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ABSTRACT 
Global remote sensing and large-scale environmental modeling 
have generated huge amounts of raster geospatial data. While the 
inherent data parallelism of large-scale raster geospatial data 
allows straightforward coarse-grained parallelization at the chunk 
level on CPUs, it is largely unclear how to effectively exploit 
such data parallelism on massively parallel General Purpose 
Graphics Processing Units (GPGPUs) that require fine-grained 
parallelization. In this study, we have developed an efficient 
spatial data structure called BQ-Tree to code raster geospatial data 
by exploiting the uniform distributions of quadrants of bitmaps at 
the bitplanes of a raster. A fine-grained parallelization scheme has 
been implemented using Nvidia CUDA. Experiments show that 
the GPGPU implementation is capable of decoding a BQ-Tree 
encoded 16-bits NASA MODIS geospatial raster with 
22,658*15,586 cells in 190 milliseconds, i.e., 1.86 billion cells 
per second, on an Nvidia C2050 GPU card. The performance 
achieves a 5.9X speedup when compared with the best dual 
quadcore CPU implementation and a 36.9X speedup compared 
with a highly optimized single core CPU implementation.   
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1. INTRODUCTION 
High resolution large-scale raster geospatial datasets 

provide tremendous opportunities to understand the Earth and our 
environments deeper than ever before. Modern computing devices 
increasingly rely on parallel hardware architectures to meet the 
ever increasing demands of data processing power. Multicore 
CPUs and General Purpose Graphics Processing Units (GPGPUs) 
are the two leading hardware architectures that are already 
available in commodity computers. The data parallel nature of 
large-scale raster geospatial data matches these parallel hardware 
architectures very well. To make full use of the parallel 
computing capabilities, it is crucial to understand how spatial data 
structures and algorithms perform on these hardware 
architectures. Among numerous spatial data structures that have 

been proposed over the past thirty years, quadtree probably is the 
most popular family due to its effectiveness and simplicity in 
indexing, compressing and querying both vector and raster 
geospatial data [1-4]. While traditionally spatial data structures 
and algorithms assume uniform access cost to memory, the 
increasing performance gaps between different levels of memory 
hierarchy have made cache-conscious data structures significantly 
faster than their peers. However, the performance of classic 
spatial data structures (such as quadtrees) on modern commodity 
parallel processors (especially GPGPUs) is largely unknown. 

Similar to bitmap based indexing in relational database, 
geospatial rasters can be transformed into a collection of bitplane 
bitmaps that are more suitable for indexing, compression and 
query processing. Among various operations on quadtree coded 
bitplane bitmaps (or bitplane quadtrees for short), encoding 
rasters into bitplane quadtrees and decoding bitplane quadtrees to 
restore original rasters (or decoding) are two fundamental 
operations. As encoding is a one-time task and usually can be 
done offline, it is technically more challenging to develop fast 
online parallel algorithms to decode bitplane quadtrees. Our focus 
in this study is to investigate the effectiveness of utilizing 
GPGPUs available in commodity personal computers for 
decoding bitplane quadtrees. The work is the first step towards 
developing a high-performance Geographical Information System 
(GIS) in a personal computing environment that allows Query 
Driven Visual Explorations (QDVE) of high-resolution, time-
evolving and multi-variant raster geospatial data to effectively 
support global environmental studies.  

2. BACKGROUND AND MOTIVATIONS 
Raster data representation is a major data model for 

geospatial data. Surprisingly, compared to vector geospatial data 
that hundreds of indexing techniques have been developed, raster 
geospatial data is much less well supported in spatial databases 
with respect to efficient indexing and query processing. Existing 
techniques in spatial databases adopt a chunking approach to store 
raster geospatial data and index the metadata of the chunks using 
standard vector spatial indexing. While queries on the spatial 
locations and metadata values of the chunks are supported, chunks 
are stored as Binary Large Objects (BLOBs) with or without 
compression and usually no queries on the chunks are supported. 
The open source SciDB project [5] provides a comprehensive 
framework to manage multidimensional arrays, including raster 
geospatial data. While the current implementation does support 
generic compression methods, currently it does not support 
efficient queries on compressed chunks, i.e., compression is 
strictly for storage and does not benefit query processing. As 
quadtrees support raster compression and indexing 
simultaneously, we consider quadtrees a better choice for 
managing and querying large-scale raster geospatial data. 
However, classic quadtrees usually have overwhelming pointer 
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(4/8 bytes) to data (1 bit) ratio when applied to bitplane bitmaps 
of rasters.     

