
1

 Speeding Up Geospatial Polygon Rasterization on GPGPUs

Jianting Zhang
Department of Computer Science

 The City College of the City University of New York
New York, NY, 10031

jzhang@cs.ccny.cuny.edu

ABSTRACT
This study targets at speeding up polygon rasterization

in large-scale geospatial datasets by utilizing massively parallel
General Purpose Graphics Processing Units (GPGPU) computing
for efficient spatial indexing and analysis based on a dynamically
integrated vector-raster data model. As the first step, we have
designed and implemented a parallelization schema for
moderately large polygons using the Compute Unified Device
Architecture (CUDA). Experiment results on 41,768 real world
geospatial polygons with vertex numbers between 64 and 1024,
which are selected among a total of 717,057 polygons with
1,199,799 rings in the experiment dataset, show that our
implementation can speed up the computation of intersection
points among polygon edges and scan lines by more than 20 times
on a Nvidia C2050 GPU card. Extending the design and
implementation to support polygons with arbitrarily large
numbers of vertices by extensively using efficient sorting is
discussed. The paper also reports the design and implementation
of a profile quadtree to better understand the data and the
distributions of its parallel computing tasks, in addition to help
select polygon groups for experiments.
Keywords: Polygon Rasterization, Parallelization, GPGPU,
Large-Scale

1. INTRODUCTION
Polygon rasterization is the process of converting vector

polygonal data into gridded raster representation. While
originating from computer graphics, rasterization has found its
wide applications in geospatial data management and analysis.
For example, rasterized polygons can be used for efficient spatial
indexing in Spatial Databases [1] and fast geospatial analysis
based on image/raster algebra [2]. It is a common practice to use
hardware accelerations on GPUs to speed up rasterization and
rendering in Computer Graphics. Despite the close relationships
between Computer Graphics and GIS/Spatial Databases, the query
driven geospatial applications are quite different from
visualization driven computer graphics applications which makes
it inconvenient, if not impossible, to use the fixed rasterization
functionality of GPU hardware for geospatial data management
and processing. Existing polygon rasterization modules
implemented in open source GIS and spatial databases, e.g.,
GRASS [3] and GDAL [4], are based on the classic scan-line fill
algorithms [5]. We have previously applied a modified GDAL
rasterization implementation to build tree indices to facilitate
managing a large collection of polygons representing the
distributions of 4000+ bird species in the West Hemisphere [6].

Profiling the modules shows that calculating the intersection
points between polygon edges and scan lines takes the majority of
the processing time. It is thus desirable to speed up the polygon
rasterization by efficiently utilizing parallel computing resources
that are already available in commodity desktop computers.

The recently emerging General Purpose Graphics
Processing Units (GPGPUs) computing technologies have
provided a different set of programmable interfaces to support
general purpose computing on GPUs. GPGPU technologies have
been successfully applied in many areas [7] including our
previous work on constructing quadtrees from large-scale raster
geospatial data [8]. We aim at developing a parallelization schema
and an efficient implementation for GPGPU-based software
rasterization and quadtree construction for large-scale polygonal
geospatial data. As the first step, we have parallelized the most
costly step in the scan line algorithm on calculating the
intersection points between polygon edges and scan lines. Besides
introducing design and implementation details, we have
performed extensive experiments on a large number of real world
geospatial polygons in the Birds species distribution dataset.

The rest of this paper is arranged as follows. Section 2
introduces background and related works. Section 3 introduces the
serial scan line fill algorithm and our research and development
motivations. Section 4 presents the design and implementations of
a preprocessing module to help understand both datasets and the
spatial distributions of parallel computing tasks. Section 5
provides details on a preliminary design and implementation of
GPGPU based parallel algorithm for computing intersection
points along scan lines. Section 6 reports the experiment results
and finally Section 7 is the conclusion and future works.

2. BACKGROUND, MOTIVATIONS AND
RELATED WORKS

Rasterization is a vital step in computer graphics and
numerous efforts have been put on developing efficient
rasterization algorithms and implementations. While there are
some previous works attempted to utilize graphics hardware to
speed up spatial queries (e.g. [9]), unfortunately, a couple of
issues prevent from using traditional fixed function graphics
hardware interfaces for efficient and convenient geospatial data
processing. First, rasterization algorithms on GPUs are usually
proprietary and their hardware implementations largely remain
black boxes. Some graphics hardware may be highly optimized
for small triangles and do not support real world complex
polygons, such as concave polygons or polygons with holes which
are typical in real world geographical data. In fact, the
GL_POLYGON primitive defined by OpenGL do not support
concave polygons and is much slower than GL_TRIANGLES.
While some tessellation and triangulation algorithms and
packages are available to decompose complex polygons to simple
polygons or triangles, they may not be supported by hardware and
are left for serial software implementations. Second, to utilize
GPU hardware acceleration before GPGPU technologies appear,
researchers and developers in geospatial data processing are
forced to transform geographical data, which are better presented
as real numeric data types, into graphics-specific data types, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM HPDGIS'11, November 1, 2011, Chicago, IL, USA.
Copyright 2011 ACM ISBN 978-1-4503-1040-6/11/11…$10.00.

To Appear in ACM HPDGIS 2011 Workshp

2

as texture and colors, in order to get performance gains.
Converting back and forth between geographical/projected
coordinates and screen/view coordinates is not only cumbersome
but also may lead to low accuracies. Third, many GPU APIs
require a hardware context in runtimes. This makes the
client/server architecture that is typically used in spatial databases
impossible. While there are increasing graphics hardware supports
for remote rendering, it is still not as convenient as in general
purpose client/server computing. The GPGPU computing
technologies have made massively parallel graphics hardware for
general purpose computing possible which provides an exciting
opportunity for software rasterization [10]. Compared with
hardware rasterization, software rasterization is much more
flexible and much easier to be tailored for geospatial applications.

