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Abstract 

The increasingly available Graphics Processing Units (GPU) hardware and the emerging 
General Purpose computing on GPU (GPGPU) technologies provide an attractive solution to 
high-performance geospatial computing. In this study, we have proposed a parallel primitive 
based approach to quadtree construction by transforming a multidimensional geospatial 
computing problem into chaining a set of generic parallel primitives that are designed for one 
dimensional arrays. The proposed approach is largely data independent and can be efficiently 
implemented on GPGPUs. Experiments on 4096*4096 and 16384*16384 raster tiles have shown 
that the implementation can complete the quadtree constructions in 13.33 milliseconds and 
250.75 milliseconds, respectively, on average on an NVidia GPU device. Compared with an 
optimized serial CPU implementation based on the traditional recursive Depth-First Search 
(DFS) tree traversal schema that requires 1191.87 milliseconds on 4096*4096 raster tiles, a 
significant speedup of nearly 90X has been observed. The performance of the GPU based 
implementation also suggests that an indexing rate in the order of more than one billion raster 
cells per second can be achieved on commodity GPU devices.    

1 Introduction 
High-performance geospatial computing is an important component of geospatial 

cyberinfrastructure and is critical to large-scale geospatial data processing and problem solving 
(Wang and Liu 2009, Yang et al. 2010). Recently there is increasing interest in GPGPU 
technologies, i.e., General Computing on Graphics Processing Units, for high-performance 
geospatial data processing (Zhang 2010). High-end workstations equipped with GPGPU devices 
with hundreds and even thousands of processing cores that are capable of launching hundreds of 
thousands of threads simultaneously are ideal for massively data parallel, high-throughput and 
highly interactive applications in a personal computing environment. Recently Hong et al. (2011) 
argued that GPU architectures closely resemble supercomputers as both implement the primary 
Parallel Random Access Machine (PRAM1) characteristic of utilizing a very large number of 
threads with uniform memory latency (such as Cray XMT2). Solving small to medium sized 
problems directly on GPU-equipped personal workstations is both cost-effective and energy 
efficient. Equally important, as modern grid and cloud computing technologies increasingly rely 
on cluster computers made of identical computing nodes using commodity hardware, algorithms 
that can fully utilize GPGPU hardware capability on a single node will naturally boost the 
performance of cluster computers to solve larger scale problems.  

Geospatial data processing on GPGPUs have attracted signficant research and application 
interest in the past few years ranging from data management to physics based environmental 
simulation. The throughput-oriented architectural designs of GPGPUs (Garland and Kirk 2010) 

                                                 
1 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine  
2 http://www.cray.com/products/XMT.aspx  
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are especially suitable for geospatial data processing due to the inherent parallelism of local and 
focal geospatial operations (Theobald 2005). However, it is generally nontrivial to use GPGPUs 
for zonal and global geospatial operations (Theobald 2005) whose parallelism can not be easily 
mapped to GPGPU computing architectures. Constructing tree indices to speed up query 
processing and data analysis is one of the most important operations in geospatial data 
processing which can be considered as a special type of global geospatial operation. Hundreds of 
tree indices have been proposed over the past few decades (Gaede and Gunther 1998, Samet 
2005) and some of them have been efficiently implemented on CPUs.  

The volume of raster geospatial data are increasing quickly. For example, the next 
generation geostationary weather satellite GOES-R serials3 will improve the current generation 
weather satellite by 3, 4 and 5 times with respect to spectral, spatial and temporal resolutions 
(Schmit et al. 2009). With a temporal resolution of 5 minutes, GOES-R will generate 288 global 
coverages everyday for each of its 16 bands. At a spatial resolution of 2 km, each coverage and 
band combination has 360*60 cells in width and 180*60 cells in height, i.e., nearly a quarter of a 
billion cells. Such data volume growths are well above the computing power growth rate of 
uniprocessors. While Moore’s law predicts that CPU computing power doubles every 18 months 
which has been true for more than 16 years before 2002, the growth rate of uniprocessors have 
dropped to about 20% per year from 2002 to 2006 and even lower in recent years (Hennessy and 
Patterson 2011). As such, it is natural to seek alternative parallel solutions to provide sufficient 
computing power to facilitate better understanding of the environments and their human impacts, 
including GPGPU technologies. Unfortunately, the current generation of GPGPUs have quite 
different hardware features than CPUs and it is nontrivial to port such algorithms from CPUs to 
GPUs. Despite the great potentials on using massively data parallel GPGPU technologies for 
geospatial computing, the performance of GPGPU-based parallel spatial indexing, including 
quadtrees for raster data, largely remains unknown to the geospatial computing community.  

The work presented in this paper is a re-design and re-implementation of the Binned Min-
Max Quadtree (BMMQ-Tree) construction algorithm for large-scale raster geospatial data that 
have been proposed previously (Zhang and You 2010a, Zhang et al. 2010). We show that by 
transforming a multi-dimensional geospatial computing problem into chaining a set of generic 
parallel primitives that are designed for one dimensional arrays (Section 2.2), we are able to 
reduce coding complexity and improve code efficiency at the same time. We believe that the new 
approach on parallel primitives based high-performance geospatial computing on GPGPUs can 
be interesting to geospatial computing researchers and developers who are seeking the parallel 
computing power of new hardware architectures but do not wish to be overwhelmed by hardware 
or programming model details. We hope the approach introduced in this paper can lower the 
barriers of applying GPGPU computing to efficiently solve practical geospatial problems and the 
example study reported in this paper can motivate similar research efforts. By generalizing the 
common patterns of applying generic parallel primitives in geospatial computing, more efficient 
geospatial-specific parallel primitives can be further developed. The rest of the paper is 
organized as the following. Section 2 introduces background and related work. Section 3 
provides the design of the tree construction algorithm after reviewing the data layout of BMMQ-
Trees. Section 4 presents the implementation details of BMMQ-Tree constructions on GPGPUs 
using parallel primitives. Section 5 reports experiment results and provides comparisons with 
alternative implementations. Finally Section 6 is the conclusion and future work directions.  