Bitmap indexing has been extensively investigated in 
relational databases. Unlike quadtree based query processing that 
naturally returns spatial hierarchy of resulting raster cells, queries 
based on classic bitmap indexing can only return individual tuples 
(correspond to raster cells) identifiers while the spatial 
relationships among the raster cells are lost. The respective 
advantages and disadvantages of quadtree based and bitmap based 
indexing have motivated us to develop a quadtree based efficient 
spatial data structure (BQ-Tree) to code bitplane bitmaps of large-
scale raster geospatial data. Bitmap indexing has been widely 
used in commercial relational database systems and open source 
implementations (e.g., FastBit [6]) are available. BQ-Tree coding 
of raster geospatial data can reuse the bitmap based query 
processing framework and existing software codebase for fast 
system prototyping and practical environmental applications. 

Our plan is to replace existing bitmap compression 
techniques such as run-length and Word-Aligned Hybrid (WAH) 
[7] that are spatial agnostic and utilize flat data structures, with 
the BQ-Tree coding to efficiently support both spatial (point, 
window, join) and attribute-based queries (exact, range, interval) 
on encoded geospatial rasters. While it is quite possible to directly 
perform queries on the BQ-Trees both serially and in parallel 
(which is left for future work), in this study, we adopt a simpler 
and more practical approach by parallel decoding BQ-Trees into 
bitmaps before executing queries. Query optimizers can choose to 
access only a subset of BQ-Trees that are relevant to a query to 
reduce I/Os. To process queries that require reconstructing raster 
chunks from encoded bitplane bitmaps, the BQ-Tree encoding is 
also beneficial as encoded bitplane bitmaps are usually much 
smaller than the raw raster chunks and thus expensive I/Os can be 
reduced. In this study, we focus on speeding up the 
reconstructions using massively parallel GPGPUs based on 
Nvidia Compute Unified Device Architecture (CUDA) [8].  

3. THE BQ-TREE DATA STRUCTURE 
 Given a bitplane bitmap of a raster R of size N*N 

(assuming N=2n), it can be represented as a quadtree where black 
leaf nodes represent quadrants of presence (“1”), white leaf nodes 
represent quadrants of absence (“0”) and internal nodes are 
colored as gray. The quadtree can be easily implemented in main-
memory by using pointers or stored on hard drives as a collection 
of linear quadtree paths. However, while the storage overheads of 
pointers or the paths can be justified if the length of the data field 
is much larger than the length of the pointer field (4 bytes for 32-
bit machine and 8 bytes for 64-bits machine), the overhead is 
unacceptable as the data field is intended to be only 1-bit long to 
encode a bitplane bitmap. Furthermore, as the memory pointers 
are allocated dynamically and can point to arbitrary memory 
addresses, they are known to be cache unfriendly. To overcome 
these problems, we have designed a spatial data structure called 
BQ-Tree to efficiently represent bitmaps of bitplanes of a 
geospatial raster. 

The basic idea of BQ-Tree is to sequence nodes of a 
regular quadtree into a byte-stream through breadth-first 
traversals with sibling nodes following the Z-order (Fig. 1). 
Different from classic main-memory quadtrees that use pointers to 
address child nodes, the child node positions in a BQ-Tree do not 
need to be stored explicitly. As such, the pointer field in regular 
quadtrees can be eliminated which reduces storage overhead 

significantly. In addition to tree nodes, a BQ-Tree also includes a 
compacted “last level” quadrant signature array. The layout of 
BQ-Tree nodes is as follows. Each BQ-Tree node is represented 
as a byte (8 bits) with each child quadrant takes two bits. We term 
the two bits as child node signature. The three combinations 
correspond to three types of nodes in classic quadtrees: “00” 
corresponds to white leaf nodes, “10” corresponds to black leaf 
nodes and “01” corresponds to gray nodes. The combination of 
“11” is currently not used. Child nodes corresponding to the 
quadrants with “00” or “10” signatures in their parent node can be 
safely removed from the byte stream as all the four quadrants in 
the child nodes are the same and their presence/absence 
information has already been represented in the respective 
quadrant signatures of the parent nodes. By consolidating four 
child quadrants’ information into a single node, the depth of a 
BQ-Tree can be reduced by 1 when compared with classic 
quadtrees. The technique can potentially reduce memory footprint 
to up to 1/4. 

