Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

High-Perfor mance Quadtree Constructionson L arge-Scale
Geospatial Rasters Using GPGPU Parallel Primitives

Jianting Zhang™? and Simin You?
1 Department of Computer Science, the City College of New York, New York, NY, 10031
2 Department of Computer Science, CUNY Graduate Center, New York, NY, 10006
Correspondent author email: jzhang@cs.ccny.cuny.edu

Abstract

The increasingly available Graphics Processing Units (GRjware and the emerging
General Purpose computing on GPU (GPGPU) technologies provide actitrsolution to
high-performance geospatial computing. In this study, we have propogachléel primitive
based approach to quadtree construction by transforming a muhiglonal geospatial
computing problem into chaining a set of generic parallel primitikes are designed for one
dimensional arrays. The proposed approach is largely data independeranabd efficiently
implemented on GPGPUs. Experiments on 4096*4096 and 16384*16384 raster tiles have show
that the implementation can complete the quadtree constructions in mhdld&conds and
250.75 milliseconds, respectively, on average on an NVidia GPU device. Gompdh an
optimized serial CPU implementation based on the traditional si@euDepth-First Search
(DES) tree traversal schema that requires 1191.87 millisecamd#96*4096 raster tiles, a
significant speedup of nearly 90X has been observed. The perf@nodntie GPU based
implementation also suggests that an indexing rate in the ordweoref than one billion raster
cells per second can be achieved on commodity GPU devices.

1 Introduction

High-performance geospatial computing is an important componenteos$pgtial
cyberinfrastructure and is critical to large-scale geodpddita processing and problem solving
(Wang and Liu 2009, Yang et al. 2010). Recently there is increastagest in GPGPU
technologies, i.e., General Computing on Graphics Processing Umitdigh-performance
geospatial data processing (Zhang 2010). High-end workstations equijihbgdPGPU devices
with hundreds and even thousands of processing cores that are acdpabiehing hundreds of
thousands of threads simultaneously are ideal for massively daféelpdrigh-throughput and
highly interactive applications in a personal computing environmenerf@gdiong et al. (2011)
argued that GPU architectures closely resemble supercompsiteashaimplement the primary
Parallel Random Access Machine (PRAMharacteristic of utilizing a very large number of
threads with uniform memory latency (such as Cray ¥MBolving small to medium sized
problems directly on GPU-equipped personal workstations is both ¢esthed and energy
efficient. Equally important, as modern grid and cloud computing techeslagireasingly rely
on cluster computers made of identical computing nodes using commodityaney algorithms
that can fully utilize GPGPU hardware capability on a lsingode will naturally boost the
performance of cluster computers to solve larger scale problems.

Geospatial data processing on GPGPUs have attracted signéisaatah and application
interest in the past few years ranging from data managetaephysics based environmental
simulation. The throughput-oriented architectural designs of GP@B<and and Kirk 2010)

! http://en.wikipedia.org/wiki/Parallel Random AcceSkchine
2 http://www.cray.com/products/XMT.aspx

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

are especially suitable for geospatial data processing dhe ioherent parallelism of local and
focal geospatial operations (Theobald 2005). However, it is genedilyivial to use GPGPUs

for zonal and global geospatial operations (Theobald 2005) whose psmaltzin not be easily

mapped to GPGPU computing architectures. Constructing tree intticepeed up query

processing and data analysis is one of the most important iopsrah geospatial data

processing which can be considered as a special type of gledsgatial operation. Hundreds of
tree indices have been proposed over the past few decades @pdeGainther 1998, Samet
2005 and some of them have been efficiently implemented on CPUs.

The volume of raster geospatial data are increasing quickly. Fonp&, the next
generation geostationary weather satellite GOES-R sevidlsmprove the current generation
weather satellite by 3, 4 and 5 times with respect to spespatial and temporal resolutions
(Schmit et al. 2009). With a temporal resolution of 5 minutes, GOR#E}RRenerate 288 global
coverages everyday for each of its 16 bands. At a spatial iesohiit2 km, each coverage and
band combination has 360*60 cells in width and 180*60 cells in height, i.ely aeguarter of a
billion cells. Such data volume growths are well above the computingrpgneeth rate of
uniprocessors. While Moore’s law predicts that CPU computing powereatoatsery 18 months
which has been true for more than 16 years before 2002, the grovthf tatiprocessors have
dropped to about 20% per year from 2002 to 2006 and even lower in recenHgraregsy and
Patterson 2011). As such, it is natural to seek alternativdgdagalutions to provide sufficient
computing power to facilitate better understanding of the environraadtgheir human impacts,
including GPGPU technologies. Unfortunately, the current generafid@PGPUs have quite
different hardware features than CPUs and it is nontrivial toquwh algorithms from CPUs to
GPUs. Despite the great potentials on using massively daalep&8PGPU technologies for
geospatial computing, the performance of GPGPU-based parall@l spdexing, including
guadtrees for raster data, largely remains unknown to the geospatial computmgnetym

The work presented in this paper is a re-design and re-implementation of the Blinae
Max Quadtree (BMMQ-Tree) construction algorithm for largdescaster geospatial data that
have been proposed previously (Zhang and You 2010a, Zhang et al. 2@&L.8how that by
transforming a multi-dimensional geospatial computing problemdhs&ining a set of generic
parallel primitives that are designed for one dimensional ari@gstion 2.2), we are able to
reduce coding complexity and improve code efficiency at the same time. \Weelibht the new
approach on parallel primitives based high-performance geospatigiuting on GPGPUs can
be interesting to geospatial computing researchers and develdper@re seeking the parallel
computing power of new hardware architectures but do not wish to be overwhelmedvgrear
or programming model details. We hope the approach introduced in this qaepéwer the
barriers of applying GPGPU computing to efficiently solve pcatiyeospatial problems and the
example study reported in this paper can motivate similarrdse#forts. By generalizing the
common patterns of applying generic parallel primitives in ge@paamputing, more efficient
geospatial-specific parallel primitives can be further developéhe rest of the paper is
organized as the following. Section 2 introduces background and relatéd Section 3
provides the design of the tree construction algorithm after rengetive data layout of BMMQ-
Trees. Section 4 presents the implementation details of BMM@-dalstructions on GPGPUs
using parallel primitives. Section 5 reports experiment resuits provides comparisons with
alternative implementations. Finally Section 6 is the conclusion and future workatiee

3 http://www.goes-r.qov/

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

2 Background and Related Works

2.1 GPGPU Computing and CUDA Programming Model

A Graphics Processing Unit (GPU) is a hardware device thatigmally designed to
work with a CPU to accelerate rendering of 3D or 2D graphiles.highly parallel structures of
modern GPU devices, such as AMD/ATI Radtand Nvidia GeForce/Quadro sefiemake
them more effective than general-purpose CPUs for a range ropleo graphics-related
algorithms. The concept of General Purpose computing on GPU (GP@RIY)the massive
floating-point computational power of a modern graphics accelergtaphics-specific pipeline
into general-purpose computing power. GPGPU computing technologies paoside effective
alternative to cluster computing and have gained considerablesinierenany research and
application domains in the past few years (Hwu 2011a, Hwu 2011b). Accoadihg Nvidia
website, when compared with the latest quad-core CPU, Tesla 28-<8HU computing
processors deliver equivalent performance at 1/20th of power consuraptiati10th of coSt
As many reasonably current desktop computers have already be@peehwith GPGPU
enabled graphics cards, GPGPU based geospatial data processing prawe irmystem
performance significantly without additional costs. According tarl&d and Kirk (2010),
NVIDIA alone has shipped almost 220 million GPGPU-enabled devioss #006 to 2010.
Despite the differences among the GPGPU enabled devices and dexlgpatforms, a
GPGPU device can be viewed as a parallel Single Instructidtipié Data (SIMDJ machine.
Major GPU hardware vendors have released Software Developmisn{S0OKs) to facilitate
application development using high-level programming languagesnéitiem, the Compute
Unified Device Architecture (CUDA)from Nvidia is arguably the most popular one which can
be viewed as a C/C++ extension. The Accelerated Paralleb§3ing (APP) technology from
AMD? is based on OpenClwhich is an open standard and is closely related to CUDA. We
next briefly introduce the Nvidia GPU architecture and its palrgtogramming abstraction
based on CUDA.