                                                 
3 http://www.goes-r.gov/  
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2 Background and Related Works 

2.1 GPGPU Computing and CUDA Programming Model 
A Graphics Processing Unit (GPU) is a hardware device that is originally designed to 

work with a CPU to accelerate rendering of 3D or 2D graphics. The highly parallel structures of 
modern GPU devices, such as AMD/ATI Radeon4 and Nvidia GeForce/Quadro series5, make 
them more effective than general-purpose CPUs for a range of complex graphics-related 
algorithms. The concept of General Purpose computing on GPU (GPGPU) turns the massive 
floating-point computational power of a modern graphics accelerator's graphics-specific pipeline 
into general-purpose computing power. GPGPU computing technologies provide a cost effective 
alternative to cluster computing and have gained considerable interest in many research and 
application domains in the past few years (Hwu 2011a, Hwu 2011b). According to the Nvidia 
website, when compared with the latest quad-core CPU, Tesla 20-series GPU computing 
processors deliver equivalent performance at 1/20th of  power consumption and 1/10th of cost6. 
As many reasonably current desktop computers have already been equipped with GPGPU 
enabled graphics cards, GPGPU based geospatial data processing can improve system 
performance significantly without additional costs. According to Garland and Kirk (2010), 
NVIDIA alone has shipped almost 220 million GPGPU-enabled devices from 2006 to 2010. 
Despite the differences among the GPGPU enabled devices and development platforms, a 
GPGPU device can be viewed as a parallel Single Instruction Multiple Data (SIMD)7 machine. 
Major GPU hardware vendors have released Software Development Kits (SDKs) to facilitate 
application development using high-level programming languages. Among them, the Compute 
Unified Device Architecture (CUDA)8 from Nvidia is arguably the most popular one which can 
be viewed as a C/C++ extension. The Accelerated Parallel Processing (APP) technology from 
AMD9  is based on OpenCL10 which is an open standard and is closely related to CUDA. We 
next briefly introduce the Nvidia GPU architecture and its parallel programming abstraction 
based on CUDA.  

While different models of Nvidia GPU devices have different architectures, CUDA-
enabled GPU devices are organized into a set of Stream Multiprocessors (SMs). Each SM has a 
certain number (e.g., 32) of computing cores. All the cores in a SM share a certain amount (e.g., 
16k or 48k) of fast memory called shared memory and all the SMs have access to a large pool of 
global memory (e.g., 512MB or 4GB) on the device. According to CUDA, developers write 
special C-like code segments called kernels. The kernels are invoked by the companioning CPU 
code to run on GPU devices. CUDA based GPGPU programming makes it easier for task and 
data decomposition and subsequent parallel computing. Basically a developer specifies the sizes 
of the layout of the data to be processed in the units of data blocks and the number of threads to 
be launched inside a data block. The GPU hardware is responsible for mapping the data blocks to 
the SMs through space and time multiplexing which is transparent to developers/users. Since 
each SM has limited hardware resources, such as the number of registers, shared memory and 
thread scheduling slots, a SM can accommodate only a certain number of blocks subjected to the 

                                                 
4 http://en.wikipedia.org/wiki/Radeon  
5 http://developer.nvidia.com/cuda-gpus  
6 http://www.nvidia.com/object/io_1227008280995.html  
7 http://en.wikipedia.org/wiki/SIMD  
8 http://www.nvidia.com/object/cuda_home_new.html 
9 http://developer.amd.com/sdks/AMDAPPSDK/  
10 http://www.khronos.org/opencl/ 
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combination of the constraints. Carefully selecting block sizes allows a SM to accommodate 
more blocks simultaneously and, subsequently, improve parallel throughputs. While CUDA is 
designed to make parallel programming on Nvidia GPUs easier, due to the complexity of the 
massively data parallel hardware architectures, the learning curve of efficient CUDA 
programming can be steep. The Thrust library11 that has been shipped with the latest CUDA 
SDK is designed to balance between easiness to use and code efficiency by providing a set of 
high-level APIs known as parallel primitives to be detailed next.  

2.2 Parallel Primitives in the Thrust Library 
Parallel primitives refer to a collection of fundamental algorithms that can be run on 

parallel machines. The behaviors of popular parallel primitives on one dimensional (1D) arrays 
or vectors are well-understood. We have opted to use 1D arrays in the context of geospatial 
computing to avoid confusing with vector geospatial data types. Unless explicitly stated, we use 
“arrays” to refer to “1D arrays”. Parallel primitives usually are implemented on top of native 
parallel programming languages (such as CUDA) but provide a set of simple yet powerful 
interfaces (or APIs) to end users. Technical details are hidden from end users and many 
parameters that are required by native programming languages are fine-tuned for typical 
applications in parallel libraries so that users do not need to specify such parameters explicitly. 
On the other hand, such APIs usually use template or generic based programming12 techniques in 
a way similar to the well known Standard Template Library (STL)13 so that the same set of APIs 
can be used for many data types. Due to the nature of high-level abstractions, the APIs may not 
be the most efficient ones when compared with handwritten programs using native programming 
languages with fine-tuned parameters. However, the APIs usually provide good tradeoffs 
between coding complexity and code efficiency. Indeed, most of the parallel primitives in the 
Thrust library are very similar to their STL counterparts and are very appealing to experienced 
STL users. The high level abstractions also bring signficant portability. In fact, while originally 
designed for CUDA-enabled GPUs, the latest Thrust library can also run on multi-core CPUs. 
This unique feature further makes parallel primitives based algorithm developments attractive 
when compared with using CUDA directly. While it is beyond the scope of this paper to provide 
a full introduction to parallel primitives and their implementations in the Thrust library (of which 
we refer to Bell and Hoberock 2011 and Thrust website), we next briefly introduce a few popular 
parallel primitives (McCool et al. 2012)  that we will use in our quadtree construction design.  

 (1) Scan. The Scan primitive computes the cumulative sum of an array. Both the 
inclusive and exclusive scans are possible. For example, exclusive_scan([3,2,0,1])�([0,3,5,5]) 
while inclusive_scan ([3,2,0,1])�([3,5,5,6]). The Scan primitive can also take a user defined 
associative binary function to replace the default plus/sum binary function. To better illustrate 
the concept of the scan parallel primitive, a CUDA implementation of the scan primitive using 
four threads are provided in Fig. 1. In general, to scan 2n data items, 2n+1 intermediate storage 
units are required. After the initialization step, the n data items are copied to the right half of the 
storage array while the first half of the storage array is cleared up. In step i of the process, data 
items that are 2i elements away are added up in parallel and the whole scan process completes in 
n+1 steps.  

 

 
                                                 
11 http://thrust.github.com/ 
12 http://en.wikipedia.org/wiki/Generic_programming 
13 http://www.sgi.com/tech/stl/ 
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Fig. 1 Illustration of Scan Implementation Using Four Threads in CUDA 

 

(2) Copy, copy_if, remove and remove_if. Copy moves groups of elements from one 
location to another location, typically in two different arrays. The Copy_if primitive takes an 
additional unary function as a parameter to tell whether the corresponding array element should 
be copied to the output array or not. Similarly remove and remove_if remove groups of elements 
within an array with or without an optional binary predict function. Remove and remove_if are 
typically applied in-place which means that the input arrays can be the same as output arrays to 
save memory. Note that compacted arrays after applying Remove and remove_if primitives can 
be resized to reduce memory footprints.    