 
 
 
 
 
 
 

Fig. 1 Streaming BQ-Tree Nodes 
 

 
 
 
 
 
 
 
 
 

Fig. 2 Generating LLQS Array Using Different Quadrant Sizes 
If we represent the four (2*2) raster cells in a quadrant 

as a BQ-Tree leaf node, then the second bit of the four quadrant 
signatures in the node will always be 0 (i.e., the signatures are 
either “00” or “10”). The redundancy is undesirable. To further 
reduce the memory footprint of the BQ-Tree for a bitplane 
bitmap, we introduce the concept of “Last Level Quadrant 
Signature”, or LLQS. A last level quadrant is defined as a bitmap 
quadrant that is indexed by a 2-bit child node signature of a BQ-
Tree leaf node. For the last level quadrant size of 2k*2k, we term 
the concatenation of the bits of the 2k*2k quadrant following a 
row-major order as the Last Level Quadrant Signature (LLQS). 
The LLQSs need to be recorded for the bitmap quadrants 
corresponding to BQ-Tree leaf node quadrants whose signatures 
are neither “00” nor “10”, i.e., when the LLQSs are mixtures of 0s 
and 1s.  It is clear that by recording the LLQSs separately from 
the quadtree nodes, the bitplane bitmap cells do not need to be 
represented as the quadrant signatures in the leaf nodes of a BQ-
Tree with values of either “00” or “10” and thus the 
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aforementioned redundancy is avoided. It can also be seen that, 
while the BQ-Tree data structure does not explicitly store the 
positions of the compacted quadrant signatures in its leaf tree 
nodes, both encoding and decoding algorithms can utilize the 
implicit correspondence when the tree node array and the LLQS 
array are processed in a streamline manner. 

Our BQ-Tree design allows arbitrary last level quadrant 
sizes of powers of 2. For a last level quadrant of size 2*2, we will 
need to combine two of such quadrant signatures (each is 4 bits) 
to form a byte. For a last level quadrant of size 4*4, it is natural to 
use a short integer (16 bits) to represent the quadrant signatures. 
Fig. 2 shows the processes of compacting LLQSs using both 2*2 
and 4*4 quadrant sizes. The bitmap shown in the left part of Fig. 
2 represents a bitplane of an 8*8 raster. Using a 2*2 last level 
quadrant size, a BQ-Tree with two levels (as shown in the top of 
Fig. 2) is generated. Breadth-first traversal of the tree generates 
the tree node array as 01100100 1010010 00001001. Note that the 
second and the fourth level-2 tree nodes are skipped as the 
corresponding child node signatures in the root node are “10” and 
“00”, respectively.  Combing the two last level quadrants that are 
the mixtures of 0s and 1s (shaded in the top-left part of Fig. 2) 
generates the first byte of the LLQS array. Note that the XXXX (a 
half-byte) at the end of the array is a filler to make a whole byte. 
On the other hand, using the 4*4 last level quadrant size generates 
a BQ-Tree with only one level. Similar to using 2*2 quadrant 
size, quadrants with mixtures of 1s and 0s are sequenced on the 
LLQS array (short integer data type in this case). It is clear that 
using larger last level quadrant sizes will reduce BQ-tree depths 
and numbers of tree nodes at the cost of increasing the LLQS 
array volume.  