While different models of Nvidia GPU devices have different aechitres, CUDA-
enabled GPU devices are organized into a set of Stream MulspmyegSMs). Each SM has a
certain number (e.g., 32) of computing cores. All the cores M altare a certain amount (e.g.,
16k or 48Kk) of fast memory called shared memory and all the SMsacaess to a large pool of
global memory (e.g., 512MB or 4GB) on the device. According to CU@Bvelopers write
special C-like code segments called kernels. The kerneisvanieed by the companioning CPU
code to run on GPU devices. CUDA based GPGPU programming mad&sidt for task and
data decomposition and subsequent parallel computing. Basically a desgepiies the sizes
of the layout of the data to be processed in the units of data blodkbeanumber of threads to
be launched inside a data block. The GPU hardware is responsible for mapping bhectatto
the SMs through space and time multiplexing which is transparentvedogers/users. Since
each SM has limited hardware resources, such as the numbersténegshared memory and
thread scheduling slots, a SM can accommodate only a certain nohildecks subjected to the

4 http://en.wikipedia.org/wiki/Radeon

5 http://developer.nvidia.com/cuda-gpus

8 http://www.nvidia.com/object/io 1227008280995.html
" http://en.wikipedia.org/wiki/SIMD

8 http://www.nvidia.com/object/cuda_home new.html

° http://developer.amd.com/sdks/AMDAPPSDK/

10 http://www.khronos.org/opencl/

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

combination of the constraints. Carefully selecting block sizesvalla SM to accommodate
more blocks simultaneously and, subsequently, improve parallel througkiyhits. CUDA is
designed to make parallel programming on Nvidia GPUs eahierto the complexity of the
massively data parallel hardware architectures, the leproumrve of efficient CUDA
programming can be steep. The Thrust libfathat has been shipped with the latest CUDA
SDK is designed to balance between easiness to use and com@ffiby providing a set of
high-level APIs known as parallel primitives to be detailed next.

2.2 Parallel Primitivesin the Thrust Library

Parallel primitives refer to a collection of fundamental alhons that can be run on
parallel machines. The behaviors of popular parallel primitives ordiomensional (1D) arrays
or vectors are well-understood. We have opted to use 1D arrays cortext of geospatial
computing to avoid confusing with vector geospatial data types. Uekgdisitly stated, we use
“arrays” to refer to “1D arrays”. Parallel primitives udyahre implemented on top of native
parallel programming languages (such as CUDA) but provide a&fssimple yet powerful
interfaces (or APIs) to end users. Technical details are mididen end users and many
parameters that are required by native programming languagedine-tuned for typical
applications in parallel libraries so that users do not need tohsgech parameters explicitly.
On the other hand, such APIs usually use template or generic bageahpming? techniques in
a way similar to the well known Standard Template Librany{$¥so that the same set of APIs
can be used for many data types. Due to the nature of high-kstehdetions, the APIs may not
be the most efficient ones when compared with handwritten prograngsnagive programming
languages with fine-tuned parameters. However, the APIs uspadlyide good tradeoffs
between coding complexity and code efficiency. Indeed, most ofatedlgl primitives in the
Thrust library are very similar to their STL counterparts arelvery appealing to experienced
STL users. The high level abstractions also bring signficamalmbty. In fact, while originally
designed for CUDA-enabled GPUs, the latest Thrust library canrah on multi-core CPUs.
This unique feature further makes parallel primitives based #igorlevelopments attractive
when compared with using CUDA directly. While it is beyond ttwps of this paper to provide
a full introduction to parallel primitives and their implementationthe Thrust library (of which
we refer to Bell and Hoberock 2011 and Thrust website), we nexthiné&fduce a few popular
parallel primitives (McCool et al. 2012) that we will use in our quadtree conetrutsign.

(1) Scan. The Scan primitive computes the cumulative sum of an array. Both the
inclusive and exclusive scans are possible. For example, exclusiag3s2,0,1]3>([0,3,5,5])
while inclusive_scan ([3,2,0,1)([3,5,5,6]). TheScan primitive can also take a user defined
associative binary function to replace the default plus/sum binartion. To better illustrate
the concept of the scan parallel primitive, a CUDA implementaifaihe scan primitive using
four threads are provided in Fig. 1. In general, to s€atiafa items, 2" intermediate storage
units are required. After the initialization step, the n datagtare copied to the right half of the
storage array while the first half of the storage arragla@ared up. In step i of the process, data
items that are'Zlements away are added up in parallel and the whole scaspmmmmpletes in
n+1 steps.

" http://thrust.github.com/
12 http://en.wikipedia.org/wiki/Generic_programming
13 http://www.sgi.com/tech/stl/

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

|__device__ inline ushort scan4(ushort nu
{
Step (__shared__ ushort ptr[2*Tn];
ushort val=num;
[3[2Jo]2] T 1 1] [ololofol3[2]of1] ¥ | untice= treadion
T L. ptr[idx] = 0;
idx += Tn;
Step : [oloJolo[3]5]12]1] ptr[idx] =num;
— __syncthreads();
I~ val += ptrlidx - 1]; __ syncthreads(); ptr[idx val; __syncthreads();
: <«———val +=ptrlidx - 2]; __syncthreads(); ptr[jdx val; __syncthreads();
Step %ﬂlﬁl | _val +=ptrfidx - 4]; __syncthreads(); ptridx val; __syncthreads();
Step : NNNNEEER | vai- otk
return val;
}

Fig. 1 lllustration ofScan Implementation Using Four Threads in CUDA

(2) Copy, copy_if, remove and remove_if. Copy moves groups of elements from one
location to another location, typically in two different arrays. Tuopy if primitive takes an
additional unary function as a parameter to tell whether thespameling array element should
be copied to the output array or not. Similaynove andremove _if remove groups of elements
within an array with or without an optional binary predict functiBamove andremove if are
typically applied in-place which means that the input arrays cdhebseame as output arrays to
save memory. Note that compacted arrays after appRengve andremove _if primitives can
be resized to reduce memory footprints.

(3) Transform. The basic form ofransform applies a unary function to each element of
an input array and stores the result in the corresponding position inpart aray. Transform is
more general thaRopy as it allows a user defined operation to be applied to arrayeetem
rather than simply copying. Thrust has also provide severalntarméd theTransform primitive
to allow transform two arrays based on a binary function and/or assegarate stencil array to
evaluate the criteria for transformation.

(4) Scatter. Scatter copies elements from a source range of an input array into an output
array according to a map. For example, Scatter([3,0,2],[12,4,8],[*,*,*,* 21(%,*,8,%,12,*]).
Note * values are those unchanged in the third array. Clearly weea is a one-to-one map
between the inputs and outputs such as the Z-order transformationdappdigation, the output
array will have no * values.

The alert readers many have observed that these paralletiygsmwork on flat 1D
arrays only and we term them as generic primitives. Fronogpgéial computing perspective,
this is indeed insufficient to process geospatial data which isllyisonaulti-dimensional.
However, as we shall show in Section 4, we can use these flardy3 dased generic parallel
primitives as the building blocks to construct parallel geospatdessing modules. We note
that the current generation of GPGPU devices work best with@larrays in many cases. The
transformation between multi-dimensional geospatial data antiDlarrays can potentially help
identifying parallelisms in geospatial computing and facilitakesigning more efficient,
geospatial-specific data structures and algorithms on GPGIPdsdspatial computing which is
the key component in this paper.