(3) Transform. The basic form of Transform applies a unary function to each element of 
an input array and stores the result in the corresponding position in an output array. Transform is 
more general than Copy as it allows a user defined operation to be applied to array elements 
rather than simply copying. Thrust has also provide several variants of the Transform primitive 
to allow transform two arrays based on a binary function and/or using a separate stencil array to 
evaluate the criteria for transformation.  

(4) Scatter. Scatter copies elements from a source range of an input array into an output 
array according to a map. For example, Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*])�([4,*,8,*,12,*]). 
Note * values are those unchanged in the third array. Clearly when there is a one-to-one map 
between the inputs and outputs such as the Z-order transformation in our application, the output 
array will have no * values.  

 
The alert readers many have observed that these parallel primitives work on flat 1D 

arrays only and we term them as generic primitives. From a geospatial computing perspective, 
this is indeed insufficient to process geospatial data which is usually multi-dimensional. 
However, as we shall show in Section 4, we can use these flat 1D arrays based generic parallel 
primitives as the building blocks to construct parallel geospatial processing modules. We note 
that the current generation of GPGPU devices work best with flat 1D arrays in many cases. The 
transformation between multi-dimensional geospatial data and flat 1D arrays can potentially help 
identifying parallelisms in geospatial computing and facilitate designing more efficient, 
geospatial-specific data structures and algorithms on GPGPUs for geospatial computing which is 
the key component in this paper.  

0 0 0 0 3 2 0 1 

__device__ inline ushort scan4(ushort num)   
{ 
     __shared__  ushort ptr[2*Tn]; 
    ushort val=num; 
    uint idx = threadIdx.x; 
    ptr[idx] = 0; 
    idx += Tn; 
    ptr[idx] =num; 
    __syncthreads(); 
    val += ptr[idx -   1]; __syncthreads(); ptr[idx] = val; __syncthreads(); 
    val += ptr[idx -   2]; __syncthreads(); ptr[idx] = val; __syncthreads(); 
    val += ptr[idx -   4]; __syncthreads(); ptr[idx] = val; __syncthreads(); 
     … 
    val = ptr[idx - 1]; 
    return val; 
} 
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0 0 0 0 3 5 2 1 

0 0 0 0 3 5 5 6 

0 0 0 0 3 5 5 6 

Step 0 

Step 1 

Step 2 

Step 3 



Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840  

2.3 Parallel Processing of Geospatial Data 
Parallel processing of geospatial data is not a completely new concept. Quite a few works 

on parallel spatial data structures (Kamel and Faloutsos 1992, Ali et al. 2005), spatial join (Zhou 
et al. 1998, Patel and DeWitt 2000), spatial clustering (Xu 1999), spatial statistics (Armstrong et 
al. 1994, Wang and Armstrong 2003) and polygonization (Hoel 2003, Mineter 2003) have been 
reported. However, as discussed in (Clematis et al. 2003), research on parallel (and distributed) 
processing of geospatial data prior to 2003 has very little impact on mainstream geospatial data 
processing applications, possibly due to the accessibility of hardware and infrastructures in the 
past. The situation has been significantly changed over the past few years due to the wide 
availability of grid (Wang and Liu 2009) and cloud computing (Yang et al. 2011) resources and 
the maturity of GPGPU technologies (Zhang 2010). Work reported in (Wang et al. 2008) has 
demonstrated significant speedups by using grid computing for spatial statistics. Parallel 
computing on LIDAR data using cluster computers (Han et al. 2009) is getting increasingly 
popular due to its computation intensive nature. The development of a general-purpose parallel 
raster processing programming library on top of the MPI (Message Passing Interface14) parallel 
communication protocol is reported in (Guan 2010) and a test application using a geographical 
cellular automata model has achieved a speedup of 24 using a 32-node cluster computer. We also 
refer to (Yang et al. 2010) for a review on environmental modeling on cluster computers in a 
cyberinfrastructure environment. Recently, there are considerable research interest in geospatial 
data processing using the MapReduce parallel computing framework (Dean and Ghemawat 
2010) and the open source Hadoop implementation15 on cluster computers, such as R-Tree 
construction on point data and image tile quality computation (Cary et al. 2009), spatial join 
(Zhang et al. 2009b), geostatistics (Liu et al. 2010) and nearest neighbor queries on voronoi 
diagrams (Akdogan et al. 2010). Similar to MapReduce/Hadoop applications, there are also quite 
a few recent works on GPGPU applications to geospatial computing, including environmental 
modeling (Molna et al. 2010), flow accumulation (Ortega and Rueda 2010), drainage network 
computation (Qin and Zhan et al. 2012), LIDAR data reduction (Oryspayev 2012) and raster 
analysis (Steinbach and Hemmerling 2012). Most of these works are related to local or focal 
geospatial operations which are relatively straightforward to parallelize on GPGPUs. In addition, 
it seems that these works (except Molna et al. 2010) have focused on utilizing GPGPU’s large 
number of threads to speed up computation but have not used GPGPU’s high memory bandwidth 
and/or fast shared memory to speed up data accesses yet. As such, there are signficant potentials 
to improve the efficiencies of the respective implementation although it is nontrivial to 
understand data access patterns and make full use of GPGPU hardware capabilities. GPGPU 
technologies have also been applied for coding raster bitplane bitmaps (Zhang et al. 2011), 
polygon rasterization (Zhang 2011) and vector data indexing using R-Tree (Luo et al. 2011) 
where zonal and global geospatial operations are involved and more sophisticated parallelization 
schemes have been designed to optimize performance.  

2.4 Indexing Raster Geospatial Data 
There are relative fewer works on indexing raster geospatial data when compared with 

indexing vector geospatial data. Interval trees (Cignoni et al. 1997), octrees (Wilhelms and 
Vangelder 1992, Wang and Chiang 2009) and KD-trees (Gress and Klein 2004) have been 
extensively used in 3D computer graphics such as iso-surface rendering and ray-tracing. 

                                                 
14 http://en.wikipedia.org/wiki/Message_Passing_Interface  
15 http://hadoop.apache.org/ 
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Quadtrees have been proposed to compress binary and gray scale 2D rasters (Samet 1985, Lin 
1997, Chan and Chang 2004, Chung et al. 2006). However, we note that data structures and 
algorithms designed for graphics rendering and image compression are not necessarily suitable 
for database query processing.  Pyramid and tiling techniques have also been used to speed up 
image display but usually they do not allow queries on the underlying raster data. Oracle 
GeoRaster16 allows storing the bounding boxes and derived attributes of tile images as vector 
geospatial data, which subsequently can be indexed and queried so that only selected tile images 
need to be retrieved for display. A few of existing works have addressed the issue of managing a 
set of similar/related rasters for efficient query processing based on the concept of overlapping 
quadtrees (Tzouramanis et al. 1998, Manolopoulos et al. 2001, Manouvrier et al. 2002). All the 
above indices construction algorithms are serial. It is desirable to investigate how modern GPU 
hardware devices and GPGPU parallel computing technologies can be effectively used to index 
large-scale raster geospatial data to support efficient queries. Unfortunately, as GPGPU are 
relatively new technologies to the spatial data management community, the performance is 
largely unknown.  