Among the numerous advantages of using GPGPU
computing technologies for processing polygonal geospatial data,
the most attractive one to us might be the opportunity to develop a
high-performance, dynamic and bidirectional conversion module
between polygons and rasters through space-partitioning indexing
trees (such as quadtrees) that support data compression and
efficient query processing simultaneously. While conversion
between vectors and rasters is a well-studied topic in GIS and
Spatial Databases [11][12][2], to the best of our knowledge, most
of the existing studies along the direction are based on serial
computing framework. Massively parallel GPGPU computing
technologies have made it possible to perform the conversion at
the speed of rendering polygons to graphics displays and fast
index polygonal data simultaneously. As the conversion and
indexing, and, the subsequent raster-based analysis and
visualization, can all be done in GPUs, expensive I/Os (including
both data transfer between CPUs and GPUs and disk accesses)
can be avoided. The combined parallel computing and I/O savings
can potentially make quite some typical geospatial processing
tasks orders faster. This in turn may enable turning traditionally
offline geospatial modeling into interactive visual explorations.
The uninterrupted visual explorations are likely to better facilitate
scientific discoveries and decision making.

Efficiently utilizing GPGPUs for geospatial data
processing in general and rasterization/indexing in particular have
also imposed some signficant research and development
challenges in realizing the potentials. First of all, GPGPUs have
quite different hardware architectures and computing frameworks
than traditional serial computing on uniprocessors. As the number
of computing cores goes up, efficiently using on-chip shared
memory and/or caches becomes crucial in achieving high
performance. In addition, as the number of threads per core goes
up, it is also crucial to coordinate the threads effectively to
achieve high performance. Second, while GPGPUs work best for
regular data structures such as vectors and matrices, it is necessary
to make use of irregular data structures for large-scale geospatial
data, such as tree indices, for efficient storage and query space
pruning which may be better processed on CPUs in certain cases.
Task/data partitioning among CPUs and GPUs and choosing
between regular and irregular representations of geospatial data
require considerable engineering efforts, including performance
tuning and try-and-error.

While our ultimate goal is to develop an end-to-end
high-performance system on modern commodity parallel
hardware architectures for large-scale geospatial data processing,
in this study, we will focus on speeding up computing intersection
points between polygon edges and scan lines on GPGPUs using
Nvidia’s Compute Unified Device Architecture (CUDA) [13]. As

detailed in Section 5, our current work is limited to rasterizing
moderate sized polygons whose vertices can be fit into a
GPGPU’s computing block based shared memory. We are
working toward rasterizing polygons with arbitrarily large
numbers of vertices by dividing the vertices into groups and
assembling the partial results. In this preliminary work, we also
represent the rasterization results in the form of intersection point
sequences with auxiliary data so that rasterization and quadtree
construction can be efficiently performed subsequently as that has
been done on CPUs in our previous work [14]. Despite that the
aimed end-to-end system is still not fully developed, we hope this
work can demonstrate the feasibility and potentials of software
rasterization of large-scale real-world polygons in geospatial data
processing. We next introduce some of the related works from
both Computer Graphics and Spatial Databases communities.

Constructing spatial data structures and rasterizing
triangles in computer graphics on GPGPUs have attracted
considerable research interests in recent years. Zhou and his
colleagues have implemented KD-Trees [15] [16] and octrees [17]
on Nvidia GPUs using CUDA for large-scale triangles. The works
are similar to indexing bounding boxes for primary filtering
purposes in Spatial Databases [11] except these works are for 3D
triangles in computer graphics applications instead of 2D
polygons in geospatial applications. Our goal is more similar to
the approach adopted by Microsoft SQL Server Spatial on
rasterizing and indexing individual polygons [1] which provides
finer level filtering capabilities. In addition, we also target at fast
materializing polygon level indices to full rasters to speed up
spatial analysis based on raster algebra [2]. There are also recent
works on software-based rasterization of triangles on GPGPUs
based on CUDA [10][18][19]. Considerable optimization
techniques have been applied in these works, such as efficient
utilization of fast shared memory, load balancing among
computing blocks and reducing inter computing block
communications, to improve the performance of software
rasterization. According to the experiment results on a wide
variety of test cases reported in [10], performance of software
rasterization of triangles is within a factor of 2-8X compared to
the hardware-based graphics pipeline on Nvidia GTX 480 GPUs.
While the results are encouraging, it is unclear how to efficiently
rasterize large-scale complex polygons on GPGPUs. Although
authors in [19] attempted to use octrees to efficiently represent
sparse rasters after rasterization, they all target at 3D graphics
applications such as view dependent ray casting and shading
which can not be applied to 2D geospatial analysis. Furthermore,
we note that some of the optimization techniques in graphics
rendering, such as early pruning based on visibility and 3D depth
tests, generally can not be applied to overlapped geospatial
polygons (if we consider different polygon datasets as the third
dimension) as information on all polygons are needed to provide
accurate query results in geospatial data processing. We also note
that these works do not handle conversions between complex
polygons and triangles and thus it is impossible to apply the works
in our application directly.

