
Parallel Quadtree Coding of Large-Scale Raster Geospatial Data on GPGPUs
Jianting Zhang

Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Global remote sensing and large-scale environmental modeling
have generated huge amounts of raster geospatial data. While the
inherent data parallelism of large-scale raster geospatial data
allows straightforward coarse-grained parallelization at the chunk
level on CPUs, it is largely unclear how to effectively exploit
such data parallelism on massively parallel General Purpose
Graphics Processing Units (GPGPUs) that require fine-grained
parallelization. In this study, we have developed an efficient
spatial data structure called BQ-Tree to code raster geospatial data
by exploiting the uniform distributions of quadrants of bitmaps at
the bitplanes of a raster. A fine-grained parallelization scheme has
been implemented using Nvidia CUDA. Experiments show that
the GPGPU implementation is capable of decoding a BQ-Tree
encoded 16-bits NASA MODIS geospatial raster with
22,658*15,586 cells in 190 milliseconds, i.e., 1.86 billion cells
per second, on an Nvidia C2050 GPU card. The performance
achieves a 5.9X speedup when compared with the best dual
quadcore CPU implementation and a 36.9X speedup compared
with a highly optimized single core CPU implementation.

Categories and Subject Descriptors
H.2 [Database Systems]

Keywords
Bitplane, Bitmap, Indexing, Compression, Raster, Large-Scale,
GPGPU, Parallel Computing

1. INTRODUCTION
High resolution large-scale raster geospatial datasets

provide tremendous opportunities to understand the Earth and our
environments deeper than ever before. Modern computing devices
increasingly rely on parallel hardware architectures to meet the
ever increasing demands of data processing power. Multicore
CPUs and General Purpose Graphics Processing Units (GPGPUs)
are the two leading hardware architectures that are already
available in commodity computers. The data parallel nature of
large-scale raster geospatial data matches these parallel hardware
architectures very well. To make full use of the parallel
computing capabilities, it is crucial to understand how spatial data
structures and algorithms perform on these hardware
architectures. Among numerous spatial data structures that have

been proposed over the past thirty years, quadtree probably is the
most popular family due to its effectiveness and simplicity in
indexing, compressing and querying both vector and raster
geospatial data [1-4]. While traditionally spatial data structures
and algorithms assume uniform access cost to memory, the
increasing performance gaps between different levels of memory
hierarchy have made cache-conscious data structures significantly
faster than their peers. However, the performance of classic
spatial data structures (such as quadtrees) on modern commodity
parallel processors (especially GPGPUs) is largely unknown.

Similar to bitmap based indexing in relational database,
geospatial rasters can be transformed into a collection of bitplane
bitmaps that are more suitable for indexing, compression and
query processing. Among various operations on quadtree coded
bitplane bitmaps (or bitplane quadtrees for short), encoding
rasters into bitplane quadtrees and decoding bitplane quadtrees to
restore original rasters (or decoding) are two fundamental
operations. As encoding is a one-time task and usually can be
done offline, it is technically more challenging to develop fast
online parallel algorithms to decode bitplane quadtrees. Our focus
in this study is to investigate the effectiveness of utilizing
GPGPUs available in commodity personal computers for
decoding bitplane quadtrees. The work is the first step towards
developing a high-performance Geographical Information System
(GIS) in a personal computing environment that allows Query
Driven Visual Explorations (QDVE) of high-resolution, time-
evolving and multi-variant raster geospatial data to effectively
support global environmental studies.

2. BACKGROUND AND MOTIVATIONS
Raster data representation is a major data model for

geospatial data. Surprisingly, compared to vector geospatial data
that hundreds of indexing techniques have been developed, raster
geospatial data is much less well supported in spatial databases
with respect to efficient indexing and query processing. Existing
techniques in spatial databases adopt a chunking approach to store
raster geospatial data and index the metadata of the chunks using
standard vector spatial indexing. While queries on the spatial
locations and metadata values of the chunks are supported, chunks
are stored as Binary Large Objects (BLOBs) with or without
compression and usually no queries on the chunks are supported.
The open source SciDB project [5] provides a comprehensive
framework to manage multidimensional arrays, including raster
geospatial data. While the current implementation does support
generic compression methods, currently it does not support
efficient queries on compressed chunks, i.e., compression is
strictly for storage and does not benefit query processing. As
quadtrees support raster compression and indexing
simultaneously, we consider quadtrees a better choice for
managing and querying large-scale raster geospatial data.
However, classic quadtrees usually have overwhelming pointer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGSPATIAL GIS '11, November 1-4, 2011. Chicago, IL, USA
Copyright © 2011 ACM ISBN 978-1-4503-1031-4/11/11...$10.00

(4/8 bytes) to data (1 bit) ratio when applied to bitplane bitmaps
of rasters.