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

2.3 Parallel Processing of Geospatial Data

Parallel processing of geospatial data is not a completelycarcept. Quite a few works
on parallel spatial data structures (Kamel and Faloutsos 19923, &li2005), spatial join (Zhou
et al. 1998, Patel and DeWitt 2000), spatial clustering (Xu 1999), lspiatiistics (Armstrong et
al. 1994, Wang and Armstrong 2003) and polygonization (Hoel 2003, Mineter 2003)dwave b
reported. However, as discussed in (Clematis et al. 2003), reseapdrallel (and distributed)
processing of geospatial data prior to 2003 has very littleatrgra mainstream geospatial data
processing applications, possibly due to the accessibility of hagdavet infrastructures in the
past. The situation has been significantly changed over the pasyefmw due to the wide
availability of grid (Wang and Liu 2009) and cloud computing (Yangl.e2011) resources and
the maturity of GPGPU technologies (Zhang 2010). Work reported imgVga al. 2008) has
demonstrated significant speedups by using grid computing for spatitistics. Parallel
computing on LIDAR data using cluster computers (Han et al. 2808ptting increasingly
popular due to its computation intensive nature. The development of alganpse parallel
raster processing programming library on top of the MPI (Mgs&assing Interfat® parallel
communication protocol is reported in (Guan 2010) and a test apphiazing a geographical
cellular automata model has achieved a speedup of 24 using a 32-node ctuptgec We also
refer to (Yang et al. 2010) for a review on environmental modelingumtec computers in a
cyberinfrastructure environment. Recently, there are consideed®arch interest in geospatial
data processing using the MapReduce parallel computing frameWedn (and Ghemawat
2010) and the open source Hadoop implementation cluster computers, such as R-Tree
construction on point data and image tile quality computation (Caay. @009), spatial join
(Zhang et al. 2009b), geostatistics (Liu et al. 2010) and nearegtboeiqueries on voronoi
diagrams (Akdogan et al. 2010). Similar to MapReduce/Hadoop applicdtiens,are also quite
a few recent works on GPGPU applications to geospatial computiclgding environmental
modeling (Molna et al. 2010), flow accumulation (Ortega and Rueda 2010)agkanetwork
computation (Qin and Zhan et al. 2012), LIDAR data reduction (Orysp29&2) and raster
analysis (Steinbach and Hemmerling 2012). Most of these works latedréo local or focal
geospatial operations which are relatively straightforwagghtallelize on GPGPUs. In addition,
it seems that these works (except Molna et al. 2010) have foousetlizing GPGPU'’s large
number of threads to speed up computation but have not used GPGPU’s high memory bandwidth
and/or fast shared memory to speed up data accesses gectAshere are signficant potentials
to improve the efficiencies of the respective implementatiohoagh it is nontrivial to
understand data access patterns and make full use of GPGPU hardpaindities. GPGPU
technologies have also been applied for coding raster bitplane bitmasg(2t al. 2011),
polygon rasterization (Zhang 2011) and vector data indexing using Rfweeet al. 2011)
where zonal and global geospatial operations are involved and more sapdustiarallelization
schemes have been designed to optimize performance.

2.4 Indexing Raster Geospatial Data

There are relative fewer works on indexing raster geospatialvdan compared with
indexing vector geospatial data. Interval trees (Cignoni efl337), octrees (Wilhelms and
Vangelder 1992, Wang and Chiang 2009) and KD-trees (Gress and Zl@#) have been
extensively used in 3D computer graphics such as iso-surface ingnderd ray-tracing.

14 http://en.wikipedia.org/wiki/Message Passing_lraeef
15 hitp://hadoop.apache.org/

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

Quadtrees have been proposed to compress binary and gray scate?® (@amet 1985, Lin
1997, Chan and Chang 2004, Chung et al. 2006). However, we note that data stamctures
algorithms designed for graphics rendering and image compresgiarot necessarily suitable
for database query processing. Pyramid and tiling techniques lsavbegn used to speed up
image display but usually they do not allow queries on the underhastgr data. Oracle
GeoRastér allows storing the bounding boxes and derived attributes of tilgesnas vector
geospatial data, which subsequently can be indexed and queried colyrslected tile images
need to be retrieved for display. A few of existing works have adddethe issue of managing a
set of similar/related rasters for efficient query processiased on the concept of overlapping
guadtrees (Tzouramanis et al. 1998, Manolopoulos et al. 2001, Manouvrier et al.AD0%
above indices construction algorithms are serial. It is desitahlevestigate how modern GPU
hardware devices and GPGPU parallel computing technologies affebtvely used to index
large-scale raster geospatial data to support efficient quétigertunately, as GPGPU are
relatively new technologies to the spatial data management coimgmtire performance is
largely unknown.

Techniques such as linear quadtrees (Samet 1984) have been develegtzinalize
main-memory based quadtrees and make them disk-resident. Lineiregaacan be used to
support certain types of queries on top of B+-Tree (Tzouramanis et al. 1998, Abcardagyeef
2001, Manolopoulos et al. 2001). A recent work on managing large-scalessgestréoution
data (Zhang et al. 2009a) associates a set of species identiiile linear quadtree nodes and
uses the PostgreSQL LTREE moddléo perform window queries by coordinating both the
qguery client and the database server. A main-memory implenmntads improved query
performance by 2-3 orders as reported in (Zhang 2012, also see dgelno af). A Binned
Min-Max Quadtree (BMMQ-Tree) data structure that assosiati®/max statistics of raster cells
of a quadrant to the corresponding quadtree node to speed up processirtginftyges of
gueries in a Web environment has been developed (Zhang and You 20M04Q-Bree is a
CPU main-memory indexing structure constructed through a recursicedure based on the
classic Depth First Search (DFS) traversal schema. Moently, the BMMQ-Tree construction
algorithm has been implemented on Nvidia GPUs using CUDA dir¢gtigng et al. 2010).
Unfortunately, the implementation was heavily influenced by itsesponding serial algorithm
and the implementation did not fit GPU hardware architecture and GPGPglgan@jramming
model very well. As a result, as shown in the experimentsgatihile the implementation was
significantly better than the serial CPU implementation (dheinal 2010), our new design and
implementation is able to achieve another 11X speedup which bringal aspgeedup of 90X
when compared with a new optimized serial CPU implementation. \We inigoduce the
BMMQ-Tree indexing structure and its high level design before present our parallel
primitives based implementation in Section 4.

3BMMQ-Tree: Data Layout and Parallel Construction Design

The Binned Min-Max Quadtree (BMMQ-Tree) (Zhang and You 2010a, Ziehna.
2010) can be considered as a special type of quadtree whecsta@ninimum and maximum
values in this case) are associated with quadtree nodes andténecesisvalues are binned to
enhance spatial homogeneity and reduce tree complexity. The BWHg)node layout in the
original CPU-based design has been adapted to GPGPUs by reftacipginters to four child

16 http://docs.oracle.com/html/B10827 01/geor_intnm.ht
1 http://www.postgresql.org/docs/9.1/static/ltree.htm
18 http://geoteci.engr.ccny.cuny.edu/geoteci/SPTestMap

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

nodes with an array index position to point to the first child node. Thetl@yahe BMMQ-Tree
data structure is illustrated in Fig. 2 based on (Zhang et al. 201BMMQ-Tree node has a
data field and a position field. The data field, while only theimum (MinB) and maximum
(maxB) values of the raster cells under the node is currently dedofor a BMMQ-Tree, in
principle, can store any statistical values, such as mean aiadiale The position fieldf¢ _pos)
stores the starting position of the first child node in the degarstthat holds all the tree nodes
linearly based on a Breadth First Search (BFS) tree salvdfor the example shown in Fig. 2,
the minB and maxB values of the root node are 0 and 4 and the first child node position is 1
which indicates that the four children of the root node can be locatibe idata stream at the
positions 1, 2, 3 and 4, respectively. This has been illustrated in tiee past of Fig. 2. As
discussed in (Zhang et al. 2010), the BMMQ-Tree structure asecaonscious since sibling
nodes are consecutive in the data stream and they are likedyfétched together into hardware
cache lines. The quadtree data structure also has a small yrfeotprint as only the position of
the first child node, instead of the four pointers to all child nodestpred. More importantly,
the quadtree data structure is GPU-friendly as the datarswéguadtree nodes can be easily
held in a 1D array and transferred back and forth between GBGRU memories (as well as
between disks and CPU memories) without serialization.

343536 35 34] 32 49 50 o[o[o]ofo]o[2]2
33| 32[33] 35| 35|33 48| 51 olofofofo]o[2]>2
0 |[32-37)] 25
36|3534|36(42|43 47| 46| [1 [[37.47) | 12| |ojojofoltj1j2)1
34| 36/34|35(48[49 48] 47| [2 | [47,52) | 11 8 8 8 2 ; ; :23 :23
36|35/ 36| 38| 48[51/53[90| |3 [[62,92) | 12| ot1olititatalals
33| 36| 42| 44| 49| 50/ 80| 9114 1 [92- 4 | 11313313l 2
39| 44] 76| 80| 88] 90[100/ 109 Binning 11]3[3]33]4]4

38| 43[77| 79| 89| 91/ 107104
) ode layout:
0,4)(L Node lay

(minB: 16bits;maxB: 16bits) (fc_pos: 32bits

(0,3)(5) (0,2)(9) (2,4)(13)

(0,0)(0,-1)

=

0,00 (1.1) (01) (3.3 0,0 (1,1) (22) (1,2 2,2 (3,3) (3.3) (4,4)
(D ¢ an 1 1) (1) (1) (T) ()) D D

| —

| |

4|;| ----- AR BN EEEEEE NN LCAEEEEREEE
, IR P
5 B

Fig. 2 A BMMQ-Tree Example lllustrating Data Layout (Zhang €2@l0)