Another category of closely related works is utilizing
graphics hardware for data management in general and spatial
databases and spatial analysis in particular. Since both vector and
raster geospatial data has a spatial component, it is natural to
perform certain spatial operations such as overlay and image
convolution on GPUs. We refer to [9] for examples on spatial
selections and joins using GPU hardware prior to GPGPUs. The
GPGPU computing technologies have made geospatial data

To Appear in ACM HPDGIS 2011 Workshp

3

processing on GPUs much easier and a detailed survey is beyond
the scope of this paper. However, we refer to the works on
multidimensional similarity joins [20] and density based spatial
clustering [21] for examples that are relevant to spatial data
processing. Our previous work on constructing min-max
quadtrees from large-scale geospatial rasters has achieved a 23X
speedup compared with serial CPU implementations [8]. Our
recent work on decoding quadtree encoded bitplane bitmaps of
large-scale geospatial rasters has achieved nearly 6X speedup
when compared with a dual quadcore machine and 37X speedup
compared with a single core [22]. This study is an expansion
towards processing large-scale polygonal data on GPGPUs by
incorporating our previous work on tree-based indexing of large-
scale overlapped polygons on CPUs [14].
3 THE SERIAL SCAN-LINE FILL
ALGORITHM AND MOTIVATIONS

Our GPGPU implementation of the classic scan-line fill
algorithm [5] is based on the open source GDAL codebase [4].
Before presenting the details of the design and implementation in
Section 4 (preprocessing a collection of polygons) and Section 5
(rasterizing a single polygon), we would like to introduce the scan
line fill algorithm briefly. Given an enclosed polygon with n
vertices where the 0th vertex is the same as the (n-1)th vertex, we
can construct n-1 edges from the vertices. We use the minimum
and maximum values of the y coordinates of the polygon in the
targeted raster tessellation, i.e., ymin and ymax, respectively, as
the starting and the ending scan lines to compute the intersection
points between all edges and all scan lines. For an edge
(x1,y1,x2,y2) and a scan line y between y1 and y2, the
intersection point can be easily calculated as (x1+(y-y1)/(y2-
y1)*(x2-x1)).

According to the scan line fill algorithm, the
intersection points of each scan line are sorted to generate interval
pairs for subsequent polygon filling along the scan lines. While
special cases, such as extreme vertices along y axis and horizontal
edges, need to be handled separately, a simple polygon along a
scan line usually have a pair of intersection points that define an
interval of raster cells that are inside the polygon along the scan
line. Complex polygons, such as polygon with holes, may
generate multiple intervals along a scan line that need to be filled
separately for rasterization. In addition to actually perform
rasterization by filling the polygon cells, the y coordinate of the
scan line and the x coordinates of the intervals are needed to
construct a quadtree for the polygon which has been left for future
work. For the example shown in Fig.1, there are 7 vertices and 6
edges in the polygon. Given a raster tessellation of 8 by 8, there
are 7 out of 8 scan lines that intersect with at least one of the
edges. For scan line y=2, two intersection intervals along the scan
line, i.e., cells marked by circles, can be derived.

Fig. 1 An Example of the Scan Line Fill Algorithm

Experiments on the serial scan line fill and quadtree
construction algorithms in our previous implementation [14] have
shown that computing the intersection points dominates the whole
serial process. A further analysis shows that the complexity of
calculating intersections points is in the order of (n-1)*(ymax-
ymin) where n is the number of polygon vertices. The
computation is costly for large polygons with a large number of
vertices and scan lines. It is thus desirable to parallelize the
intersection computation process. While also refer to our previous
work [14] on constructing quadtrees from pairs of intersection
points derived from the scan-line algorithm. Parallelizing quadtree
construction from intersection point pairs on GPGPUs are left for
future work.

Although it is generally easier to parallelize the
intersection point computation process on CPUs based on a few
mature parallel abstractions, such as OpenMP, Intel Thread
Building Blocks (TBB) and Microsoft Parallel Pattern Library
(PPL), we have chosen GPGPUs for two reasons. First, GPGPU
represent a new parallel computing paradigm that is drastically
different from existing multicore CPUs although more recent
multicore architectures such as Intel Many Integrated Core (MIC)
fill the gap in between to a certain extent. Exploring the parallel
computing power of GPGPUs with hundreds of processing cores
and tens of thousands of threads is both challenging and
rewarding. Second, GPGPUs usually work as accelerators for
CPUs and can work with multicore CPUs to provide higher
parallelization levels on commodity desktop computers.

To support load balancing and efficiently parallelize
computations of intersection points, we have developed a
preprocessing module that serves the following three purposes: (1)
Assemble polygon vertices from disks and reside them in main-
memory in a cache-friendly manner. (2) Derive metadata from the
polygons and spatially profile the polygons. (3) Group the
polygons into subsets so that they can be processed in parallel
with balanced workloads. We next introduce the preprocessing
module before introducing the GPGPU design and
implementation in Section 5.
4 PREPROCESSING POLYGON
COLLECTIONS

We assume a polygon collection consists of N datasets
and all datasets follow Open Geospatial Consortium (OGC)
Simple Feature Specification [23]. According to the specification,
a polygonal feature may have multiple rings and each ring
consists of multiple vertices. As such, we can form a four level
hierarchy from a data collection to vertices, i.e., dataset feature

 ring vertex. Our first step in the preprocessing is to assemble
polygon vertices residing on disks into continuous array data
structures in main memory. Compared with using dynamic data
structures that depends on pointer chasing, the array data
structures are more cache friendly on CPUs. More importantly, as
currently CPUs and GPUs use disparate memory spaces, array
copying is the primary approach to efficiently transfer data in
CPU memories to GPU memories.