Bitmap indexing has been extensively investigated in
relational databases. Unlike quadtree based query processing that
naturally returns spatial hierarchy of resulting raster cells, queries
based on classic bitmap indexing can only return individual tuples
(correspond to raster cells) identifiers while the spatial
relationships among the raster cells are lost. The respective
advantages and disadvantages of quadtree based and bitmap based
indexing have motivated us to develop a quadtree based efficient
spatial data structure (BQ-Tree) to code bitplane bitmaps of large-
scale raster geospatial data. Bitmap indexing has been widely
used in commercial relational database systems and open source
implementations (e.g., FastBit [6]) are available. BQ-Tree coding
of raster geospatial data can reuse the bitmap based query
processing framework and existing software codebase for fast
system prototyping and practical environmental applications.

Our plan is to replace existing bitmap compression
techniques such as run-length and Word-Aligned Hybrid (WAH)
[7] that are spatial agnostic and utilize flat data structures, with
the BQ-Tree coding to efficiently support both spatial (point,
window, join) and attribute-based queries (exact, range, interval)
on encoded geospatial rasters. While it is quite possible to directly
perform queries on the BQ-Trees both serially and in parallel
(which is left for future work), in this study, we adopt a simpler
and more practical approach by parallel decoding BQ-Trees into
bitmaps before executing queries. Query optimizers can choose to
access only a subset of BQ-Trees that are relevant to a query to
reduce I/Os. To process queries that require reconstructing raster
chunks from encoded bitplane bitmaps, the BQ-Tree encoding is
also beneficial as encoded bitplane bitmaps are usually much
smaller than the raw raster chunks and thus expensive I/Os can be
reduced. In this study, we focus on speeding up the
reconstructions using massively parallel GPGPUs based on
Nvidia Compute Unified Device Architecture (CUDA) [8].

3. THE BQ-TREE DATA STRUCTURE
 Given a bitplane bitmap of a raster R of size N*N

(assuming N=2n), it can be represented as a quadtree where black
leaf nodes represent quadrants of presence (“1”), white leaf nodes
represent quadrants of absence (“0”) and internal nodes are
colored as gray. The quadtree can be easily implemented in main-
memory by using pointers or stored on hard drives as a collection
of linear quadtree paths. However, while the storage overheads of
pointers or the paths can be justified if the length of the data field
is much larger than the length of the pointer field (4 bytes for 32-
bit machine and 8 bytes for 64-bits machine), the overhead is
unacceptable as the data field is intended to be only 1-bit long to
encode a bitplane bitmap. Furthermore, as the memory pointers
are allocated dynamically and can point to arbitrary memory
addresses, they are known to be cache unfriendly. To overcome
these problems, we have designed a spatial data structure called
BQ-Tree to efficiently represent bitmaps of bitplanes of a
geospatial raster.

The basic idea of BQ-Tree is to sequence nodes of a
regular quadtree into a byte-stream through breadth-first
traversals with sibling nodes following the Z-order (Fig. 1).
Different from classic main-memory quadtrees that use pointers to
address child nodes, the child node positions in a BQ-Tree do not
need to be stored explicitly. As such, the pointer field in regular
quadtrees can be eliminated which reduces storage overhead

significantly. In addition to tree nodes, a BQ-Tree also includes a
compacted “last level” quadrant signature array. The layout of
BQ-Tree nodes is as follows. Each BQ-Tree node is represented
as a byte (8 bits) with each child quadrant takes two bits. We term
the two bits as child node signature. The three combinations
correspond to three types of nodes in classic quadtrees: “00”
corresponds to white leaf nodes, “10” corresponds to black leaf
nodes and “01” corresponds to gray nodes. The combination of
“11” is currently not used. Child nodes corresponding to the
quadrants with “00” or “10” signatures in their parent node can be
safely removed from the byte stream as all the four quadrants in
the child nodes are the same and their presence/absence
information has already been represented in the respective
quadrant signatures of the parent nodes. By consolidating four
child quadrants’ information into a single node, the depth of a
BQ-Tree can be reduced by 1 when compared with classic
quadtrees. The technique can potentially reduce memory footprint
to up to 1/4.