Published ahttp://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

Once a BMMQ-Tree is constructed, it can be used to support quee aypes of
geospatial queries, such as spatial range queries and Regiaerest (ROI) type of queries, for
large-scale raster geospatial data. A spatial range quemyiidow query) returns all spatial
objects (including quadrants) that fall within a spatial quergdaw. The properties or the
values of the spatial objects then can be retrieved based on theidédifiers. The ROI-type
query returns all spatial objects (including quadrants) that watis¢ or more value range
criteria, e.g., temperature between [t1,t2) and precipitation batyel,p2). More generally,
given a set of rasters representing environmental variab]gs<ifn} over a spatial domaib
whose value ranges are iF}/and {Vi"}, respectively, a ROI-type query Q identifies region®in
whose cells c satisfy the compound condition

€1V, OIV,2, V2") opV,, OIV,25,V,2" Yop..opV,, OV, V,2") whereop can be

either conjunctive and disjunctive and 0<:k<‘mi.QLand ViQH represent the lower and high

bounds of query for variablei (Zhang and You 2010a). It can be seen that aadpatige query
maps spatial objects to values while a ROI-typeyoeps values to spatial objects and they are
complementary to each other. Cascading these tpestpf queries on multiple rasters allows
users to identify interesting patterns, such asepa related to the spatial distributions of
geospatial phenomena with certain value threshelds, storms with precipitation greater than
10mm), and, potential casual relations betweeniphaltasters through co-location analysis e.g.,
biodiversity decrease and deforestation/climatengha across the globe (Zhang and You
2010a). A Web-based system has been developedriorndérate the ROI-type query using the
BMMQ-Tree indexing (for single raster only) and cae accessed onlitte More details on
system development are reported in (Zhang and Y4012).

The high-level design of the parallel constructadra BMMQ-Tree is similar to that has
been proposed in (Zhang et al. 2010a) with onediégrence. For the sake of clarity, we will
introduce the overall design before we discusshwe improvement. There are four steps in the
high-level design. The first step transforms a roajor ordered input raster grid (2D array) into
a Z-ordered (Morton 1966) 1D array after binningregrid cell in the 2D array. In the second
step, for every four consecutive Z-ordered rastdiscan entry is created by recording the
minimum and maximum values of the raster cells,(m&enB andmaxB in Fig. 2). Clearly the
resulting entries stored in an array (hereaftegrretl as the min-max table) also follow Z-order.
The third step is to derive higher levels of minxmables from lower level ones by following
the similar procedure in Step 2. Conceptuallyta iin-max tables at all levels form a pyramid.
They can be concatenated into an array from togl evthe bottom level with elements at each
level follow the Z-order for easy data manipulago8imilarly the numbers of child nodes in the
corresponding raster quadrants can also be coanttdoncatenated as a single array during the
two steps where 0 indicates a uniformly distributg@drant (no child nodes) and 4 otherwise.
The fourth step actually calculates the positiohthe first child nodesf¢ pos) and assembles
minB, maxB andfc_pos values into the corresponding quadtree nodesli¥Fite@ quadtree nodes
are pruned and connected throdglpos values, which are functionally equivalent to penstin
tree structures on CPU, to complete the constnicia BMMQ-Tree.

While Steps 1-3 are relatively straightforward wiitle help of the illustrative example in
Fig. 3, Step 4 needs more detailed explanationitasdivided into two sub-steps (4.1 and 4.2)
as illustrated in Fig. 4 for this purpose. Step thkes the numbers of child nodes for all
guadrants at all levels as the input arrByngChildren) and apply an exclusive scan parallel
primitive (c.f. Section 2.2) to compute the posigoof the first child nodes of the respective

19 hitp://geoteci.engr.ccny.cuny.edu/rasterexploreneotiling/TestOverlay.html

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

guadrants (stored IRC_Pos array). The first child position of the root noag the position 0) is
always 1. As such, the scan should start at thensieelement of the input array and takes 1 as
the initial value. The computed positiotSJ_Pos array) and the min-max valuddifmaxTable
array) are assembled to generate the intermedimtgtige nodeQuadTree array) by using the
NumChildren vector as a stencil to determine how to modifyftheos values. The rule is that if
the element value in thdumChildren array is 0, then the correspondiftypos value of the
guadtree node in th®uadTree array will be set to -1 to indicate that the quandrthat the
guadtree node represents is uniform and no sulpativis needed. In this case, no children nodes
exist for the node. In step 4.2, the following aygmh is used to prune quadtree nodes that
represent uniformly distributed quadrants. For equhdtree node (except the root node), in
parallel, we extract the number of children nodegsoparent node in thBlumChildren array.

For the 1" quadtree node, the position of its parent nodééMumChildren array can be simply
calculated asi{1)/4 as the intermediate quadtree node arrayfudl guadtree (pyramid). If both
the parent node and the node being examined ikselé O children, then the node being
examined should be pruned. This is because theraptadhat the node being examined
represents is part of a larger uniformly distrildutpiadrant that the parent node represents. We
note that if the parent node has 0 children thenrtbde being examined must also have 0
children based on the procedures described in 2tepsl 3. On the other hand, when the parent
node has four children but the node being examiised leaf quadtree node, i.e., the
corresponding value in tidumChildren is O, the node being examined should not be pruned

|0J8A|; IO I/gJIO;JZ [oTolofoToTololoToTo[oToTololol0}

0 2 ' '-—

Igr 'v¢l ngl E/ |V1|r2’|1 ()| >Leoro oA TOT T[T T3EETE] - (2)| | »og) [aa][oa]Ea):

0 112112 =

H # ; :

glggji 2’7273 g -p[oJolo o2 2[2 2 [1] 1] 1] 2] 2[1] 2], /

CyiEaE Ehg e | | | [kR
T R TZ B/ T2 |_Q-->|2|2|2|2|3|3|3|3|3|3|3|3|4|4|4|4|

2

"(3)

Fig. 3 lllustration of the First Three Steps in BNIMIree Construction

The correctness of the new BMMQ-Tree constructippreach can be verified by
examining the parent-child relationships of thedyaats in the example dataset in Fig. 4 and the
values of thdc_pos field of the quadtree nodes in tQeadTree array. For example, the value of
the fc_pos field of the root node is 1 which indicates thag first child node of the root node
should be the®lelement in th&uadTree array, which is true. As another examite pos of the
4" quadtree node in th@uadTree array (base 0) is 13 and it is easy to verify it 13’
quadtree node in th@uadTree array is indeed the first child node of tHe@uadtree node in the
array. We note that for the two elements in @u&dTree array that are bolded (thd' and the
12" element, respectively), they represent tfel@el quadrants and correspond to the non-
shaded quadrants illustrated in the bottom paifigf 4. Clearly the 1%-20" elements in the
array are the child nodes of th8 @ement and the 224" elements are the child nodes of the
12" element, respectively. The data layouts of tH&-24" elements are not shown in Fig. 4 due

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

to space limit. We also would like to draw attention how the four uniformly distributed
guadrants in the shaded rectangle (with relevahtegan theMinmaxTable, NumChildren and
FC_Pos arrays) at the top part of Fig. 4 are consolidaténl one quadtree node which is the first
element (base 0) in t@uadTree array. After theNumChildren array is derived in Steps 2 and 3,
the values of the relevant elements at L2 (Levedr®) L3 (Level 3) are all Os and they do not
contribute to computindc_pos values of thé=C_Pos array. During the quadtree node pruning
process, except for the highest level node (L2)xivig kept as a leaf node, all the nodes below
L2 that have O child nodes are pruned. As we canfsem the example, by keeping the
correspondences among the numbers of child ndadegdsitions of the first child node and the
positions of the quadtree nodes, the parent-(fitsilyl relationship is correctly maintained in the
resulting quadtree node array. While the designbmamplemented on both serial and parallel
machines, it is particularly suitable for paralfepblementation using parallel primitives as all the
required operations are on 1D arrays and no in&nents communication are needed.

L1 L2 L3

MinmaxTable

1\|4I [Olaral4] | || | [olol4ToJoJolol4a]oJolo]o] Numchiden
[1] [slslols] || | [a7]iir]zi]zi]aaai]2i]25] 28 25] 25] | FC_Pos

7 /TN

|o,4,1| [0.0.1]|[035][0.29][0.2,1 [0.0,-]1.1-9[0,1,17]33,-1] [0.0.-1[2.2-][1,1,-1|[1.2.2] [0.0.-1[2,2-1|[3,3,-1][4,4,-1] QuadTree

[o]l 2 [2][8][4] | 5“ ,,,,, 6 || 7|| ||9 ||10|| 11 | 12||13|| 14“ 5[16 |

000000252

ol.olofofolol2[a} |
ololofolz]2t1| .