Techniques such as linear quadtrees (Samet 1984) have been developed to externalize 
main-memory based quadtrees and make them disk-resident. Linear quadtrees can be used to 
support certain types of queries on top of B+-Tree (Tzouramanis et al. 1998, Aboulnaga and Aref 
2001, Manolopoulos et al. 2001). A recent work on managing large-scale species distribution 
data (Zhang et al. 2009a) associates a set of species identifiers with linear quadtree nodes and 
uses the PostgreSQL LTREE module17 to perform window queries by coordinating both the 
query client and the database server. A main-memory implementation has improved query 
performance by 2-3 orders as reported in (Zhang 2012, also see online demo at18). A Binned 
Min-Max Quadtree (BMMQ-Tree) data structure that associates min/max statistics of raster cells 
of a quadrant to the corresponding quadtree node to speed up processing of certain types of 
queries in a Web environment has been developed (Zhang and You 2010a). BMMQ-Tree is a 
CPU main-memory indexing structure constructed through a recursive procedure based on the 
classic Depth First Search (DFS) traversal schema. More recently, the BMMQ-Tree construction 
algorithm has been implemented on Nvidia GPUs using CUDA directly (Zhang et al. 2010). 
Unfortunately, the implementation was heavily influenced by its corresponding serial algorithm 
and the implementation did not fit GPU hardware architecture and GPGPU parallel programming 
model very well. As a result, as shown in the experiment section, while the implementation was 
significantly better than the serial CPU implementation (Zhang et al 2010), our new design and 
implementation is able to achieve another 11X speedup which brings a total speedup of 90X 
when compared with a new optimized serial CPU implementation. We next introduce the 
BMMQ-Tree indexing structure and its high level design before we present our parallel 
primitives based implementation in Section 4.  

3 BMMQ-Tree: Data Layout and Parallel Construction Design 
The Binned Min-Max Quadtree (BMMQ-Tree) (Zhang and You 2010a, Zhang et al. 

2010) can be considered as a special type of quadtree where statistics (minimum and maximum 
values in this case) are associated with quadtree nodes and the raster cell values are binned to 
enhance spatial homogeneity and reduce tree complexity. The BMMQ-Tree node layout in the 
original CPU-based design has been adapted to GPGPUs by replacing four pointers to four child 
                                                 
16  http://docs.oracle.com/html/B10827_01/geor_intro.htm 
17 http://www.postgresql.org/docs/9.1/static/ltree.html  
18 http://geoteci.engr.ccny.cuny.edu/geoteci/SPTestMap.html 
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nodes with an array index position to point to the first child node. The layout of the BMMQ-Tree 
data structure is illustrated in Fig. 2 based on (Zhang et al. 2010). A BMMQ-Tree node has a 
data field and a position field. The data field, while only the minimum (minB) and maximum 
(maxB) values of the raster cells under the node is currently recorded for a BMMQ-Tree, in 
principle, can store any statistical values, such as mean and deviation. The position field (fc_pos) 
stores the starting position of the first child node in the data stream that holds all the tree nodes 
linearly based on a Breadth First Search (BFS) tree traversal. For the example shown in Fig. 2, 
the minB and maxB values of the root node are 0 and 4 and the first child node position is 1 
which indicates that the four children of the root node can be located in the data stream at the 
positions 1, 2, 3 and 4, respectively. This has been illustrated in the lower part of Fig. 2. As 
discussed in (Zhang et al. 2010), the BMMQ-Tree structure is cache conscious since sibling 
nodes are consecutive in the data stream and they are likely to be fetched together into hardware 
cache lines. The quadtree data structure also has a small memory footprint as only the position of 
the first child node, instead of the four pointers to all child nodes, is stored. More importantly, 
the quadtree data structure is GPU-friendly as the data stream of quadtree nodes can be easily 
held in a 1D array and transferred back and forth between CPU and GPU memories (as well as 
between disks and CPU memories) without serialization.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 2 A BMMQ-Tree Example Illustrating Data Layout (Zhang et al 2010) 
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Once a BMMQ-Tree is constructed, it can be used to support quite a few types of 
geospatial queries, such as spatial range queries and Region-of-Interest (ROI) type of queries, for 
large-scale raster geospatial data. A spatial range query (or window query) returns all spatial 
objects (including quadrants) that fall within a spatial query window. The properties or the 
values of the spatial objects then can be retrieved based on the object identifiers. The ROI-type 
query returns all spatial objects (including quadrants) that satisfy one or more value range 
criteria, e.g., temperature between [t1,t2) and precipitation between [p1,p2). More generally, 
given a set of rasters representing environmental variables {Fi|0<i<n} over a spatial domain D 
whose value ranges are {Vi

h} and {V i
L}, respectively, a ROI-type query Q identifies regions in D 

whose cells Cj satisfy the compound condition 

 )V ,[VV op ... op )V ,[VV op  )V ,[VV|{C
HL

kkj

H

2

L

22j

H

1

L

11jj
Q

k
QQQQQ ∈∈∈  where op can be 

either conjunctive and disjunctive and 0<=k<n. 
L

iV Q and 
H

iV Q represent the lower and high 
bounds of query Q for variable i (Zhang and You 2010a). It can be seen that a spatial range query 
maps spatial objects to values while a ROI-type query maps values to spatial objects and they are 
complementary to each other. Cascading these two types of queries on multiple rasters allows 
users to identify interesting patterns, such as patterns related to the spatial distributions of 
geospatial phenomena with certain value thresholds, e.g., storms with precipitation greater than 
10mm), and, potential casual relations between multiple rasters through co-location analysis e.g., 
biodiversity decrease and deforestation/climate changes across the globe (Zhang and You 
2010a). A Web-based system has been developed to demonstrate the ROI-type query using the 
BMMQ-Tree indexing (for single raster only) and can be accessed online19. More details on 
system development are reported in (Zhang and You 2010b).  