Fig. 1 Streaming BQ-Tree Nodes

Fig. 2 Generating LLQS Array Using Different Quadrant Sizes
If we represent the four (2*2) raster cells in a quadrant

as a BQ-Tree leaf node, then the second bit of the four quadrant
signatures in the node will always be 0 (i.e., the signatures are
either “00” or “10”). The redundancy is undesirable. To further
reduce the memory footprint of the BQ-Tree for a bitplane
bitmap, we introduce the concept of “Last Level Quadrant
Signature”, or LLQS. A last level quadrant is defined as a bitmap
quadrant that is indexed by a 2-bit child node signature of a BQ-
Tree leaf node. For the last level quadrant size of 2k*2k, we term
the concatenation of the bits of the 2k*2k quadrant following a
row-major order as the Last Level Quadrant Signature (LLQS).
The LLQSs need to be recorded for the bitmap quadrants
corresponding to BQ-Tree leaf node quadrants whose signatures
are neither “00” nor “10”, i.e., when the LLQSs are mixtures of 0s
and 1s. It is clear that by recording the LLQSs separately from
the quadtree nodes, the bitplane bitmap cells do not need to be
represented as the quadrant signatures in the leaf nodes of a BQ-
Tree with values of either “00” or “10” and thus the

34 01 00 10
10 01 00 01
10 10 00 00
10 10 00 00

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 10 34 01
10 00
34343434343434343434343434343401

000110010000000 00001001 10101010 10100101

Z-order

Byte-stream: shaded nodes do not need to be stored

34 01 00 10
10 01 00 01
10 10 00 00
10 10 00 00

34343434343434343434343434343410
34 01
10 00
343434343434343434343434343434012*2

Tree node byte array: 01100100 10100101 00001001

Last-level quadrant byte array: 01110001 0100XXXX

4*4 34 01
10 00
34343434343434343434343434343401

Tree node byte array: 01100100

Last level quadrant byte array (short integers):
1101111111001101 0011001100010000

aforementioned redundancy is avoided. It can also be seen that,
while the BQ-Tree data structure does not explicitly store the
positions of the compacted quadrant signatures in its leaf tree
nodes, both encoding and decoding algorithms can utilize the
implicit correspondence when the tree node array and the LLQS
array are processed in a streamline manner.

Our BQ-Tree design allows arbitrary last level quadrant
sizes of powers of 2. For a last level quadrant of size 2*2, we will
need to combine two of such quadrant signatures (each is 4 bits)
to form a byte. For a last level quadrant of size 4*4, it is natural to
use a short integer (16 bits) to represent the quadrant signatures.
Fig. 2 shows the processes of compacting LLQSs using both 2*2
and 4*4 quadrant sizes. The bitmap shown in the left part of Fig.
2 represents a bitplane of an 8*8 raster. Using a 2*2 last level
quadrant size, a BQ-Tree with two levels (as shown in the top of
Fig. 2) is generated. Breadth-first traversal of the tree generates
the tree node array as 01100100 1010010 00001001. Note that the
second and the fourth level-2 tree nodes are skipped as the
corresponding child node signatures in the root node are “10” and
“00”, respectively. Combing the two last level quadrants that are
the mixtures of 0s and 1s (shaded in the top-left part of Fig. 2)
generates the first byte of the LLQS array. Note that the XXXX (a
half-byte) at the end of the array is a filler to make a whole byte.
On the other hand, using the 4*4 last level quadrant size generates
a BQ-Tree with only one level. Similar to using 2*2 quadrant
size, quadrants with mixtures of 1s and 0s are sequenced on the
LLQS array (short integer data type in this case). It is clear that
using larger last level quadrant sizes will reduce BQ-tree depths
and numbers of tree nodes at the cost of increasing the LLQS
array volume.

4 PCL BASED GPGPU DECODING
In this study, we aim at making full use of GPGPUs’

massive parallel computing capabilities to speed up decoding
large-scale geospatial raster from encoded BQ-Trees. CUDA has
two levels of parallelism: block level and thread level [8].
Assigning a chunk to a CUDA computing block is very similar to
the coarse-grained parallelization on CPUs which is relatively
straightforward. However, assigning hierarchically encoded BQ-
trees of a raster chunk to a group of flatly organized GPGPU
threads within a computing block requires a more careful design.
Among various designs and implementations that we have tried,
an approach called Process Collectively and Loop (PCL) achieved
the best results and will be presented in details next.

