indexing trees and 
aggregation trees) unless there are clear performance advantages.  

From Table 2 we can also see that the performance of 
the six parallel aggregations increases sub-linearly with the 
number of threads on multi-core CPUs, especially when the 
number of threads is increased from 8 to 16 where performance 
can even drop. This is expected as threads, especially the two 
software threads within a single core, may compete for resources, 

including memory bandwidth. It can also be observed that the 
speedups (up to 7X) for counting using STL are generally higher 
than that of using array (about 2X). This might be due to the 
reason that the intensity of memory bandwidth competitions for 
the array based implementations are higher as the processing 
speed (and hence data movement along the memory bandwidth) 
13-29 times higher. The memory bandwidth limit may be an 
important factor in fully utilizing the parallel processing power of 
multi-core CPUs. Given that counting on 170 million records only 
requires about 1/4 second for both spatial and temporal 
aggregations, which amounts to a 680 million per second rate on a 
dual quadcore commodity machine, we are positive that a single 
multi-core machine can achieve signficant throughputs in OLAP 
processing if the parallel processing power of SMP parallel 
hardware is fully utilized.  

Table 2 Experiment Results for Different Aggregations on Multi-Core CPUs (in Seconds) 

Implementation Aggregation Serial 1T 2T 4T 8T 16T 
1 Pickup Segment (spatial) 12.519 19.776 9.768 4.992 2.513 1.721 
2 Pickup Hour (temporal) 7.043 6.089 4.347 2.121 1.186 0.907 

STL 

3 Pickup Segment+Hour (Spatiotemporal) 17.128 24.238 12.522 6.707 3.803 3.781 
4 Pickup Segment (spatial) 0.550 0.548 0.228 0.212 0.206 0.215 
5 Pickup Hour (temporal) 0.524 0.511 0.644 0.477 0.356 0.258 

ARRAY 

6Pickup Segment+Hour (Spatiotemporal) 0.582 0.587 0.322 0.279 0.324 0.446 
 

5.4 Results on Parallel Counting on GPUs  
We have performed the same spatial, temporal and 

spatiotemporal aggregations on GPUs. The results show that the 
hourly temporal aggregation requires 0.257 second which is 2X 
faster than the serial array based CPU implementation but is 
comparable to the best parallel CPU implementation using 4/16 
threads. The spatial aggregation requires 0.188 second which is 
about 3X times faster than the array based serial implementation 
but is only marginally better than the best parallel CPU 
implementation using 16 threads. For the spatiotemporal 
aggregation, the GPU runtime is 0.274 second which is 2.14X 
faster than the serial CPU implementation but again it is 
comparable with the best parallel CPU implementation using 4 
threads. While the comparisons do not suggest that many-core 
GPU is a clear winner over multi-core CPU as previous research 
has suggested, we have to bear in mind that our aggregation 
implementations are based on high-level parallel primitives in a 
way similar to STL classes. If we compare the respective 
runtimes for GPU and STL implementations, the GPU 
implementations still gain 9.2X, 3.5X and 13.8X for spatial, 
temporal and spatiotemporal aggregations.  

Although the parallel primitives based 
implementations on many-core GPUs are only reasonably better 
than multi-core CPUs in the counting phase, our implementation 
of the spatial associations have achieved 3-4 orders better 
performance on many-core GPUs than the implementation using 
an existing database. Since the runtimes of the counting phase 
are fairly insignificant when compared with that of the 
association phase (1/4 second v.s. 15 seconds), the overall 
speedups are still signficant with respect to the end-to-end 
performance. On the other hand, if only the runtimes in the 
counting phase are included in the query times, which is typical 
in the cases where spatial relationships are materialized in a 
static setting as discussed in Section 5.1, since the performance 
of many-core GPUs and multi-core CPUs are comparable, 

integrating the two types of SMP processors to further improve 
the overall performance is desirable. However, the approach can 
be technically challenging and is left for our future work.  

6 CONCLUSION AND FUTURE WORK 
In this study, we report our designs, implementations 

and experiments on spatial, temporal and spatiotemporal 
aggregations of hundreds of millions of taxi trip records in an 
OLAP setting. By utilizing the massively data parallel GPU 
processing power, we were able to spatially associate nearly 170 
million taxi pickup location points with their nearest street 
segments among 147,011 candidates in about 15 seconds.  
Spatial, temporal and spatiotemporal aggregations can be 
processed in a fraction of a second on both multi-core CPUs and 
many-core GPUs. The experiment results support the feasibility 
of building a high-performance OLAP system for processing 
large-scale taxi trip data for real-time, interactive data 
explorations by intelligently integrate the two types of SMP 
processors with distinct hardware features.  

For future work, first of all, to scale up, we would like 
to further reduce the processing times for both spatial 
association and counting. Second, to ensure usability, we would 
like to adopt an engineering approach to investigate the 
appropriate spatial and temporal scales so that interactive OLAP 
processing can be smoothly performed on commodity personal 
computers with different hardware configurations. Finally, to 
scale-out, we plan to explore cluster computing technologies to 
process larger scale data, for example, multi-year and multi-city.  
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Appendix SQL Statements for spatial/temporal aggregations in PostgreSQL (Q11 and Q15 are used as examples in the experiments) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q1: UPDATE t SET PUGeo = ST_SetSRID(ST_Point("PULong","PuLat"),4326);  
Q2: UPDATE t SET DOGeo = ST_SetSRID(ST_Point("DOLong","DOLat"),4326); 
Q3: CREAT INDEX ti_pugeo ON t USING GIST (PUGeo); 
Q4: CREAT INDEX ti_dogeo ON t USING GIST (DOGeo); 
Q5: SELECT DISTINCT ON (ID, PUT) ID, PUT, segmentid,  
ST_Distance ( ST_Transform (PUGeo,2263), the_geom) as ndis INTO temp_PU FROM t, lion09c   
WHERE ST_DWithin (ST_Transform (PUGeo, 2263), the_geom, 100) ORDER BY PUT, ID, ndis 
Q6: UPDATE t set PUSeg=(SELECT segmentid From temp_PU WHERE t.ID=temp_PU.ID AND t.PUT=temp_PU.PUT;  
Q7: SELECT DISTINCT ON (ID, DOT) ID, DOT, segmentid,  
ST_Distance ( ST_Transform (DOGeo,2263), the_geom) as ndis INTO temp_DO FROM t, lion09c  
WHERE ST_DWithin(ST_Transform(DOGeo,2263), the_geom, 100) ORDER BY DOT, ID, ndis 
Q8: UPDATE t set DOSeg=(SELECT segmentid From temp_DO WHERE t.ID=temp_DO.ID AND t.DOT=temp_DO.DOT; 
Q9: CREAT INDEX ti_pus ON t(PUSeg); 
Q10: CREAT INDEX ti_dos ON t(DOSeg); 
Q11: SELECT PUSeg, COUNT(*) FROM t GROUP BY PUSeg  ORDER BY PUSeg; 
Q12: SELECT DOSeg, COUNT(*) FROM t GROUP BY DOSeg  ORDER BY DOSeg; 
Q13: CREAT INDEX ti_put ON t (PUT); 
Q14: CREAT INDEX ti_dot ON t (DOT); 
Q15: SELECT EXTRACT (hour FROM PUT) as hour, count(*) FROM t GROUP BY hour ORDER BY hour 
Q16: SELECT EXTRACT (hour FROM DOT) as hour, count(*) FROM t GROUP BY hour ORDER BY hour
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