Five arrays are used for a large polygon collection.
Besides the x and y coordinate arrays, three auxiliary arrays are
used to maintain the position boundaries of the aforementioned
hierarchy. As shown in Fig. 2, given a dataset ID (0..N-1), the
starting position and the ending position of features in the dataset
can be looked up in the feature index array. For a feature within a
dataset, the starting position and the ending position of rings in the
feature can be looked up in the ring index array. Similarly, for a

0
1
2
3

4
5
6
7

0 1 2 3 4 5 6 7

To Appear in ACM HPDGIS 2011 Workshp

4

ring within a feature, the starting position and the ending position
of vertices belong to the ring can be looked up in the vertex index
array. Finally, the coordinates of the ring can be retrieved by
accessing the x and y coordinate arrays. It is easy to see that
retrieving coordinates of single or a range of datasets, features and
rings can all be done by sequentially scanning the five arrays in a
cache friendly manner. It is also clear that the number of features
in a dataset, the number of rings in a feature and the number of
vertices in a ring can be easily calculated by subtracting two
neighboring positions in the respective index array. As such, the
array representation is also space efficient. The implementation of
polygon assembling is on top of the GDAL open source library
that has provided convenient accesses to many types of vector
data formats, such as ESRI Shapefile and PostgreSQL/PostGIS
databases. The assembling step simply loops through all the
datasets and collect features, rings and vertices. The position
indices of features, rings and vertices are advanced while the
vertices are copied onto the two coordinate arrays.

The second step in our preprocessing procedure is to
build a quadtree to spatially profile all polygons in a collection.
We thus term the resulting tree index data structure as profile
quadtree. While polygons in a single layer (dataset) are usually
spatially disjoint, polygons across layers (datasets) can be
significantly overlapped. This has made classic spatial indexing
approaches, such as R-Trees or quadtrees [11][12], inappropriate
for profiling purpose even if the index data structures are created
for individual datasets (see [14] for more discussions). We have
developed an enhanced quadtree to index multiple overlapped
datasets by recording both spatial and thematic information of
polygons (or features). Each leaf node of the quadtree contains a
set of polygons whose MBRs (in the format of quadruples of
(iminx, iminy, imaxx, imaxx)) are covered by the spatial extent of
the node but are not covered by the spatial extent of any of its
child node. In addition to the MBRs, dataset identifiers and

feature identifiers of the polygons and the numbers of rings and
vertices are also associated with the quadtree nodes. The
procedure of constructing the profiling quadtree in pseudo C code
is listed in Fig. 3. Note that all coordinates are integer values after
snapping polygon vertices to the nearest raster cells based on a
raster tessellation.

Estimating the computing workload for rasterizing
polygons under a quadtree node can be performed as follows by
using the profile quadtree. First, the number of scan lines can be
calculated as (imaxy-iminy+1). Second, computation cost to
calculate the intersection points of polygon edges and scan lines
can be calculated as npoints*(imaxy-iminy+1). The total
computing workload for the node can be derived by summing
npoints*(imaxy-iminy+1) over all polygons associated with the
node. The upper bounds for the resulting intersection points for a
polygon can be estimated as the number of rings multiplied by the
number of scan lines, i.e., nrings*(imaxy-iminy+1)*2*K where K
is a constant factor to prevent overflowing. While the bounds are
not needed in serial implementation on CPUs as the intersection
points can be sequentially added to the output storage location, it
is crucial for each processing unit to know its position to output so
that processing units can work in parallel. Using upper bounds of
output sizes can significantly save required memory footprints in
parallel processing as otherwise large memory chunks would have
to be allocated to all processing units.

Using the profile quadtree also make it possible to select
subsets of polygons for further processing based on spatial and
non-spatial criteria, such as number of vertices, number of rings,
number of scan lines or their combinations. As detailed in Section
5, when processing a polygon using a GPGPU’s computing block
in our current implementation, the polygon’s vertices must be fit
in the block’s shared memory. To select suitable polygons for
GPGPU processing, we can traverse the profile quadtree to select
polygons that satisfy the criteria.

Fig. 2 Illustration of the Array Representation of Vertex Coordinates and Auxiliary Position Data

5 EFFICIENT POLYGON
RASTERIZATION ON GPGPUS

We assume the general familiarity with the two-level
(i.e., block and thread) parallel computing schema and the
memory model (global memory, shared memory and local
memory/registers) in CUDA. We also refer to the textbook [24]
for introductions and the CUDA manuals available at [13] for
more in-depth knowledge on CUDA and its programming.

We have chosen to assign polygons to computing
blocks. In our design, the block level parallelization is enhanced
with thread level parallelization by assigning edges of a polygon
to threads in a computing block. While it is straightforward to
assign polygons to threads and mimic the CPU serial
implementation, we argue that the naïve parallelization schema
design is inefficient for two reasons. First, launching a large
number of threads on GPGPUs (e.g., 256 or more) within a
computing block to process the same number of polygons

requires a lot of registers and local variables for intermediate
results. Unfortunately, even the latest CUDA Computing
Capability 2.0 supports only a maximum of 32,768 registers per
computing block. The number of registers is far fewer than what
are required for complex computations like calculating
intersection points in the scan-line fill algorithms. While it is
possible to spill the register variables to global memory either
programmatically or automatically by the complier, access to
global memory is about two orders slower than to registers on
Nvidia GPUs and thus the performance is likely to be
unacceptable. Second, when computing the intersection points
for all scan lines with all polygon edges, the vertices of the
polygon in global memory would have to be accessed separately
by all threads. This is likely to further worsen the performance.