In PCL, all the threads assigned to a computing block
are bundled together to process a quadrant of matrices in a BQ-
Tree pyramid during decoding (Fig. 3). This collective process is
looped over all the quadrants and all levels of the pyramid. The
PCL approach requires the starting positions in both the tree node
array and the LLQS array in order to make the threads assigned to
the GPGPU computing blocks work in parallel. However, keeping
the positions for tens of thousands of GPU threads is impractical
since the storage overhead would be overwhelming. Our solution
is to calculate the positions for all threads on the fly. While the
idea is straightforward, unfortunately, synchronizing GPGPU
computing blocks, which is required to calculate the positions for
quadrants across computing blocks, is very costly and inflexible
in the current generations of GPGPUs. The PCL approach adopts
a strategy that requires pre-generating the positions for every Tn
elements that are processed in a computing block while computes
the positions on the fly for all the Tn threads within a computing
block. We believe the hybrid strategy provides a good tradeoff

and the efficiency has been verified by the experiments. Given a
raster chunk C=M*M=2m*2m, clearly the storage overheads for
the starting positions for the tree node array and the LLQS array
can be calculated as Sn=B*(1+4+…+4m-t-1) = B*(4m-t -1)/3 and
Sl=B*4m /Tn, respectively. We note that both Sn and Sl decrease as
Tn increases (Tn=2t*2t). We next present the details of the on-the-
fly calculation of the positions in a GPGPU computing block.

Fig. 3 Illustration of the PCL Parallelization Scheme
Assuming that the starting position of a data segment

with Tn data elements (tree nodes or LLQSs) in the whole array is
p, the task is to compute the positions for the Tn threads from
where the threads can fetch data from global memory and perform
decoding independently. In our implementation, first, the numbers
of child nodes (or non-uniform last level quadrants) are counted
by examining the parent nodes and counting the numbers of
quadrants with “01” signature. These values are then written to an
array of size 2*Tn in the computing block’s fast shared memory.
The position offsets of all the threads relative to the first thread
(whose position is known as p) can then be calculated through a
fast parallel scan process in the shared memory with a time
complexity in the order of O(logTn) [9]. After the starting
positions of the threads are computed, all threads can work
independently to decode quadtree nodes by retrieving the node
signatures from the compressed quadtree byte stream for
quadrants with “01” signatures. The decoded quadtree nodes are
then written to global memory for next level decoding. We note
that the PCL scheme does not incur additional accesses to global
memory as the on-the-fly calculation of positions is all done in
fast shared memory. Experiments have shown that the calculation
cost is negligible on GPUs. In addition, the PCL scheme assures
that global memory is always accessed continuously by the
threads of the computing blocks.

In our implementation, a separate kernel is launched to
combine the decoded bitplane bitmaps and restore the original
raster. Although this requires additional global memory accesses,
it significantly reduces register consumptions which subsequently
eliminate register spilling to global memory. The implementation
of the combination kernel is quite simple as the decoded bitplane
bitmaps are now regularly shaped matrices which are excellent for
coalesced global memory accesses. Since the raster dataset in our
experiments is the 16-bits short integer type and there are 16
bitplane bitmaps represented as 8-bits chars, a working array of 8
short integers is used to hold intermediate results. Each thread
reads a byte from 16 bitmaps, converts them to 8 short integers
and writes the short integers to global memory. The
implementation is easy to be modified for 8 and 32 bits rasters.

0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3

0 2
1 3

0 2
1 3

Loop

Loop

5 PERFORMANCE STUDIES
We use a real NASA MODIS (Moderate Resolution

Imaging Spectroradiometer) raster dataset obtained from the
Global Land Cover Facility (GLCF) website [10]. The specific
dataset we use is band1 of the North America 2003097 imagery.
The dataset has a spatial resolution of 500 meters and
22,658*15,586 cells sampled at 16-bits. The original data volume
is 706,295,176 bytes. A downscaled image is shown in Fig. 4 to
help understand the dataset better. The image clearly shows that a
signficant portion of the dataset is covered by oceans whose raster
cell values are mostly NO_DATA or some other special masks.
Among the cells with valid values (1-16000), 75.8% cells have
values that are less than 4096, i.e., the first 4 bitplane bitmaps
(most significant bit first) are mostly 0s. As such, we can expect
significant compression when the dataset is encoded by BQ-
Trees.