The high-level design of the parallel construction of a BMMQ-Tree is similar to that has 
been proposed in (Zhang et al. 2010a) with one key difference. For the sake of clarity, we will 
introduce the overall design before we discuss the new improvement. There are four steps in the 
high-level design. The first step transforms a row-major ordered input raster grid (2D array) into 
a Z-ordered (Morton 1966) 1D array after binning each grid cell in the 2D array. In the second 
step, for every four consecutive Z-ordered raster cells, an entry is created by recording the 
minimum and maximum values of the raster cells (i.e., minB and maxB in Fig. 2). Clearly the 
resulting entries stored in an array (hereafter referred as the min-max table) also follow Z-order. 
The third step is to derive higher levels of min-max tables from lower level ones by following 
the similar procedure in Step 2. Conceptually all the min-max tables at all levels form a pyramid. 
They can be concatenated into an array from top level to the bottom level with elements at each 
level follow the Z-order for easy data manipulations. Similarly the numbers of child nodes in the 
corresponding raster quadrants can also be counted and concatenated as a single array during the 
two steps where 0 indicates a uniformly distributed quadrant (no child nodes) and 4 otherwise. 
The fourth step actually calculates the positions of the first child nodes (fc_pos) and assembles 
minB, maxB and fc_pos values into the corresponding quadtree nodes. Finally the quadtree nodes 
are pruned and connected through fc_pos values, which are functionally equivalent to pointers in 
tree structures on CPU, to complete the construction of a BMMQ-Tree.  

While Steps 1-3 are relatively straightforward with the help of the illustrative example in 
Fig. 3, Step 4 needs more detailed explanation and it is divided into two sub-steps (4.1 and 4.2) 
as illustrated in Fig. 4 for this purpose. Step 4.1 takes the numbers of child nodes for all 
quadrants at all levels as the input array (NumChildren) and apply an exclusive scan parallel 
primitive (c.f. Section 2.2) to compute the positions of the first child nodes of the respective 

                                                 
19 http://geoteci.engr.ccny.cuny.edu/rasterexplorer/comgeotiling/TestOverlay.html  
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quadrants (stored in FC_Pos array). The first child position of the root node (at the position 0) is 
always 1. As such, the scan should start at the second element of the input array and takes 1 as 
the initial value. The computed positions (FC_Pos array) and the min-max values (MinmaxTable 
array) are assembled to generate the intermediate quadtree nodes (QuadTree array) by using the 
NumChildren vector as a stencil to determine how to modify the fc_pos values. The rule is that if 
the element value in the NumChildren array is 0, then the corresponding fc_pos value of the 
quadtree node in the QuadTree array will be set to -1 to indicate that the quadrant that the 
quadtree node represents is uniform and no subdivision is needed. In this case, no children nodes 
exist for the node. In step 4.2, the following approach is used to prune quadtree nodes that 
represent uniformly distributed quadrants. For each quadtree node (except the root node), in 
parallel, we extract the number of children nodes of its parent node in the NumChildren array. 
For the ith quadtree node, the position of its parent node in the NumChildren array can be simply 
calculated as (i-1)/4 as the intermediate quadtree node array is a full quadtree (pyramid). If both 
the parent node and the node being examined itself have 0 children, then the node being 
examined should be pruned. This is because the quadrant that the node being examined 
represents is part of a larger uniformly distributed quadrant that the parent node represents. We 
note that if the parent node has 0 children then the node being examined must also have 0 
children based on the procedures described in Steps 2 and 3. On the other hand, when the parent 
node has four children but the node being examined is a leaf quadtree node, i.e., the 
corresponding value in the NumChildren is 0, the node being examined should not be pruned.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Illustration of the First Three Steps in BMMQ-Tree Construction 
 

The correctness of the new BMMQ-Tree construction approach can be verified by 
examining the parent-child relationships of the quadrants in the example dataset in Fig. 4 and the 
values of the fc_pos field of the quadtree nodes in the QuadTree array. For example, the value of 
the fc_pos field of the root node is 1 which indicates that the first child node of the root node 
should be the 1st element in the QuadTree array, which is true. As another example, fc_pos of the 
4th quadtree node in the QuadTree array (base 0) is 13 and it is easy to verify that the 13th 
quadtree node in the QuadTree array is indeed the first child node of the 4th quadtree node in the 
array. We note that for the two elements in the QuadTree array that are bolded (the 7th and the 
12th element, respectively), they represent the 3rd level quadrants and correspond to the non-
shaded quadrants illustrated in the bottom part of Fig. 4. Clearly the 17th-20th elements in the 
array are the child nodes of the 7th element and the 21st-24th elements are the child nodes of the 
12th element, respectively. The data layouts of the 17th-24th elements are not shown in Fig. 4 due 
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to space limit. We also would like to draw attention on how the four uniformly distributed 
quadrants in the shaded rectangle (with relevant values in the MinmaxTable, NumChildren and 
FC_Pos arrays) at the top part of Fig. 4 are consolidated into one quadtree node which is the first 
element (base 0) in the QuadTree array. After the NumChildren array is derived in Steps 2 and 3, 
the values of the relevant elements at L2 (Level 2) and L3 (Level 3) are all 0s and they do not 
contribute to computing fc_pos values of the FC_Pos array. During the quadtree node pruning 
process, except for the highest level node (L2) which is kept as a leaf node, all the nodes below 
L2 that have 0 child nodes are pruned. As we can see from the example, by keeping the 
correspondences among the numbers of child nodes, the positions of the first child node and the 
positions of the quadtree nodes, the parent-(first) child relationship is correctly maintained in the 
resulting quadtree node array. While the design can be implemented on both serial and parallel 
machines, it is particularly suitable for parallel implementation using parallel primitives as all the 
required operations are on 1D arrays and no inter-elements communication are needed.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Illustration of Last Step in BMMQ-Tree Construction 
 
A key difference between the proposed design in this paper and the design reported in 

(Zhang et al 2010) is that, rather than accessing grid cell values along both row and column 
dimensions simultaneously as in (Zhang et al 2010), a Z-order transformation is applied right 
after the binning step and before all the rest of the steps. After the Z-order transformation, the 2D 
geospatial computing problem is converted into a 1D data processing problem with geospatial 
semantics embedded. The converted problem is suitable to be solved by chaining a set of parallel 
primitives that are well understood and efficiently implemented in quite a few parallel libraries. 
As shown in Section 5, a higher speedup can be achieved by using the optimized 
implementations of the parallel primitives without requiring deep knowledge of GPU hardware 
details and outstanding parallel programming skills. Despite the fact that it is still non-trivial to 
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implement the conceptual design using existing parallel primitives, based on our experiences, the 
technical barriers are significantly lowered.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 BMMQ Tree Construction Procedure and Key Data Structures 
 
With respect to the time complexity of the proposed BMMQ-tree construction approach, 

as all steps are linear with respect to the number of grid cells (assuming n) in the relevant arrays, 
the overall time complexity is thus O(n). For rasters that have a same dimension, the runtimes are 
largely input independent on a same hardware configuration. The major workloads to construct 
the min/max table, computing first child node positions and assembling quadtree nodes remain 
the same for any input rasters that have a same raster grid dimension. The differences for the 
pruning step are relatively insignificant. In other words, the performance of the design and 
implementation is largely data independent, a feature that is desirable in many practical 
applications.  