In contrast, in our design, when a polygon is assigned
to a computing block, the shared memory of the block can hold
a polygon with reasonably sized vertices. For example, 8k
shared memory can hold up to 1000 vertices whose x and y

 … 50 60 …

… 70 73 78 … 100 …

Feature Index

Ring Index

Features of dataset #12 starts at 51 and ends at 60 in the feature index array
0 … 12

Rings of feature #51 starts at 71 and ends at 73 in the ring index array

… 885 913 959 989 …Vertex Index Vertices of ring #71 starts at 886 and ends at 913 in the vertex index array

X/Y Coordinates Coordinates are stored at the positions 886 through 913 at the two coordinate arrays

To Appear in ACM HPDGIS 2011 Workshp

5

coordinates are represented as integers or floats. By
synchronized loading these coordinates to shared memory by all
threads in a computing block, subsequent computing on
intersection points does not need to access global memory any
more which can significantly improve the overall performance.
During the process of looping through all scan lines, we assign
each polygon edge to a thread and compute intersection points
independently. As only a few edges intersect with a scan line
(c.f., the example in Fig. 1), the intersection result array is likely
to be very sparse. It would take too much storage if the

intersection result array is copied back to global memory
directly for further processing. This could be very costly as well
due to the slow accesses to global memory. Our solution is to
perform a rank based compaction by moving the non-empty
intersections to the front of the result array. Only the non-empty
intersections are subsequently copied to the output array residing
in global memory. The rank based compaction also utilizes
shared memory and is very efficient. The pseudo CUDA kernel
code based on the idea is illustrated in Fig. 4. We next further
explain some technical details in the implementation.

Fig. 2

Fig. 3 Data Structure and Procedures to Construct Profile Quadtree

Fig. 4 Pseudo CUDA Kernel Code for Parallel Computing of Intersection Points on GPGPUs

void add_meta(metatree * root, int did, int fid, int iminx, int iminy, int imaxx, int imaxy, int nrings, int npoints){
 if (root->level==max_level)
 push back did, fid, iminx, iminy, imaxx, imaxxy, nrings, npoints to root->rec and return;
 call node2coord to calculate the coordinates of the quadrant represented by root and store the values in nx1,ny1, nx2 and ny2
 if (iminx, iminy, imaxx, imaxxy) is completely within (nx1,ny1,nx2,ny2)){

 quad -1;
 if(iminx,iminy,imaxx,imaxy) is completely within (nx1,ny1,(nx1+nx2)/2,(ny1+ny2)/2)) quad 0;

if(iminx,iminy,imaxx,imaxy) is completely within (nx1,(ny1+ny2)/2,(nx1+nx2)/2,ny2)) quad 1;
if(iminx,iminy,imaxx,imaxy) is completely within (nx1+nx2)/2,ny1,nx2,(ny1+ny2)/2)) quad 2;
if(iminx,iminy,imaxx,imaxy) is completely within ((nx1+nx2)/2,(ny1+ny2)/2,nx2,ny2)) quad 3;
if(quad>=0) {
 if(root->children==NULL) allocate memory for root->children and initialize.
 if(root->children[quad]==NULL) allocate memory for root->children[quad] and initialize

croot->children[quad]->xpos=quad/2; croot->children[quad]->ypos=quad%2;
 add_meta(croot->children[quad], did, fid, iminx, iminy, imaxx, imaxy, nrings, npints);
 }

}
 else push back did, fid, iminx, iminy, imaxx, imaxxy, nrings, npoints to root->rec and return

}

void node2coord(const metatree * root, int& nx1,int& ny1,int& nx2,int& ny2) {
const metatree * temp=root;
nx1=ny1=nx2=ny2=0;
while(temp!=root) {

nx1+=temp->xpos *xnum [temp->level];
 ny1+=temp->ypos]*ynum [temp->level];
 temp=temp->parent; }
nx2=nx1+xnum [croot->level];
ny2=ny1+ynum [croot->level];
} // d t b f ll t ll dt l l th l 2n 2n-1 1

typedef struct metatree
{
 unsigned char level;

unsigned char xpos;
unsigned char ypos;

 struct metatree **children;
 struct metatree *parent;
 std::vector<int> *rec;
} metatree;

//input: xx and yy are x and y coordinate array, respectively
//input: para is the parameter array with the following info for each polygon: MBR, nring, npoints, starting and ending positions of the polygon vertices on xx and
yy arrays (ps and pe, respectively).
//output: triples is the array storing the resulting intersection points as the triples of (y coordinate of scan-line, number of intersection points, list of the x coordinate
of intersection point)
//output: nums is the array storing the numbers of output triples for all polygons; if nums[i] is greater than the size of triples for polygon I then not all intersection
points are output and recalculation is needed
__global__ void rasterize(double *xx, double *yy, int *para, int *triples, int *nums){
 __shared__ double padfX[MAX_PT]; //x coordinate array on shared memory
 __shared__ double padfY[MAX_PT]; // y coordinate array on shared memory
 __shared__ int polyInts[MAX_PT]; //temporary intersection result array for one scan-line
 __shared__ int iminx, imaxx, iminy, imaxy, ps, pe, npoints; //metadata for the polygon being processed

__shared__ int ni, nv; // temporary variables used by the last thread to copy intersection result to global memory
int tidx = threadIdx.x; // thread id

 int bidx = blockIdx.x; // block id
Step1: copy values of iminx, imaxx, iminy, imaxy, ps, pe, npoints, from para[bidx] to the shared variables and set nv to 0, all by thread 0;
Step2: copy elements from ps to pe in the xx and yy arrays to padfX and padfY, respectively, by all threads
Step 3: for (int y=iminy; y <=imaxy; y++) {
 Step 3.1: calculate intersection points of scan line y and store the results at polyInts, by all threads
 Step 3.2: compacting polyInts by moving non-empty values before the empty values (by calling scan4 in Fig. 5), by all threads
 Step 3.3 sequentially copy y, number of intersections (ni) and the first ni elements in polyInts to triples and advance nv by (ni+2) if ni>0, all by the last
thread in the computing block