Jolojofojafaf2]2|. " T

OV I I e

Jolol 122 3] 3]l

14 1] 3 |w3|[3 [, 3|4, 4

DEIEE 3?3 4] 4

Fig. 4 lllustration of Last Step in BMMQ-Tree Consttion

A key difference between the proposed design is paiper and the design reported in
(Zhang et al 2010) is that, rather than accessimy @gll values along both row and column
dimensions simultaneously as in (Zhang et al 20a@;-order transformation is applied right
after the binning step and before all the reshefsteps. After the Z-order transformation, the 2D
geospatial computing problem is converted into adhia processing problem with geospatial
semantics embedded. The converted problem is &iit@albe solved by chaining a set of parallel
primitives that are well understood and efficientiyplemented in quite a few parallel libraries.
As shown in Section 5, a higher speedup can beewethi by using the optimized
implementations of the parallel primitives withaequiring deep knowledge of GPU hardware
details and outstanding parallel programming skillsspite the fact that it is still non-trivial to

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

implement the conceptual design using existingljgharimitives, based on our experiences, the
technical barriers are significantly lowered.

template <typename T> template <typename T> XTOT=4096, YTOT=4096, M=12
struct minmax_pair struct quad_node blen=pow(4.0f,M)-1)/3)
{ { 1) thrust::device_vector<uchad>data;
T min_val; T min_val,max_val, 2) device_vector<minmax_pair<uchar> >
T max_val; int fc_pos; minmax_table (blen);
uchar num_children; h 3) device_vector<quad_node<uchar> >
k quadtree(blen);

Step 0: Bin the raw grid cell valuesrindata usingtransform and store the results bsdata .
Step 1: Convelly_data from row-major order to Z-order usiggatter and store the results ¢h data
Step 2: Extract the min/max values and number of child quadrantifrdata usingtransform and store
the results irminmax_table andNumChildren starting at positioh p=(pow(4.0, M-1)-1)/3. Note that'2
min-max pairs are generated out of tHegid cells at the level M-1.
Step 3: Fok from M-2 down to O (inclusive)
3.1 Calculate the starting position and size of the lewah-max tablek_p=pow((4.0, k)-1)/3 and
k_s=pow(4.0K)
3.2 Extract min/max values and number of child quadrants rfismmeax_table usingtransform
and store the results mnmax_table andNumChildren starting at positiok_p. Note thak_s min-
max pairs at the level k are generated frofk 4in-max pairs at the levéi1.
Step 4: Extract the numbers of child quadrants fnenmax_table usingtransform and store it in
NumChildren.
Step 5:Exclusive scan on NumChildren with initial value of 1 and store the resultsH@_Pos.
Step 6: Assemblminmax_table, NumChildren andFC_Pos into QuadTree by usingtransform and store
the results irQuadTree. Thefc_posfield is set to -1 if the corresponding valueNumChildren is 0.
Step 7 PrunQuadTree usingremove if by setting the pruning criteria to that both the node being
examined and its parent node should have 0 child nodes.

Fig. 5 BMMQ Tree Construction Procedure and Keyalgiructures

With respect to the time complexity of the propo82MQ-tree construction approach,
as all steps are linear with respect to the nurabgrid cells (assuming) in the relevant arrays,
the overall time complexity is thus Q(For rasters that have a same dimension, thewmestare
largely input independent on a same hardware cordigpn. The major workloads to construct
the min/max table, computing first child node piosis and assembling quadtree nodes remain
the same for any input rasters that have a santer rqisd dimension. The differences for the
pruning step are relatively insignificant. In otheords, the performance of the design and
implementation is largely data independent, a featilnat is desirable in many practical
applications.

4 Constructing BMMQ-Trees Using Parallel Primitives

The definitions of major data structures and theral procedure of the implementation
are listed in Fig. 5. The data structures areghtéorward translations of the conceptual design
in Fig. 2. For the tree construction procedureghdy speaking, Steps 1-3 in Fig. 5 correspond to
Steps 1-3 in the conceptual design (Fig. 3). Sniyil&teps 4, 5 and 6 in Fig. 5 correspond to
Step 4.1 in Fig. 4, and, Steps 7 in Fig. 5 corradpdo Step 4.2 in Fig. 4, respectively. All the
eight steps (including Step O for binning) listedRig. 5 can be implemented by a call to a

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

parallel primitive includingtransform, scatter, exclusive scan and remove if introduced in
Section 2.2.

From Fig. 5 we can see that the implementationthadconceptual design match each
other very well except that a single step in theceptual design may require multiple primitives.
The overall procedure is pretty straightforwargyeesally for those who have Thrust and/or STL
programming experiences. In general, we considerguparallel primitives (instead of native
programming languages) allow us to focus more gh-tevel designs (e.g., transforming multi-
dimensional geospatial computing problems into dingensional ones) rather than being buried
in details of hardware architectures and progrargnmrodels. The tradeoffs between coding
complexity and code efficiency (Bell and Hobero€K 2) will be further discussed.

Although the implementation is based on the pdralienitives provided by the Thrust
library that comes with CUDA SDKs, we believe itpgrtable to other parallel libraries on both
GPUs and multicore CPUs which is left for our fietwwork. While it is beyond the scope of this
paper to go through the details of all the pargltehitive invocations in the implementation, we
would like to take a few steps as examples totifis how the quadtree construction is being
implemented using GPU parallel primitives. We aftefer to the companying source code
packagé® for the details on the rest of the steps in thelémentation, including both invocation
syntax and the associated functors (C++ functigaaf).

/lassuming that the original data are stored imta th row-major order

/Istep O: binning

thrust::device_vector<uchar> b_data(XTOT*YTOT);
thrust:transform(r_data.begin(),r_data.end(),b_data.begin(),birwirtpar>());

[Istep 1: z-order transformation
thrust::counting_iterator<size_t> indices(0);
thrust::device_vector<uchar> d_data(XTOT*YTOT);
thrust:scatter (
b_data.begin(),b_data.end(),
thrust::make_transform_iterator(indices, zordelex)),
d_data.begin()

);

#def!ne XTOT 4096 template <typename T>
#define YTOT 4096 struct binning : public thrust::unary_function<ustio>
v {
struct zorder_index : public __host___ device__
thrust::unary_function<size_t,size_t> E operator()(ushort x)
{ __host___ device__ if(x<4) return 1; if(x<11) return 2;
size_t operator()(size_t index) if(x<18) return 3; if(x<27) return 4;
if(x<40) return 5; if(x<77) return 6;
ushort i = index * XTOT,; if(x<190) return 7; if(x<1004) return 8;
size_tj=index/YTOT; else return 9;
return z_order(i,j); } }
} ;

Fig. 6 Code Segment to lllustrate the Binning aratder Based Transformation Steps

20 http://geoteci.engr.ccny.cuny.edu/primguad/primghid

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

The syntax of invoking th&ransform and thescatter primitives and the implementations
of the binning and the Z-order transformation fnstfor Step 1 and Step 2 are illustrated in Fig.
6. We can see that, invoking parallel primitives@mnUs is very similar to calling STL functions
which can significantly flatten the learning cureé GPU programming. We also note that
iterators and functors are extensively used in ghmitives. Thetransform and thescatter
primitives that are used in these two steps applky tespective functorbihning and
zorder_index) to each element in the input array(s) to prodaagut arrays, in parallel. In
general, the generic parallel primitives that agsighed for 1D arrays have excellent scalability
and can be realized in multiple parallel hardwahigectures, including GPUs. By separating
application logic (which is implemented in th@nning and zorder_index functors in the
examples) and hardware specific parallel invocati@UDA kernels to implement the generic
parallel primitives), a high level abstraction da@ achieved which facilitates productivity of
development and portability among different hardeatatforms significantly. Thdsinning
functor takes a 16-bit grid cell value as the infpoin ther_data array and generates an 8-bit bin
value to output to thé data array. Each processing unit (e.g. a thread) ingdke binning
functor independently without communicating withhet processing units which is a
fundamental requirement of using parallel primisiveThe zorder_index functor, which
transforms a grid from the row-major order to therder within ascatter primitive, follows the
same schema although it looks a little more commBasically the functor takes a row-majored
1D array sequence of a 2D raster grid cell arrayhasinput, calculate the row and column
numbers and invoke a function to compute a Mortmteqsee details in Raman and Wise 2008).
The scatter primitive embeds the functor into an iterator emgrate a Morton code of a position
p in the sequence of BTOT*YTOT-1 (dynamically generated bycaunting_iterator) and uses
the Morton code as the destination position indhgputd data array for the element at position
p of the input arrayp_data. Essentially the line of code is a combination acaiter primitive
and atransform primitive. The combination successfully avoidspuiting the computed Morton
codes to an array in GPU device memory and reatlmegn back to registers later, an
optimization technique that is desirable.