Fig. 4 Grayscale Image of the Experiment Dataset
Our experiments are performed on a two-node SGI

Octane III machine equipped with dual Intel Xeon E5520
quadcore CPUs (hyper-threading enabled), 48 GB memory and
two Nvidia C2050 GPU cards. Only one node and one GPU card
are used for our experiments. Our primary measurement in this
study is the wall-clock running times measured in milliseconds.
We have tested all the CPU and GPGPU implementations using
two chunk sizes: 1024*1024 and 4096*4096. Using small chunk
sizes can certainly reduce the volumes of padded data when the
original rasters are not the exact multiplications of the chunk sizes
and can potentially reduce workloads and improve performance.
On the other hand, using large chunk sizes can reduce hardware
scheduling overheads which could be beneficial in certain cases.

We have chosen to use 256 threads per computing
block, i.e., Tn=256, for all the GPGPU experiments to achieve an
optimum GPGPU hardware occupancy after considering
constraints related to registers and shared memory. The PCL
implementation achieves a performance of 190 milliseconds when
the chunk size is set to 1024*1024 and last level quadrant size is
set to 2*2. On the other hand, the best CPU result running on a
dual quad-core machine with 8 cores and 16 threads is 1095
milliseconds after turning on the O3 optimization. The best single
thread CPU result is 7005 milliseconds also with O3. As such, our
GPGPU result has achieved a 5.8X speedup (1095/190) when
compared with the 16-thread CPU implementation and a 36.9X
speedup (7005/190) when compared with a single thread CPU
implementation.

6 SUMMARY AND CONCLUSIONS
In this study, we have developed the BQ-Tree spatial

data structure to code large-scale raster geospatial data. We have
developed a fine-grained parallelization scheme, namely PCL

(Process Collectively and Loop), and an implementation by using
both system and application level optimization strategies.
Experiments show that PCL is capable of decoding a BQ-Tree
encoded 16-bits NASA MODIS image with 22,658*15,586 cells
in 190 milliseconds, i.e., 1.86 billion cells per second, on an
Nvidia C2050 GPU card. The performance achieves nearly a 6X
speedup than the best dual quadcore CPU implementation using
16 threads (8 cores) and achieves nearly a 37X speedup than a
single thread CPU implementation.

For future work, first of all, we would like to follow the
multi-component bitmap indexing framework introduced in [11]
to code geospatial rasters that can facilitate exact, range and
interval queries, in addition to bitplane level decoding (the focus
of this study). By integrating these two components, we plan to
develop a working prototype system with performance
accelerated by multicore CPUs and GPGPUs to visually explore
large-scale raster geospatial data and support global
environmental studies. Second, while the GPGPU-based design
and implementation are compared against CPU-based ones in this
study, from a practical perspective, it is more useful to integrate
multicore CPU and GPGPU implementations to achieve the best
performance. We would like to develop cost models and efficient
scheduling algorithms for this purpose. Third, while SciDB [5]
currently only considers parallelization of managing
multidimensional array data on shared-nothing clusters, we would
like to reuse SciDB and FastBit codebases to develop a plugin
module to facilitate managing high-resolution, time-evolving and
multi-variant raster geospatial data on commodity desktop
computers equipped with multicore CPUs and GPGPUs.

7 REFERENCES
1. Gaede, V. and O. Gunther (1998). Multidimensional access

methods. ACM Computing Surveys 30(2): 170-231.
2. Samet, H. (2005). Foundations of Multidimensional and

Metric Data Structures. Morgan Kaufmann.
3. Kothuri, R. K. V., S. Ravada, et al. (2002). Quadtree and R-

tree indexes in oracle spatial: a comparison using GIS data.
ACM SIGMOD conference, 546-557.

4. Fang, Y., M. Friedman, et al. (2008). Spatial indexing in
Microsoft SQL server 2008. ACM SIGMOD conference,
1207-1216.

5. SciDB. http://www.scidb.org/.
6. FastBit. https://sdm.lbl.gov/fastbit/.
7. Wu, K. S., E. J. Otoo, et al. (2006). Optimizing bitmap

indices with efficient compression. ACM Transactions on
Database Systems 31(1): 1-38.

8. Nvidia. Compute Unified Device Architecture (CUDA).
http://www.nvidia.com/object/cuda_home_new.html

9. Satish, N., M. Harris, et al. (2009). Designing efficient
sorting algorithms for manycore GPUs. IEEE Symposium on
Parallel\&Distributed Processing, 1-10.

10. Global Land Cover Facility (GLCF) MODIS 500m North
America Dataset, ftp://ftp.glcf.umiacs.umd.edu/modis/

11. Wu, K., A. Shoshani, et al. (2010). Analyses of multi-level
and multi-component compressed bitmap indexes. ACM
Trans. Database Syst. 35(1): 1-52.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