}
Step 4: set nums[bidx] to nv by the last thread in the computing block.
}

To Appear in ACM HPDGIS 2011 Workshp

6

Among the steps shown in Fig. 4, Step 3.1 on
computing all intersection points is the most computing
intensive one which has motivated us to seek GPGPU
accelerations. We note that while it is also possible to assign
threads to scan lines and let each thread loops over polygon
edges from a parallel computing perspective, we choose to
assign threads to polygon edges and have threads loop over scan
lines. The decision is mostly due to the fact that the latter choice
is more convenient to output the intersection points to global
memory for subsequent rasterization or quadtree constructions
as discussed in Section 2 and 3. Among the steps, Step 3.2 is
least straightforward which may require further illustration.
Basically, for each scan line, the intermediate array to hold the x
coordinates of intersection calculation, i.e., polyInts, is cleared
up with -1 which indicates empty intersection. After executing
step 3.1 in parallel by all threads, the x coordinates of the
intersection points for the scan line will be stored in a per-thread
local variable. The values of the variables of all threads are
further used to calculate the positions that the values should be
written to in the polyInts array. This can be done by setting 1s
for non-empty intersections and 0s for empty intersections
followed by an exclusive prefix sum (or scan) as shown in Fig. 5.
The values of the prefix sum results are the positions that non-
empty intersection values should be output in the array holding
the compaction results (which is polyInts in our case).

Fig. 5 An Example Illustrating Rank Based

Compaction of Intersection Results on Shared Memory

 Assuming the intersection result for the four threads

in a computing block are (-1,4325, 4430,-1), as shown in Fig. 5,
the initial values before the scan is thus (0,1,1,0) and the values
after the scan would be (0,0,1,2). As such, 4325 and 4430 will
be written to the index positions of 0 and 1 in polyInts by
threads 1 and 2, respectively. The compaction process is
essentially a type of sorting by assigning output positions to
non-empty intersection points while skip empty intersection
points. Prefix sum (or scan) can be efficiently performed on
shared memory and the overhead is negligible. We note that,
although the prefix sum implementation requires a temporary
array of the size two times the size of maximum number of

vertices (MAX_PT), it can be shared with the shared memory in
the main kernel function (Fig. 4) which does not incur additional
shared memory stress since scan4 is a device function.

6 EXPERIMENTS AND RESULTS

6.1 Data and Experiment Setup
 We use the bird species distribution maps in the West

Hemisphere from NatureServe [6] in our experiments. The
dataset has also been used in our previous work on serial
rasterization and quadtree construction on CPUs [14]. The
dataset consists of ESRI Shapefiles for 4148 bird species with
717,057 polygons and 78,929,697 vertices. We do not exclude
polygons with areas that are less than a cell as our previous
works did. As a result, both the number of polygons and the
number of vertices are slightly larger than we have reported
previously. We have chosen five groups of polygons for
experiments based on the number of vertices, i.e., (32, 64],
(64,128], (128, 256], (256, 512] and (512, 1024], respectively.
Although our implementation is capable of handling polygons
with small numbers of vertices (e.g., below 32), we have found
that it took only very little time to rasterize small polygons on
CPUs and may not worth the overheads of GPU processing.

All the experiments are performed on a SGI Octane III
machine. While the machine comes with two identical and
independent nodes and four Nvidia Fermi C2050 GPU devices,
only one node and a single GPU device on the node is used for
the experiments. The computing node is equipped with dual
Intel Xeon E5520 quadcore CPUs running at a 2.26 GHz clock
rate, 48 GB 1333MHz DDR3 memory and 4 TB SATA 7200
RPM hard drives. The C2050 GPU card attached to the machine
has 448 cores running at 1.15 GHz. The GPU device also has
3GB GDDR5 graphics memory running at 1.5 GHz clock rate.
The GPU device is attached to the motherboard through a PCI-E
x16 slot that can provide a theoretical unidirectional data
transmit speed of 4GB/s.

Our primary measurement in this study is the wall-
clock running times measured in milliseconds. We do not
include data transfer times between CPUs and GPUs in the
comparisons among CPU running times and GPGPU running
times for two reasons. First, transferring polygon vertices and
their auxiliary data from CPU to GPU is one time cost and is
relatively insignificant compared to rasterization and subsequent
spatial analysis. Second, we assume subsequent spatial analysis
and visualization are all performed on GPUs which eliminates
the need to transfer the processed data back to CPUs.

6.2 Results of Data Preprocessing
Assembling polygon vertices and deriving auxiliary

position data took 447.3 seconds with cold cache while it only
took 34.8 seconds with warm cache. Profiling results further
show that the CPU time needed by the program (not including
third party libraries such as GDAL) is only about 1.58 seconds.
Given that the total volume of the geometry data (.shp files
and .shx files) is about 1.3G, assuming an achievable 100 MB/s
disk I/O rate, it requires only 13 seconds if the disk I/O
bandwidth is fully utilized. As such, we suspect that the GDAL
library that is used to access the shapefiles may be a major
bottleneck. In contrast, the total data volume of the x and y
coordinate arrays as well as the three auxiliary position arrays
(whose sizes are listed in Table 1) is only about 609 MB and is
less than half of the raw geometry data. It only took 30.9

__device__ inline ushort scan4(ushort num) {
 __shared__ ushort ptr[2* MAX_PT];
 ushort val=num;
 uint idx = threadIdx.x;
 ptr[idx] = 0;
 idx += Tn;
 ptr[idx] =num;
 SYNC
 val += ptr[idx - 1]; SYNC ptr[idx] = val; SYNC
 val += ptr[idx - 2]; SYNC ptr[idx] = val; SYNC
 val += ptr[idx - 4]; SYNC ptr[idx] = val; SYNC
 …
 val = ptr[idx - 1]; return val;
}

0 0 0 0 0 1 1 00 1 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 1 2 2

0 0 0 0 0 1 2 2

Step 0

Step 1

Step 2

Step 3

Result of
exclusive scan

To Appear in ACM HPDGIS 2011 Workshp

7

seconds to load these five arrays from disks to main memory
with cold cache (0.734 seconds with warm cache) and achieved
a 14.4X speedup with cold cache. The signficant data loading
speedup reflects a combined data volume reduction and using a
simple linear data structure (array).