4 Constructing BMMQ-Trees Using Parallel Primitives 
The definitions of major data structures and the overall procedure of the implementation 

are listed in Fig. 5. The data structures are straightforward translations of the conceptual design 
in Fig. 2. For the tree construction procedure, roughly speaking, Steps 1-3 in Fig. 5 correspond to 
Steps 1-3 in the conceptual design (Fig. 3). Similarly Steps 4, 5 and 6 in Fig. 5 correspond to 
Step 4.1 in Fig. 4, and, Steps 7 in Fig. 5 corresponds to Step 4.2 in Fig. 4, respectively. All the 
eight steps (including Step 0 for binning) listed in Fig. 5 can be implemented by a call to a 

Step 0: Bin the raw grid cell values in r_data using transform and store the results as b_data .  
Step 1:  Convert b_data from row-major order to Z-order using scatter and store the results in d_data 
Step 2: Extract the min/max values and number of child quadrant from d_data using transform and store 
the results in minmax_table and NumChildren starting at position l_p=(pow(4.0, M-1)-1)/3.  Note that 4M-1 
min-max pairs are generated out of the 4M grid cells at the level M-1.  
Step 3: For k from M-2 down to 0 (inclusive)  

3.1 Calculate the starting position and size of the level k min-max table: k_p=pow((4.0, k)-1)/3 and 
k_s=pow(4.0,k) 
3.2 Extract min/max values and number of child quadrants from minmax_table using transform 
and store the results in minmax_table and NumChildren starting at position k_p. Note that k_s min-
max pairs at the level k are generated from 4*k_s min-max pairs at the level k+1.  

Step 4: Extract the numbers of child quadrants from minmax_table using transform and store it in 
NumChildren. 
Step 5: Exclusive scan on NumChildren with initial value of 1 and store the results in FC_Pos.  
Step 6: Assemble minmax_table, NumChildren and FC_Pos into QuadTree by using transform and store 
the results in QuadTree. The fc_pos field is set to -1 if the corresponding value in NumChildren is 0.  
Step 7 Prune QuadTree using remove_if by setting the pruning criteria to that both the node being 
examined and its parent node should have 0 child nodes.  
 

template <typename T> 
struct minmax_pair 
{ 
    T min_val; 
    T max_val; 
    uchar num_children;     
}; 

template <typename T> 
struct quad_node 
{ 
    T min_val,max_val; 
    int  fc_pos; 
}; 

XTOT=4096, YTOT=4096, M=12 
blen=pow(4.0f,M)-1)/3) 
1) thrust::device_vector<uchar> d_data; 
2) device_vector<minmax_pair<uchar> > 
minmax_table (blen);  
3) device_vector<quad_node<uchar> > 
quadtree(blen); 
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parallel primitive including transform, scatter, exclusive_scan and remove_if introduced in 
Section 2.2.  

From Fig. 5 we can see that the implementation and the conceptual design match each 
other very well except that a single step in the conceptual design may require multiple primitives. 
The overall procedure is pretty straightforward, especially for those who have Thrust and/or STL 
programming experiences.  In general, we consider using parallel primitives (instead of native 
programming languages) allow us to focus more on high-level designs (e.g., transforming multi-
dimensional geospatial computing problems into one-dimensional ones) rather than being buried 
in details of hardware architectures and programming models. The tradeoffs between coding 
complexity and code efficiency (Bell and Hoberock 2011) will be further discussed.   

Although the implementation is based on the parallel primitives provided by the Thrust 
library that comes with CUDA SDKs, we believe it is portable to other parallel libraries on both 
GPUs and multicore CPUs which is left for our future work. While it is beyond the scope of this 
paper to go through the details of all the parallel primitive invocations in the implementation, we 
would like to take a few steps as examples to illustrate how the quadtree construction is being 
implemented using GPU parallel primitives. We also refer to the companying source code 
package 20 for the details on the rest of the steps in the implementation, including both invocation 
syntax and the associated functors (C++ function objects).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Code Segment to Illustrate the Binning and Z-order Based Transformation Steps 
 

                                                 
20 http://geoteci.engr.ccny.cuny.edu/primquad/primquad.htm  

//assuming that the original data are stored in r_data in row-major order 
//step 0: binning 
thrust::device_vector<uchar> b_data(XTOT*YTOT); 
thrust::transform(r_data.begin(),r_data.end(),b_data.begin(),binning<uchar>()); 
 
//step 1: z-order transformation 
thrust::counting_iterator<size_t> indices(0); 
thrust::device_vector<uchar> d_data(XTOT*YTOT);  
thrust::scatter( 

b_data.begin(),b_data.end(), 
     thrust::make_transform_iterator(indices, zorder_index()), 

d_data.begin() 
); 

struct zorder_index : public 
thrust::unary_function<size_t,size_t> 
{ 
    __host__ __device__ 
    size_t operator()(size_t  index) 
    { 
        ushort i = index * XTOT; 
        size_t j = index / YTOT; 
        return z_order(i,j); 
    }  

#define XTOT 4096 
#define YTOT 4096 

template <typename T>  
struct binning : public thrust::unary_function<ushort,T> 
{ 
    __host__ __device__  
   T operator()(ushort x) 
    { 
     if(x<4) return 1;   if(x<11) return 2; 
     if(x<18) return 3; if(x<27) return 4; 
     if(x<40) return 5;  if(x<77) return 6; 
     if(x<190) return 7; if(x<1004) return 8; 
     else return 9; 
    } 
}; 
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The syntax of invoking the transform and the scatter primitives and the implementations 
of the binning and the Z-order transformation functors for Step 1 and Step 2 are illustrated in Fig. 
6. We can see that, invoking parallel primitives on GPUs is very similar to calling STL functions 
which can significantly flatten the learning curve of GPU programming. We also note that 
iterators and functors are extensively used in the primitives. The transform and the scatter 
primitives that are used in these two steps apply the respective functor (binning and 
zorder_index) to each element in the input array(s) to produce output arrays, in parallel. In 
general, the generic parallel primitives that are designed for 1D arrays have excellent scalability 
and can be realized in multiple parallel hardware architectures, including GPUs. By separating 
application logic (which is implemented in the binning and zorder_index functors in the 
examples) and hardware specific parallel invocations (CUDA kernels to implement the generic 
parallel primitives), a high level abstraction can be achieved which facilitates productivity of 
development and portability among different hardware platforms significantly. The binning 
functor takes a 16-bit grid cell value as the input from the r_data array and generates an 8-bit bin 
value to output to the b_data array. Each processing unit (e.g. a thread) invokes the binning 
functor independently without communicating with other processing units which is a 
fundamental requirement of using parallel primitives. The zorder_index functor, which 
transforms a grid from the row-major order to the Z-order within a scatter primitive, follows the 
same schema although it looks a little more complex. Basically the functor takes a row-majored 
1D array sequence of a 2D raster grid cell array as the input, calculate the row and column 
numbers and invoke a function to compute a Morton code (see details in Raman and Wise 2008). 
The scatter primitive embeds the functor into an iterator to generate a Morton code of a position 
p in the sequence of 0..XTOT*YTOT-1 (dynamically generated by a counting_iterator) and uses 
the Morton code as the destination position in the output d_data array for the element at position 
p of the input array b_data. Essentially the line of code is a combination of a scatter primitive 
and a transform primitive. The combination successfully avoids outputting the computed Morton 
codes to an array in GPU device memory and reading them back to registers later, an 
optimization technique that is desirable.  