4 PCL BASED GPGPU DECODING 
In this study, we aim at making full use of GPGPUs’ 

massive parallel computing capabilities to speed up decoding 
large-scale geospatial raster from encoded BQ-Trees. CUDA has 
two levels of parallelism: block level and thread level [8]. 
Assigning a chunk to a CUDA computing block is very similar to 
the coarse-grained parallelization on CPUs which is relatively 
straightforward. However, assigning hierarchically encoded BQ-
trees of a raster chunk to a group of flatly organized GPGPU 
threads within a computing block requires a more careful design. 
Among various designs and implementations that we have tried, 
an approach called Process Collectively and Loop (PCL) achieved 
the best results and will be presented in details next.  

In PCL, all the threads assigned to a computing block 
are bundled together to process a quadrant of matrices in a BQ-
Tree pyramid during decoding (Fig. 3). This collective process is 
looped over all the quadrants and all levels of the pyramid. The 
PCL approach requires the starting positions in both the tree node 
array and the LLQS array in order to make the threads assigned to 
the GPGPU computing blocks work in parallel. However, keeping 
the positions for tens of thousands of GPU threads is impractical 
since the storage overhead would be overwhelming. Our solution 
is to calculate the positions for all threads on the fly. While the 
idea is straightforward, unfortunately, synchronizing GPGPU 
computing blocks, which is required to calculate the positions for 
quadrants across computing blocks, is very costly and inflexible 
in the current generations of GPGPUs. The PCL approach adopts 
a strategy that requires pre-generating the positions for every Tn 
elements that are processed in a computing block while computes 
the positions on the fly for all the Tn threads within a computing 
block. We believe the hybrid strategy provides a good tradeoff 

and the efficiency has been verified by the experiments. Given a 
raster chunk C=M*M=2m*2m, clearly the storage overheads for 
the starting positions for the tree node array and the LLQS array 
can be calculated as Sn=B*(1+4+…+4m-t-1) = B*(4m-t -1)/3 and 
Sl=B*4m /Tn, respectively. We note that both Sn and Sl decrease as 
Tn increases (Tn=2t*2t). We next present the details of the on-the-
fly calculation of the positions in a GPGPU computing block. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Illustration of the PCL Parallelization Scheme 
Assuming that the starting position of a data segment 

with Tn data elements (tree nodes or LLQSs) in the whole array is 
p, the task is to compute the positions for the Tn threads from 
where the threads can fetch data from global memory and perform 
decoding independently. In our implementation, first, the numbers 
of child nodes (or non-uniform last level quadrants) are counted 
by examining the parent nodes and counting the numbers of 
quadrants with “01” signature. These values are then written to an 
array of size 2*Tn in the computing block’s fast shared memory. 
The position offsets of all the threads relative to the first thread 
(whose position is known as p) can then be calculated through a 
fast parallel scan process in the shared memory with a time 
complexity in the order of O(logTn) [9]. After the starting 
positions of the threads are computed, all threads can work 
independently to decode quadtree nodes by retrieving the node 
signatures from the compressed quadtree byte stream for 
quadrants with “01” signatures. The decoded quadtree nodes are 
then written to global memory for next level decoding. We note 
that the PCL scheme does not incur additional accesses to global 
memory as the on-the-fly calculation of positions is all done in 
fast shared memory. Experiments have shown that the calculation 
cost is negligible on GPUs. In addition, the PCL scheme assures 
that global memory is always accessed continuously by the 
threads of the computing blocks.  

In our implementation, a separate kernel is launched to 
combine the decoded bitplane bitmaps and restore the original 
raster. Although this requires additional global memory accesses, 
it significantly reduces register consumptions which subsequently 
eliminate register spilling to global memory. The implementation 
of the combination kernel is quite simple as the decoded bitplane 
bitmaps are now regularly shaped matrices which are excellent for 
coalesced global memory accesses. Since the raster dataset in our 
experiments is the 16-bits short integer type and there are 16 
bitplane bitmaps represented as 8-bits chars, a working array of 8 
short integers is used to hold intermediate results. Each thread 
reads a byte from 16 bitmaps, converts them to 8 short integers 
and writes the short integers to global memory. The 
implementation is easy to be modified for 8 and 32 bits rasters.  
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5 PERFORMANCE STUDIES 
We use a real NASA MODIS (Moderate Resolution 