Table 1 Array Lengths of the Coordinate Arrays (1-2)
and Auxiliary Position Arrays (3-5)
 Array name Array Length
1 X coordinates 78,929,697
2 Y coordinates 78,929,697
3 Feature Index 4,148
4 Ring Index 717,057
5 Vertex Index 1,199,799

With respect to deriving the profile quadtree, we have

used a 30 arc-seconds global raster tessellation which translates
to a 21600*21600 grid for West Hemisphere. Our profile
quadtree has 16 levels with a raster tessellation of 65536*65536
which is sufficient to cover the global extent. By traversing the
profile quadtree, we can derive a few statistics to characterize
non-empty quadrants such as number of polygons (ΣNP),
number of vertices (ΣNV), number of scan lines (ΣNS) and
number of intersections (ΣNI=Σ((NV-1)*NS). These statistics
are then further aggregated based on profile quadtree levels. The
results show that total number of edge-scan line intersection
tests (ΣNI) is close to 200 billions which make it desirable to use
GPU acceleration. The results also show that the majority of the
tests are incurred by the large polygons associated with the top
levels of the profile quadtree. Using the profile quadtree, by
symbolizing the number of intersection tests in each quadrant,
we can map the computing intensity spatially and understand
both the dataset and its parallel computing tasks better. Fig. 6
shows the computing intensity map for level 6 with 99 quadrants
using a rainbow coloring schema, i.e., red, blue and green
indicate higher intensity while yellow and gray indicate lower
intensity. The map is overlaid with the continental boundaries in
the area for clarity.

Fig. 6 Map of Spatial Distributions of Computing
Intensities of the 99 Level 6 Quadrants in the Profile Quadtree

6.3 Comparison with Serial CPU
Implementation

Table 2 lists the experimental results for the five
polygon groups. From the results we can see that the GPGPU
approach accelerates the processing times by about 20X for the
four polygon groups with vertices between 64 and 1024 (41,768
polygons in total) when compared with the serial CPU
implementation. The results are considerably signficant. On the

other hand, the speedup for the polygon group with 32-64
vertices is only about 6X. Furthermore, it takes only half a
second to compute the intersections of 46509 polygons in the
group by the serial implementation. Considering the overhead of
using GPGUP accelerations, the result may suggest that the
advantages of GPGPU based rasterization may not be signficant
for polygons with small numbers of vertices.

Table 2 Comparisons of Serial CPU and GPGPU
Implements for Five Polygon Groups

Group # 1 2 3 4 5
Min # vertices 32 64 128 256 512
Max # vertices 64 128 256 512 1024
Threads 64 128 256 512 1024
Polygons 46509 23880 9666 5076 3146
CPU time (ms) 526 995 1803 4490 9387
GPU time (ms) 88 49 88 224 528
Speedup 6.0X 20.1X 20.5X 20.0X 17.8X

Based on our profile quadtree, there are 6960

polygons whose numbers of vertices are larger than 1024 and
can not be processed by our current GPGPU implementation.
While these polygons only count for less than 1% of the total
number of polygons, our profile quadtree shows that they
account for the majority of the intersection calculation workload
where GPU acceleration could be most signficant. While our
current GPGPU implementation does not have the capability of
handling polygons whose numbers of vertices that are larger
than the maximum number of GPU threads (1024), we next
provide some discussions on how to extend the current
implementation to handle polygons with arbitrary large numbers
of vertices.

6.4 Discussions
The limiting factor of efficiently using GPGPUs to

rasterize large polygons is the shortage of shared memory. The
shared memory capacity is currently limited to 48K for the
largest computing block with 1024 threads (i.e., a whole Stream
Multiprocessor with 32 cores) on Fermi GPUs with Computing
Compatibility 2.0. As the numbers of GPU cores and
multiprocessors will grow significantly in the next few GPGPU
hardware generations, instead of increasing, the shared memory
capacity per-multiprocessor (and hence computing block) may
actually decrease, in a way similar to multicore CPUs. As such,
hardware advances will not solve the problem.

Our solution is to break the large numbers of vertices
in large polygons into chunks and store the partial intersection
results back to global memory so that the chunks of vertices can
be processed independently. While the data decomposition
strategy is common in parallel data processing for decades, the
difficulty is how to combine the partial results into correct final
results. Our idea is to expand the triple data structure in the form
of (y coordinate of scan-line, number of intersection points, list
of the x coordinate of intersection point) used in this study (see
Section 5) to a set of triples in the form of (polygon identifier, y
coordinate of scan-line, x coordinate of intersection point).
These triples of computing block level results can be written to
global memory in arbitrary order, including triples generated by
different computing blocks for different vertices chunks. To
assemble these triples and generate the interval pairs that are
required for rasterization and quadtree constructions, a sort can
be applied by using the combination of polygon identifier and y

To Appear in ACM HPDGIS 2011 Workshp

8

coordinate of scan-line as the key and x coordinate of
intersection point as the value. While any sorting algorithms that
are available to GPGPUs can be used, a combined radix and
merge sort is suggested as the triples are already partially sorted
within blocks due to the vertex sequences. After sorting, all x
coordinates of intersection points are contiguous for a particular
scan line within a particular polygon which is exactly what we
want as the starting point for subsequent rasterization and
quadtree construction. We note that a few efficient sorting
implementations are already available in CUDA [25][26].
7 CONCLUSION AND FUTURE WORK