Similarly the syntax of invoking the transform and the remove_if primitives and the 
implementations of assembling quadtree nodes and pruning the quadtree functors for Step 6 and 
Step 7 are illustrated in Fig. 7. Note that indices is a counting_iterator variable that has been 
defined previously which can serve as array subscripts in many applications. Also note that 
minmax_table and chidposition arrays are filled in Steps 2/3 and 4/5, respectively (they are 
omitted here due to space limit). We would like to draw attention on the constructors of the 
trans_quad and isnot_treenode functors where the pointer pointing to the first element of the 
minmax_table is passed to the two functors so that the functors can access any elements in the 
minmax_table array when they are invoked. The position of the element that is being processed 
by a processing unit is passed to the operator function of both of the functors (n for trans_quad 
and p for isnot_treenode, respectively) so that the respective operator function can decide what 
to return based on the elements in minmax_table that are relative to the position value and 
arguments that are being passed to the operator function. For example, in isnot_treenode, the 
number of child nodes of both the parent node and the node being examined, i.e., nodes at (p-
1)/4 and p, are taken into consideration. The implementations of the two functors follow the 
design in Section 3 very well and we left the verification to readers. Note that the transform 
primitive used in Step 6 has a more complex form than the one used in Step 2 of Fig. 6. Here two 
input arrays (indices and chidposition) are used. As a consequence, the trans_quad functor takes 
two parameters in its operator function with each extracted from the respective input array. In 
contrast, the binning functor in Fig. 6 takes only one parameter in its operator function. In 
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general, our implementation aims at making full use of the powerful yet flexible primitives based 
programming framework that the Thrust library has provided. We believe a similar architecture 
design can be adopted for developing a geospatial specific parallel primitive library which is one 
of our long term goals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Code Segment to Illustrate Assembling Quadtree Nodes and Pruning Quadtree 
Using Parallel Primitives 

5 Experiments and Results 
We use the same global 30-arcsecond January Precipitation dataset from WolrdClim 

website21 that has been used in (Zhang and You 2010a, Zhang and You 2010b and Zhang et al 
2010) for CPU and GPU based implementations. Since the dataset was divided into 4096*4096 
tiles in (Zhang et al 2010), we apply the same tiling schema in this study. As the valid values for 
raster cells range from 0 to 1004, we have used 8 bines with bin boundaries at (0, 4, 11, 18, 27, 
40, 77, 190, 1004). All experiments are performed on a Dell T5400 machine with dual quad-core 
Intel Xeon E5405 CPUs (2.00 GHz, only one core is used for the experiments) and an Nvidia 
Quadro 6000 GPU card22 with 448 cores and 6 gigabytes global memory. CUDA SDK 4.1 and 
Thrust 1.6 are used. We have experimented on multiple 4096*4096 tiles (32 MB chunks for 16-
bits rasters) from the global 30-arcsecond January Precipitation dataset. As discussed in Section 
3, the performance is largely data independent for rasters with a same dimension and the 
                                                 
21 http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/prec_30s_bil.zip  
22 http://www.nvidia.com/object/product-quadro-6000-us.html  

// definition of minmax_table : thrust::device_vector<minmax_pair<uchar> > minmax_table(blen);               
// definition of chidposition : thrust::device_vector<uint> chidposition(blen); 
//definition of indices: thrust::counting_iterator<size_t> indices(0); 
 

minmax_pair<uchar> *pyra_ptr=thrust::raw_pointer_cast(minmax_table.data());  
thrust::device_vector<quad_node<uchar> > quadtree(blen); 
 

//step 6: assembling quad-tree 
thrust::transform(indices, indices+blen, chidposition.begin(),quadtree.begin(), trans_quad<uchar>(pyra_ptr)); 
        
//step 7: pruning quadtree 
thrust::remove_if(quadtree.begin(), quadtree.end(),indices, isnot_treenode<uchar>(pyra_ptr)) 

template <typename T> 
struct trans_quad 
{ 
      const minmax_pair<T>* a;  
      trans_quad(minmax_pair<T>* _a) : a(_a) { } 
 
       __host__ __device__ 
       quad_node<T> operator()(uint n,uint v) 
       { 
 quad_node<T> result; 
 minmax_pair<T> p=a[n]; 
 result.min_val=p.min_val; 
 result.max_val=p.max_val; 
 result.first_child_pos=((p.num_children<=0)?-1:(int)v); 
 return result; 
      } 
}; 

template <typename T> 
struct isnot_treenode  
{ 
     const minmax_pair<T>* a;  
     isnot_treenode(minmax_pair<T>* _a) : a(_a) { } 
     
      __host__ __device__ 
       bool operator()(uint p) 
       { 
          int pc=(p==0)?4:a[(p-1)/4].num_children; 
          int nc=((pc==0)||(a[p].num_children==0))?0:4; 
          return(pc==0&&nc==0); 
    } 
}; 
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runtimes increase linearly with respect to the numbers of grid cells in rasters. This has been 
verified by experimenting on a 16384*16384 raster which requires almost exactly 16 times 
runtime. As such, we will restrict our discussions of experiment results on 4096*4096 tiles.  

We believe the title size with a dimension of 4096*4096 is suitable for most GPU devices 
that have 256 MB or above graphics memory. By optimizing memory utilization in our current 
primitives based implementation, it is possible to accommodate for GPU devices with smaller 
memory capacities and we leave it for future work. In this section, we focus on the comparisons 
among GPU and CPU based implementations with different strategies to understand the realized 
and potential performance gains from GPU hardware and GPGPU technologies. We encourage 
readers to download our source code package and test the performance of the implementations 
(the URL has been provided previously). Instructions on using tools to extract raw data from 
arbitrary rasters or images, programs for chunking the raw data into tiles with widths and heights 
(2’s powers, required by the implementations) and suggestions on defining bin boundaries have 
also been provided.  