Similarly the syntax of invoking thé&ansform and theremove if primitives and the
implementations of assembling quadtree nodes amuy the quadtree functors for Step 6 and
Step 7 are illustrated in Fig. 7. Note thadlices is acounting_iterator variable that has been
defined previously which can serve as array supiscin many applications. Also note that
minmax_table and chidposition arrays are filled in Steps 2/3 and 4/5, respelgtiythey are
omitted here due to space limit). We would likedimw attention on the constructors of the
trans_quad andisnot_treenode functors where the pointer pointing to the firlgneent of the
minmax_table is passed to the two functors so that the funatarsaccess any elements in the
minmax_table array when they are invoked. The position of tleenent that is being processed
by a processing unit is passed to tperator function of both of the functors for trans_quad
andp for isnot_treenode, respectively) so that the respectoerator function can decide what
to return based on the elementsnimmax_table that are relative to the position value and
arguments that are being passed todperator function. For example, imsnot_treenode, the
number of child nodes of both the parent node &ednbde being examined, i.e., nodespat (
1)/4 andp, are taken into consideration. The implementatiohshe two functors follow the
design in Section 3 very well and we left the veafion to readers. Note that th@nsform
primitive used in Step 6 has a more complex foramtthe one used in Step 2 of Fig. 6. Here two
input arrays ifdices andchidposition) are used. As a consequence,ttiaas _quad functor takes
two parameters in iteperator function with each extracted from the respectiveut array. In
contrast, thebinning functor in Fig. 6 takes only one parameter indperator function. In

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

general, our implementation aims at making full okthe powerful yet flexible primitives based
programming framework that the Thrust library hasved. We believe a similar architecture
design can be adopted for developing a geospgkalifec parallel primitive library which is one
of our long term goals.

/I definition of minmax_table : thrust::device_vector<minmax_pair<uchar> > minntable(blen);
/I definition of chidposition : thrust::device_vector<uint> chidposition(blen);
//definition ofindices: thrust::counting_iterator<size_t> indices(0);

minmax_pair<uchar> *pyra_ptr=thrust::raw_pointerst¢ainmax_table.data());
thrust::device_vector<quad_node<uchar> > quadtte=)b

/Istep 6: assembling quad-tree
thrust:transfor m(indices, indices+blen, chidposition.begin(),quadtbegin(), trans_gusadchar>(pyra_ptr));

/Istep 7: pruning quadtree
thrust:remove_if(quadtree.begin(), quadtree.end(),indices |srmmdeuchar>(pyra ptr))
|

' v

template <typename T>

\ 4 struct trans_quad
template <typename T> {
struct isnot_treenode const minmax_pair<T>* a;
{ trans_quad(minmax_pair<T>* _a):a(_a){}

const minmax_pair<T>* a;

isnot_treenode(minmax_pair<T>* _a):a(_a){} __host__ _ device__
guad_node<T> operator()(uint n,uint v)
__host____ device__ {
bool operator()(uint p) quad_node<T> result;
minmax_pair<T> p=a[n];
int pc=(p==0)?4:a[(p-1)/4].num_children; result.min_val=p.min_val;
int nc=((pc==0)||(a[p].num_children==@))&, result.max_val=p.max_val;
return(pc==0&&nc==0); result.first_child_pos=((p.num_children<=0)?-1tfu);
} return result;

b, }
I

Fig. 7 Code Segment to lllustrate Assembling QueediModes and Pruning Quadtree
Using Parallel Primitives

5 Experiments and Results

We use the same global 30-arcsecond January Radicpi dataset from WolrdClim
websité® that has been used in (Zhang and You 2010a, Zaadgrou 2010b and Zhang et al
2010) for CPU and GPU based implementations. Simealataset was divided into 4096*4096
tiles in (Zhang et al 2010), we apply the samadischema in this study. As the valid values for
raster cells range from 0 to 1004, we have useihéslwith bin boundaries at (0, 4, 11, 18, 27,
40, 77, 190, 1004). All experiments are performeddell T5400 machine with dual quad-core
Intel Xeon E5405 CPUs (2.00 GHz, only one coressdufor the experiments) and an Nvidia
Quadro 6000 GPU cafdwith 448 cores and 6 gigabytes global memory. CUEIZK 4.1 and
Thrust 1.6 are used. We have experimented on neutipO6*4096 tiles (32 MB chunks for 16-
bits rasters) from the global 30-arcsecond JanBeagegipitation dataset. As discussed in Section
3, the performance is largely data independentrésters with a same dimension and the

2 http://biogeo.ucdavis.edu/data/climate/worldclimigrid/cur/prec_30s_bil.zip
2 http://www.nvidia.com/object/product-quadro-6000hig|

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

runtimes increase linearly with respect to the neralof grid cells in rasters. This has been
verified by experimenting on a 16384*16384 rastdrol requires almost exactly 16 times
runtime. As such, we will restrict our discussiafigxperiment results on 4096*4096 tiles.

We believe the title size with a dimension of 408836 is suitable for most GPU devices
that have 256 MB or above graphics memory. By ogtimy memory utilization in our current
primitives based implementation, it is possibleatwommodate for GPU devices with smaller
memory capacities and we leave it for future wamkthis section, we focus on the comparisons
among GPU and CPU based implementations with dffitestrategies to understand the realized
and potential performance gains from GPU hardware GPGPU technologies. We encourage
readers to download our source code package anthéeeperformance of the implementations
(the URL has been provided previously). Instrucdiam using tools to extract raw data from
arbitrary rasters or images, programs for chunkiregraw data into tiles with widths and heights
(2's powers, required by the implementations) amghsstions on defining bin boundaries have
also been provided.

The runtime of our primitives based GPU implemeataihereafter referred as GPU-
Primitive) is 13.33 milliseconds and we use itfaes baseline for comparison purposes. We have
re-implemented the classic recursive Deepest-FBgtarch (DFS) based serial CPU
implementation by adopting a few performance opation techniques for fair comparisons.
The implementation is referred as CPU-DFS. Adddlbn we have implemented the new design
proposed in this paper on CPUs using a single peaceo loop through all the elements in the
respective array to simulate the parallel executite refer the implementation as CPU-SIM.
The CUDA based implementation reported in (Zhangl €010) is tested without any changes
and is referred as GPU-OLD. The two CPU implemématare complied with -O2 flag for
optimizations to ensure fair comparisons. The erpant results show that the runtimes of CPU-
DFS, CPU-SIM and GPU-OLD are 1191.87 millisecontid44.36 milliseconds and 147.23
milliseconds, respectively, for multiple 4096*40&6ter tiles on average.

When compared the GPU-Primitive implementation mgfai the rest three
implementations, a speedup of 89.4X over CPU-DRES34X over CPU-SIM and 11.0X over
GPU-OLD has been achieved. We attribute the 11.p¥edup over GPU-OLD to better
coalesced memory accesses due to Z-order trangformand implicitly use of shared memory
for scan. The signficant 89.4X speedup over CPU-BF&Ie to the excessive dynamic memory
allocation and de-allocation and cache unfriendiiadiccesses in the CPU-DFS implementation.
It is a little surprising that CPU-SIM does not refgcantly outperform CPU-DFS. We had
expected that CPU-SIM would be significantly bettean CPU-DFS because the dynamic
memory management overheads in CPU-DFS were langghoved and arrays are cache
friendly in most of the steps (except the Z-ordemnsformation step) in the CPU-SIM
implementation. Unfortunately this is not true. ther analysis has revealed that the binning and
the Z-order transformation (combined in CPU-SIMyKkahe majority of the runtime (974.92
milliseconds) while all the rest steps combinedcktoaly 69.44 milliseconds. In contrast to the
combined runtime of the same binning and Z-ordmrgformation steps in GPU-primitive which
is only 4.40 milliseconds, an impressive 260X spgedas been observed. We suspect that the
cache unfriendly nature of Z-order transformationcess on CPUs can be the performance
bottleneck which requires further investigation.Primitive still gains about 7.8X speedup,
which is calculated as 69.44/(13.33-4.40), for tlest of the steps. Both results have
demonstrated the advantages of GPGPU technologiiegebspatial computing, which is often
both data and computing intensive, by leveragimgldhge numbers of processing cores and high
memory bandwidths available on GPU devices wherpewed with CPUs.