 In this paper, we have discussed a GPGPU
accelerated software rasterization framework to rasterize and
index large scale polygons. We have provided a GPGPU based
design and implementation of computing intersection points
which is the most expensive part of the classic scan-line fill
algorithms. Experiments show that our implementation can
achieve about 20X speedup for groups of polygons with vertices
between 64 and 1024 using the birds species distribution data in
the West Hemisphere that has about 3/4 million of polygons and
more than 78 millions of vertices. We also have provided some
design discussions on extending the current implementation to
support polygons with arbitrarily large numbers of vertices by
extensively using efficient sorting under different scenarios.
Besides the preliminary GPGPU implementation of the scan line
fill algorithms for real world geospatial polygons, we have also
developed a profile quadtree that can be used to analyze and
visualize spatial distributions of computation intensities in the
context of computing the intersections of polygon edges and
scan lines. The profile quadtree has also been used to guide
select different polygon groups for experimenting the GPGPU
software rasterization implementation.

The work reported in this paper is preliminary in
nature as several important components in realizing a
dynamically integrated vector-raster data model for high-
performance geospatial analysis on GPGPUs are still currently
under development. They certainly are the priorities on our
future work list. First, as discussed in Section 6.4, we would like
to extend our current implementation to support large polygons
with arbitrary numbers of vertices. Second, we plan to
implement the rasterization and quadtree construction based on
the GPGPU derived triples. We keep it open on whether the
final rasterization and quadtree construction step should be done
on CPUs or GPUs. Third, once the fist two steps are completed,
we plan to perform a comprehensive performance comparison
with that of commercial spatial database indexing, such as
Microsoft SQL Server Spatial [1], to demonstrate the benefits of
parallel computing of large-scale polygonal geospatial data.
Finally, we plan to develop indexing, query processing and
spatial analysis engines based on the GPGPU codebase and
integrate these backend engines with existing front modules in
spatial databases, such as SQL parser and query optimizer, to
provide an end-to-end, GPU accelerated, high-performance
spatial database system.

REFERENCES
1. Fang, Y., M. Friedman, et al. (2008). Spatial indexing in

Microsoft SQL server 2008. ACM SIGMOD conference,
1207-1216.

2. Theobald, D. M. (2005). GIS Concepts and ArcGIS Methods
(2ed.). Conservation Planning Technologies, Inc.

3. GRASS GIS. http://grass.fbk.eu
4. GDAL: Geospatial Data Abstraction Library.

http://www.gdal.org/.
5. Hearn, D. and M. P. Baker (1996). Computer Graphics, C

Version (2ed). Prentice Hall.
6. NatureServe Digital Distribution Maps of the Birds of the

Western Hemisphere.
http://www.natureserve.org/getData/birdMaps.jsp.

7. Hwu, W.-M. W (eds.) (2011). GPU Computing Gems:
Emerald Edition. Morgan Kaufmann.

8. Zhang, J., S. You, et al. (2010). Indexing large-scale raster
geospatial data using massively parallel GPGPU computing.
ACM-GIS Conference.

9. Sun, C., D. Agrawal, et al. (2003). Hardware acceleration for
spatial selections and joins. ACM SIGMOD Conference, 455-
466.

10. Laine, S. and T. Karras (2011). High-performance software
rasterization on GPUs. ACM SIGGRAPH Symposium on High
Performance Graphics.

11. Shekhar, S. and S. Chawla (2003). Spatial Databases: A Tour,
Prentice Hall.

12. Samet, H. (2005). Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann.

13. Nvidia Compute Unified Device Architecture (CUDA).
http://www.nvidia.com/object/cuda_home_new.html.

14. Zhang, J. (2009). Efficiently managing large scale species
range maps in a spatial database environment. 17th
International Conference on Geoinformatics.

15. Zhou, K., Q. Hou, et al. (2008). Real-Time KD-Tree
Construction on Graphics Hardware. ACM Transactions on
Graphics 27(5).

16. Hou, Q., X. Sun, et al. (2011). Memory-Scalable GPU Spatial
Hierarchy Construction. IEEE Transactions on Visualization
and Computer Graphics 17(4): 466-474.

17. Zhou, K., M. Gong, et al. (2011). Data-Parallel Octrees for
Surface Reconstruction. IEEE Transactions on Visualization
and Computer Graphics 17(5): 669-681.

18. Pantaleoni, J. (2011). VoxelPipe: a programmable pipeline for
3D voxelization. ACM SIGGRAPH Symposium on High
Performance Graphics.

19. Schwarz, M. and H.-P. Seidel (2010). Fast parallel surface and
solid voxelization on GPUs. ACM Transactions on Graphics.
29(6).

20. Lieberman, M. D., J. Sankaranarayanan, et al. (2008). A Fast
Similarity Join Algorithm Using Graphics Processing Units.
IEEE ICDE Conference: 1111-1120.

21. Bohm, C., R. Noll, et al. (2009). Density-based clustering
using graphics processors. ACM CIKM Conference 661-670.

22. Zhang, J., S. You, et al. Parallel Quadtree Coding of Large-
Scale Raster Geospatial Data on Multicore CPUs and
GPGPUs. Proceedings of the ACM-GIS Conference 2011.

23. OpenGIS Implementation Specification for Geographic
information - Simple feature access - Part 1: Common
architecture. http://www.opengeospatial.org/standards/sfa.

24. D. B. Kirk and W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

25. Satish, N., M. Harris, et al. (2009). Designing efficient
sorting algorithms for manycore GPUs. IEEE Symposium
on Parallel & Distributed Processing.

26. Merrill, D. G. and A. S. Grimshaw (2010). Revisiting
sorting for GPGPU stream architectures. ACM Conference
on Parallel Architectures and Compilation Techniques,
545-546.

To Appear in ACM HPDGIS 2011 Workshp

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