The runtime of our primitives based GPU implementation (hereafter referred as GPU-
Primitive) is 13.33 milliseconds and we use it as the baseline for comparison purposes. We have 
re-implemented the classic recursive Deepest-First Search (DFS) based serial CPU 
implementation by adopting a few performance optimization techniques for fair comparisons. 
The implementation is referred as CPU-DFS. Additionally, we have implemented the new design 
proposed in this paper on CPUs using a single processor to loop through all the elements in the 
respective array to simulate the parallel execution. We refer the implementation as CPU-SIM. 
The CUDA based implementation reported in (Zhang et al 2010) is tested without any changes 
and is referred as GPU-OLD. The two CPU implementations are complied with -O2 flag for 
optimizations to ensure fair comparisons. The experiment results show that the runtimes of CPU-
DFS, CPU-SIM and GPU-OLD are 1191.87 milliseconds, 1044.36 milliseconds and 147.23 
milliseconds, respectively, for multiple 4096*4096 raster tiles on average.  

When compared the GPU-Primitive implementation against the rest three 
implementations, a speedup of 89.4X over CPU-DFS, 78.34X over CPU-SIM and 11.0X over 
GPU-OLD has been achieved. We attribute the 11.0X speedup over GPU-OLD to better 
coalesced memory accesses due to Z-order transformation and implicitly use of shared memory 
for scan. The signficant 89.4X speedup over CPU-DFS is due to the excessive dynamic memory 
allocation and de-allocation and cache unfriendly data accesses in the CPU-DFS implementation. 
It is a little surprising that CPU-SIM does not significantly outperform CPU-DFS. We had 
expected that CPU-SIM would be significantly better than CPU-DFS because the dynamic 
memory management overheads in CPU-DFS were largely removed and arrays are cache 
friendly in most of the steps (except the Z-order transformation step) in the CPU-SIM 
implementation. Unfortunately this is not true. Further analysis has revealed that the binning and 
the Z-order transformation (combined in CPU-SIM) took the majority of the runtime (974.92 
milliseconds) while all the rest steps combined took only 69.44 milliseconds. In contrast to the 
combined runtime of the same binning and Z-order transformation steps in GPU-primitive which 
is only 4.40 milliseconds, an impressive 260X speedup has been observed. We suspect that the 
cache unfriendly nature of Z-order transformation process on CPUs can be the performance 
bottleneck which requires further investigation. GPU-Primitive still gains about 7.8X speedup, 
which is calculated as 69.44/(13.33-4.40), for the rest of the steps. Both results have 
demonstrated the advantages of GPGPU technologies for geospatial computing, which is often 
both data and computing intensive, by leveraging the large numbers of processing cores and high 
memory bandwidths available on GPU devices when compared with CPUs.  
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The experiment results have positive implications for indexing and querying large-scale 
rasters. Experiments for 16-bit rasters using both 4096*4096 tiles (13.33 milliseconds) and 
16384*16384 (230.75 milliseconds) tiles have suggested an indexing rate of more than 1.25 
billion cell/pixel per second (230/s). The processing rate is lower but comparable to PCI-
Express23 data transfer rate between the CPU and GPU memories on our machine which means 
that the sustainable processing rate is achievable when interleaving data transfer and processing. 
The processing rate suggests that the data generated by GOES-R satellites at the global scale 
each day, i.e., 288 coverages and 16 bands with each coverage having approximate 1/4 billion 
pixels can be indexed in less than 20 minutes24 on a single GPU device. Although many 
applications require more sophisticated computations than constructing BMMQ-Trees, GPGPU 
computing seems to be a cost-effective way for large-scale geospatial computing. Furthermore, 
as Nvidia Kepler GPUs25 that are currently available on the market have more than 3000 cores 
and PCI-Express 3 standard allows up to 16 GB/s data transfer among CPUs and GPUs, we 
expect that the achievable data processing rate can be further improved on commodity GPU 
devices. Although it is unlikely that disk I/O speed can reach a 2 GB/s rate any time sooner to 
match the 1 billion raster cells per second GPU processing rate on a personal workstation, we 
argue that this is quite possible in a cluster computing environment where parallel file systems 
are available. Efficiently streaming large-scale raster data from disks to CPU memoires and to 
GPU memories as well as utilizing parallel file system to further speed up realizable processing 
rate are left for our future work.  

Conclusion and Future Works 
In this study, we have adopted a transformation based approach to effectively and 

efficiently utilizing massively data parallel GPGPU technologies for geospatial computing. By 
ordering grid cells of geospatial rasters based on Z-order, we transform a multi-dimensional 
geospatial indexing (BMMQ-Tree construction) problem into a set of smaller problems with 
each can be solved by using a generic parallel primitive optimized for one-dimensional arrays on 
GPGPUs. Our experiments have shown that the primitive based GPU implementation on an 
Nvidia Quadro 6000 GPU device has achieved nearly 90X speedup over an optimized serial 
CPU implementation and is 11X faster than a previous GPU implementation. We believe the 
approach can be extended to a large family of geospatial computing problems by designing 
proper transformation schemas. Our additional research efforts along the direction, such as 
constructing DEMs from large-scale point datasets (You and Zhang, 2012) and several spatial 
join processing on vector geospatial data (Zhang and You 2012, Zhang et al. 2012a, Zhang et al. 
2012b), seem to be encouraging. These research and development efforts can also serve as case 
studies towards developing high performance parallel geospatial computing primitives to bridge 
between conceptual deigns of geospatial computing models, software developments and 
hardware parallel executions.  

There is plenty of room for future work. First of all, we would like to extend the quadtree 
based indexing to include query processing on GPGPUs, e.g., spatial range queries, ROI-type 
queries and spatial joins on both raster and vector geospatial data. Second, although we have 
been using a single GPU device for our data structure and algorithm development in a personal 
computing environment, we plan to extend the approach to a cluster computing environment 

                                                 
23 http://en.wikipedia.org/wiki/PCI_Express 
24 Approximately calculated as |W|*|H|*|T|*|B|/R=(360*60)*(180*60)*(12*24)*16/(2^30)=1001sec =16.7min  
25http://www.nvidia.com/object/nvidia-kepler.html 
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using grid/cloud computing resources to further test the scalability of the proposed approach. 
Finally, we have strong interest in developing geospatial specific parallel primitives to support 
large-scale geospatial computing in a cyberinfrastructure framework with respect to open source 
software development and providing services to the user community over the Web.  
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