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

The experiment results have positive implicatiomsifidexing and querying large-scale
rasters. Experiments for 16-bit rasters using b&@B86*4096 tiles (13.33 milliseconds) and
16384*16384 (230.75 milliseconds) tiles have suggksn indexing rate of more than 1.25
billion cell/pixel per second {s). The processing rate is lower but comparableP@-
Expres$® data transfer rate between the CPU and GPU mesnoni@ur machine which means
that the sustainable processing rate is achiewalés interleaving data transfer and processing.
The processing rate suggests that the data geddrgt&OES-R satellites at the global scale
each day, i.e., 288 coverages and 16 bands with @aerage having approximate 1/4 billion
pixels can be indexed in less than 20 mirfitem a single GPU device. Although many
applications require more sophisticated computatibkan constructing BMMQ-Trees, GPGPU
computing seems to be a cost-effective way fordacale geospatial computing. Furthermore,
as Nvidia Kepler GPUS that are currently available on the market haveentiban 3000 cores
and PCI-Express 3 standard allows up to 16 GB/a ttansfer among CPUs and GPUs, we
expect that the achievable data processing ratebeafurther improved on commodity GPU
devices. Although it is unlikely that disk 1/0O spleean reach a 2 GB/s rate any time sooner to
match the 1 billion raster cells per second GPltgssing rate on a personal workstation, we
argue that this is quite possible in a cluster astng environment where parallel file systems
are available. Efficiently streaming large-scalstea data from disks to CPU memoires and to
GPU memories as well as utilizing parallel file teys to further speed up realizable processing
rate are left for our future work.

Conclusion and FutureWorks

In this study, we have adopted a transformationedhaspproach to effectively and
efficiently utilizing massively data parallel GPGR&thnologies for geospatial computing. By
ordering grid cells of geospatial rasters basedZarder, we transform a multi-dimensional
geospatial indexing (BMMQ-Tree construction) problénto a set of smaller problems with
each can be solved by using a generic parallelifweroptimized for one-dimensional arrays on
GPGPUs. Our experiments have shown that the pvienitiased GPU implementation on an
Nvidia Quadro 6000 GPU device has achieved nediy §eedup over an optimized serial
CPU implementation and is 11X faster than a previ@PU implementation. We believe the
approach can be extended to a large family of get@dpcomputing problems by designing
proper transformation schemas. Our additional rebeafforts along the direction, such as
constructing DEMs from large-scale point datas¥su(and Zhang, 2012) and several spatial
join processing on vector geospatial data (ZhamhYeou 2012, Zhang et al. 2012a, Zhang et al.
2012b), seem to be encouraging. These researcesetbpment efforts can also serve as case
studies towards developing high performance padrgdespatial computing primitives to bridge
between conceptual deigns of geospatial computiragets, software developments and
hardware parallel executions.

There is plenty of room for future work. First df, ave would like to extend the quadtree
based indexing to include query processing on GPGRLY., spatial range queries, ROI-type
gueries and spatial joins on both raster and vegeospatial data. Second, although we have
been using a single GPU device for our data strecnd algorithm development in a personal
computing environment, we plan to extend the apgrda a cluster computing environment

2 http://en.wikipedia.org/wiki/PCI_Express
24 pApproximately calculated as |W[*|H|*|T|*|B|/R=(360)*(180*60)*(12*24)*16/(2~30)=1001sec =16.7min
Phttp://www.nvidia.com/object/nvidia-kepler.html

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

using grid/cloud computing resources to furthet the scalability of the proposed approach.
Finally, we have strong interest in developing gabisl specific parallel primitives to support
large-scale geospatial computing in a cyberinfuastire framework with respect to open source
software development and providing services tauger community over the Web.

Acknowledgement
This work is supported in part by PSC-CUNY Grani$682-00 43 and #66724-00 44 an NSF
Grant 11S-1302423.

References

1.

2.

Aboulnaga, A. and Aref, W. G., 2001. Window querggessing in linear quadtrees.
Distributed and Parallel Databases, 10(2), 111-126.

Ali, M.H., Saad, A.A. and Ismail, M.A., 2005. TheNRree: A parallel and distributed
multidimensional index. Distributed and Parallet&mses, 17(2), 111-133.

Akdogan, A., Demiryurek, U., et al., 2010. VororBased Geospatial Query Processing with
MapReduce. Proceedings of the IEEE Second IntemeltConference on Cloud Computing
Technology and Science (CloudCom’10), 9-16.

Armstrong, M.P., Pavlik, C.E. and Marciano, R., 49%arallel-processing of spatial
statistics. Computers and Geosciences, 20(2), 21-10

Bell, N. and Hoberock, J., 2011. Thrust: A ProduttiOriented Library for CUDA. In

Hwu, W.-M. W (eds.) GPU Computing Gems: Jade Editdorgan Kaufmann.

Clematis, A., Mineter M. and Marciano, R., 2003.gHiperformance computing with
geographical data. Parallel Computing, 29(10), £22%9.

Cary, A., Sun, Z., Hristidis, V. and Rishe, N., 20&xperiences on processing spatial data
with MapReduce. Proceedings of the 21st InternatiQonference on Scientific and
Statistical Database Management(SSDBM’09), 302-319.

Chan, Y. K. and Chang, C. C., 2004. Block imageeeal based on a compressed linear
guadtree. Image and Vision Computing, 22(5), 391-39

Chung, K. L., Liu, Y. W., et al., 2006. A hybridayrimage representation using spatial- and
DCT-based approach with application to moment cdatmn. Journal of Visual
Communication and Image Representation, 17(6), -122%.

10.Cignoni, P., Marino, P., et al., 1997. Speedingsogurface extraction using interval trees.

IEEE Transactions on Computer Graphics, 3(2), 168-1

11.Dean, J. and Ghemawat S., 2010. MapReduce: a lited#ta processing tool.

Communications of the ACM 53(1), 72-77.

12.Gaede V. and Gunther O., 1998. Multidimensionaéasanethods. ACM Computing

Surveys, 30(2), 170-231.

13.Garland M. and Kirk, D. B., 2010. Understandingptighput-oriented architectures.

Communications of the ACM, 53(11), 58-66.

14.Gress, A. and Klein, R., 2004. Efficient represgataand extraction of 2-manifold

isosurfaces using kd-trees. Graphical Models, 6&B)-397.

15.Guan, Q. and Clarke K., 2010. A general-purposaljghraster processing programming

library test application using a geographic cell@atomata model. International Journal of
Geographical Information Science, 24(5), 695-722.

16.Han, S. H., Heo J., et al., 2009. Parallel procgssiethod for airborne laser scanning data

using a PC cluster and a virtual grid. Sensors), 2865-2573.

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

17.Hennessy, J.L. and Patterson, D. A, 2011. Comprdritecture: A Quantitative Approach
(5th ed.). Morgan Kaufmann.

18.Hoel, E.G. and Samet, H., 2003. Data-parallel pmhyzation. Parallel Computing, 29(10),
1381-1401.

19.Hong, S., Kim, S. K., et al., 2011. Accelerating@AJgraph algorithms at maximum warp.
Proceedings of the 16th ACM symposium on Principled practice of parallel programming
(PPoOPP '11), 267-276.

20.Hwu, W.-M. W (eds.), 2011a. GPU Computing Gems: EatgeEdition. Morgan Kaufmann

21.Hwu, W.-M. W (eds.), 2011b. GPU Computing GemseJadition. Morgan Kaufmann

22.Kamel, I. and Faloutsos, C., 1992. Parallel r-trd&oceedings of the ACM SIGMOD
International conference on Management of dataNg)'92), 195-204.

23.Kirk, D. B. and Hwu, W.-M., 2010. Programming Massy Parallel Processors: A Hands-
on Approach. Morgan Kaufmann.

24.Lin, T. W., 1997. Compressed quadtree representfmr storing similar images. Image and
Vision Computing 15(11), 833-843.

25.Liu, Y., Wu, K., Wang, S. et al., 2010. A MapRedagproach to Gi*(d) spatial statistic.
Proceedings of the ACM SIGSPATIAL International \Wsinop on High Performance and
Distributed Geographic Information Systems (HPDG@, 11-18.

26.Luo, L., Wong, M. D. F., et al., 2011. Parallel ileqmentation of R-trees on the GPU.
Proceedings of the 17th Asia and South Pacific gie8utomation Conference (ASP-DAC),
353-358.