Imaging Spectroradiometer) raster dataset obtained from the 
Global Land Cover Facility (GLCF) website [10]. The specific 
dataset we use is band1 of the North America 2003097 imagery. 
The dataset has a spatial resolution of 500 meters and 
22,658*15,586 cells sampled at 16-bits. The original data volume 
is 706,295,176 bytes. A downscaled image is shown in Fig. 4 to 
help understand the dataset better. The image clearly shows that a 
signficant portion of the dataset is covered by oceans whose raster 
cell values are mostly NO_DATA or some other special masks. 
Among the cells with valid values (1-16000), 75.8% cells have 
values that are less than 4096, i.e., the first 4 bitplane bitmaps 
(most significant bit first) are mostly 0s. As such, we can expect 
significant compression when the dataset is encoded by BQ-
Trees. 

 
 
 
 
 
 
 
 
 

Fig. 4 Grayscale Image of the Experiment Dataset  
Our experiments are performed on a two-node SGI 

Octane III machine equipped with dual Intel Xeon E5520 
quadcore CPUs (hyper-threading enabled), 48 GB memory and 
two Nvidia C2050 GPU cards. Only one node and one GPU card 
are used for our experiments. Our primary measurement in this 
study is the wall-clock running times measured in milliseconds. 
We have tested all the CPU and GPGPU implementations using 
two chunk sizes: 1024*1024 and 4096*4096. Using small chunk 
sizes can certainly reduce the volumes of padded data when the 
original rasters are not the exact multiplications of the chunk sizes 
and can potentially reduce workloads and improve performance. 
On the other hand, using large chunk sizes can reduce hardware 
scheduling overheads which could be beneficial in certain cases.   

We have chosen to use 256 threads per computing 
block, i.e., Tn=256, for all the GPGPU experiments to achieve an 
optimum GPGPU hardware occupancy after considering 
constraints related to registers and shared memory. The PCL 
implementation achieves a performance of 190 milliseconds when 
the chunk size is set to 1024*1024 and last level quadrant size is 
set to 2*2. On the other hand, the best CPU result running on a 
dual quad-core machine with 8 cores and 16 threads is 1095 
milliseconds after turning on the O3 optimization. The best single 
thread CPU result is 7005 milliseconds also with O3. As such, our 
GPGPU result has achieved a 5.8X speedup (1095/190) when 
compared with the 16-thread CPU implementation and a 36.9X 
speedup (7005/190) when compared with a single thread CPU 
implementation.  

6 SUMMARY AND CONCLUSIONS 
In this study, we have developed the BQ-Tree spatial 

data structure to code large-scale raster geospatial data. We have 
developed a fine-grained parallelization scheme, namely PCL 

(Process Collectively and Loop), and an implementation by using 
both system and application level optimization strategies. 
Experiments show that PCL is capable of decoding a BQ-Tree 
encoded 16-bits NASA MODIS image with 22,658*15,586 cells 
in 190 milliseconds, i.e., 1.86 billion cells per second, on an 
Nvidia C2050 GPU card. The performance achieves nearly a 6X 
speedup than the best dual quadcore CPU implementation using 
16 threads (8 cores) and achieves nearly a 37X speedup than a 
single thread CPU implementation. 

For future work, first of all, we would like to follow the 
multi-component bitmap indexing framework introduced in [11] 
to code geospatial rasters that can facilitate exact, range and 
interval queries, in addition to bitplane level decoding (the focus 
of this study). By integrating these two components, we plan to 
develop a working prototype system with performance 
accelerated by multicore CPUs and GPGPUs to visually explore 
large-scale raster geospatial data and support global 
environmental studies. Second, while the GPGPU-based design 
and implementation are compared against CPU-based ones in this 
study, from a practical perspective, it is more useful to integrate 
multicore CPU and GPGPU implementations to achieve the best 
performance. We would like to develop cost models and efficient 
scheduling algorithms for this purpose. Third, while SciDB [5] 
currently only considers parallelization of managing 
multidimensional array data on shared-nothing clusters, we would 
like to reuse SciDB and FastBit codebases to develop a plugin 
module to facilitate managing high-resolution, time-evolving and 
multi-variant raster geospatial data on commodity desktop 
computers equipped with multicore CPUs and GPGPUs.   
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