27.Manolopoulos Y., Nardelli, Y., E., et al., 2001 gAneralized comparison of linear
representations of thematic layers. Data & KnowéeHggineering, 37(1), 1-23.

28.Manouvrier, M., Rukoz, M., et al., 2002. Quadtrepresentations for storage and
manipulation of clusters of images. Image and Vistmmputing, 20(7), 513-527.

29.McCool, M., Reinders, J. and Reinders, J., 2012c8ired Parallel Programming: Patterns
for Efficient Computation, Morgan Kaufmann.

30. Mineter, M., 2003. A software framework to creagetor-topology in parallel GIS
operations. International Journal of Geographigdrimation Science, 17(3), 203-222.

31.Molnar, F., T. Szakaly, et al., 2010. Air pollutiorodelling using a Graphics Processing
Unit with CUDA. Computer Physics Communications (1§1105-112.

32.Morton, G.M., 1966. A computer oriented geodetitadzase and a new technique in file
sequencing. IBM Technical report.

33.0rtega, L. and Rueda, A., 2010. Parallel drainaeork computation on CUDA.
Computers and Geosciences, 36(2), 171-178.

34.0ryspayev, D., Sugumaran, R., et al., 2012. LiDARadeduction using vertex decimation
and processing with GPGPU and multicore CPU tedgylComputers and Geosciences,
43, 118-125.

35.Patel, J.M. and DeWitt, D.J., 2000. Clone join amddow join: two parallel spatial join
algorithms. Proceedings of the 8th ACM internatlosymposium on Advances in
Geographic Information Systems (GIS’00) ,54-61.

36.Qin C.-Z. and Zhan, L., 2012. Parallelizing floneamulation calculations on graphics
processing units - From iterative DEM preprocesslgprithm to recursive multiple-flow-
direction algorithm, Computers & Geosciences, 4367

37.Raman, R. and Wise, D.S., 2008. Converting to arainf Dilated Integers. IEEE
Transactions on Computers, 57(4), 567-573.

38.Samet, H., 2005. Foundations of Multidimensional Bfetric Data Structures Morgan
Kaufmann Publishers Inc.

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

39.Samet, H. 1985. Data-Structures for Quadtree Appration and Compression.
Communications of the ACM, 28(9), 973-993.

40.Samet, H., 1984. The Quadtree and Related Hieaicbhata Structures. ACM Computing
Surveys, 16(2), 187-260.

41.Schmit, T.J., Li, J., et al., 2009. High-specteald high-temporal resolution infrared
measurements from geostationary orbit. JournaltofoSpheric and Oceanic Technology,
26(11), 2273-2292

42.Steinbach, M. and Hemmerling, R., 2012. Accelegphiatch processing of spatial raster
analysis using GPU. Computers and Geoscienceg125220.

43.Theobald, D. M., 2005. GIS Concepts and ArcGIS Md# 2nd Ed., Conservation Planning
Technologies, Inc.

44.Tzouramanis, T., Vassilakopoulos, M,. et al., 1998erlapping linear quadtrees: a spatio-
temporal access method. Proceedings of the 6th Atidvhational symposium on Advances
in Geographic Information Systems (GIS’98), 1-7.

45.You, S. and Zhang, J., 2012. Constructing natwgghbor interpolation based grid DEM
using CUDA. Proceedings of the 3rd Internationahfécence on Computing for Geospatial
Research and Applications (COM.Geo '12), Article#2Pages.

46.Wang, C. and Chiang Y. J., 2009. Isosurface Extra@nd View-Dependent Filtering from
Time-Varying Fields Using Persistent Time-Octre@QH). IEEE Transaction on Computer
Graphics, 5(6), 1367-1374.

47.Wang, S. W. and Liu, Y., 2009. TeraGrid GlScienad&®vay: Bridging cyberinfrastructure
and GlScience. International Journal of Geographidarmation Sciences, 23(5) 631-656.

48.Wang, S. W., Cowles, M. K., et al., 2008. Grid catipg of spatial statistics, using the
TeraGrid for Gi*(d) analysis. Concurrency and Comagpion: Practice and Experience,
20(14), 1697-1720.

49.Wang, S.W. and Armstrong, M.P., 2003. A quadtrger@gch to domain decomposition for
spatial interpolation in grid computing environmeer®arallel Computing 29(10), 1481-1504

50.Wilhelms, J. and Vangelder, A., 1992. Octrees fstér Isosurface Generation. ACM
Transactions on Graphics, 11(3), 201-227.

51.Xu, X.W., Jager, J. and Kriegel, H.P, 1999. A faestallel clustering algorithm for large
spatial databases. Data Mining and Knowledge Disgo\3(3), 263—290.

52.Yang, C. W., Goodchild, M. A, et al., 2011. Spatklud computing: how can the geospatial
sciences use and help shape cloud computing. &ttenal Journal of Digital Earth, 4(4),
305-329.

53.Yang, C. W., Raskin, R. and Goodchild, M. A., 20G@ospatial cyberinfrastructure: Past,
present and future. Computers, Environment and tgystems, 34(4), 264-277.

54.Zhang, J., 2012. A high-performance web-based imddion system for publishing large-
scale species range maps in support of biodivestiiyies. Ecological Informatics, 8, 68-77.

55.Zhang, J. and You, S., 2012. Speeding up LargeeJtaht-in-Polygon Test Based Spatial
Join on GPUs. Proceedings of the 1st ACM SIGSPATI#ternational Workshop on
Analytics for Big Geospatial Data (BigSpatial'123-32.

56.Zhang, J., You, S. and Gruenwald, L., 201238 TRA: high-performance data management
of ubiquitous urban sensing trajectories on GPGPsceedings of the 2012 ACM
workshop on City data management workshop (CDMW'52)2.

57.Zhang, J., You, S. and Gruenwald, L., 2012b. Highidtmance Online Spatial and
Temporal Aggregations on Multi-core CPUs and MamyedOGPUs. Proceedings of the
fifteenth international workshop on Data warehogsand OLAP (DOLAP'12), 89-96.

Published ahttp://www.tandfonline.com/doi/abs/10.1080/136582083.828840

58.Zhang, J., 2011. Speeding Up Large-Scale Geospadlgtjon Rasterization on GPGPUSs.
Proceedings of the ACM SIGSPATIAL International Wsinop on High Performance and
Distributed Geographic Information Systems (HPDGLS, 10-17.

59.Zhang, J., You, S. and Gruenwald, L., 2011. Pdr@ilexdtree Coding of Large-Scale Raster
Geospatial Data on GPGPUSs. Proceedings of theAOM international symposium on
Advances in Geographic Information Systems (G1S’45y-460.

60.Zhang, J., 2010. Towards personal high-performgeocspatial computing (HPC-G):
perspectives and a case study. Proceedings of@hé 3IGSPATIAL International
Workshop on High Performance and Distributed Gealgralnformation Systems
(HPDGIS'10), 3-10.

61.Zhang, J. and You, S., 2010a. Supporting Web-bsgadl Exploration of Large-Scale
Raster Geospatial Data Using Binned Min-Max QuadtRroceedings of the 22nd
International Conference on Scientific and Stat@tDatabase Management Conference
(SSDBM’10), 379-396.

62.Zhang, J. and You, S., 2010b. Dynamic Tiled Mapri8es: Supporting Query-Based
Visualization of Large-Scale Raster Geospatial DRtaceedings of the 1st International
Conference on Computing for Geospatial Researcipglidation (COM.Geo0’10), Article
#19, 8 pages.

63.Zhang, J., You, S. and Gruenwald, L., 2010. IndgXamge-scale raster geospatial data using
massively parallel GPGPU computing. Proceedingb®fL8th ACM international
symposium on Advances in Geographic Informationté&ys (G1S’10), 450-453.

64.Zhang, J,, Gertz, M. and Gruenwald, 2009a. Effityjemanaging large-scale raster species
distribution data in PostgreSQL. Proceedings oflifia ACM international symposium on
Advances in Geographic Information Systems (G1S'G25-325.

65.Zhang, S., Han, J., et al., 2009b. SIMR: Paralhgjigpatial join with MapReduce on
clusters. Proceedings of the IEEE Internationalf@@mce on Cluster Computing
Workshops (CLUSTER '09), 1-8.

66.Zhou, X., Abel, D. J., and Truffet, D., 1998. Datartitioning for parallel spatial join
processing. Geolnformatica, 2(2), 175-204.

