
Indexing Large-Scale Raster Geospatial Data Using
Massively Parallel GPGPU Computing

Jianting Zhang
Department of Computer

Science
City College of New York

New York, NY, 10031
jzhang@cs.ccny.cuny.edu

Simin You
Department of Computer

Science
City University of New York

Graduate Center
365 Fifth Avenue, New York,

NY, 10006
syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Advances in geospatial technologies have generated large amounts
of raster geospatial data. Massively parallel General Purpose Graph-
ics Processing Unit (GPGPU) computing technologies have pro-
vided personal computers with tremendous computing capabilities.
In this paper, we report our work on fast indexing of large-scale
raster geospatial data using GPGPU computing. We have designed
a cache conscious, pointerless quadtree data structure (CCQ-Tree)
that has low memory footprint, is suitable for GPU indexing and al-
lows fast mapping between main memory and hard drives. A set of
algorithms have been developed and integrated to construct CCQ-
Trees on GPU devices by utilizing multiple pyramid data structures
and Z-order based prefix sum. Experiments on multiple 4096*4096
blocks of a global precipitation raster data have shown that CCQ-
Tree indexing using an Nvidia Quadro FX3700 GPU device re-
duces construction times from around 9.83 seconds to 0.42 seconds
(23X speedup). The experiment results have led us to project the
possibility of real time indexing of global 30 arc-seconds (approx-
imately 1km) resolution data (43200*21600) in 1-5 seconds on a
personal workstation with 1-4 Nvidia next generation Fermi GPU
devices.

1. INTRODUCTION
Advances in geospatial technologies, especially space-borne satel-
lite remote sensing and large-scale environmental modeling, have
generated large amounts of raster geospatial data at the ever in-
creasing speeds. Different from vector geospatial data that sophis-
ticated indexing and query processing techniques have been exten-
sively developed and applied, research on indexing raster geospa-
tial data is limited. We refer to the overview article by [18] and the
comprehensive book by Samet [54] for more details. Traditionally
raster geospatial data are mostly used for sophisticated offline anal-
ysis (such as image classification and physics based environmen-
tal modeling) and simple online display (such as tiling based im-
age display in Google Map and Google Earth). Massively parallel
General Purpose Graphics Processing Unit (GPGPU) technologies

ACM GIS 2010 San Jose, Calfornina, USA

[21], which allows using graphics processing units for general pur-
pose computing, have provided personal computers with tremen-
dous computing capabilities [46][45]. For example, a single Nvidia
Fermi-based GeoForce GTX480 GPU device has 480 cores and a
peek floating point performance of 1.35 Terra Flops [67] at the cost
of a few hundreds of dollars. The computing power at this level
was only available on supercomputers a few years ago. It has been
projected that, while CPU speed improvement will only be around
20% per year due to the combined power, memory and instruction-
level parallelism problem [6], GPU speed improvement will be
more than 50% per year, over the next decade [17]. The computing
power provided by GPGPU devices will enable many traditionally
offline applications to run online and interact with users.

In this study, we target at the two specific types of queries, i.e., spa-
tial range queries and Region-of-Interests (ROI) type of queries,
for large-scale raster geospatial data. A spatial range query (or
window query) returns all spatial objects (including quadrants) that
fall within a spatial query window. The properties or the values of
the spatial objects can be retrieved based on the object identifiers.
The ROI-type query returns all spatial objects (including quadrants)
that satisfy one or more value range criteria, e.g., temperature be-
tween [t1,t2) and precipitation between [p1,p2). It can be seen that
a spatial range query maps spatial objects to values while a ROI-
type query maps values to spatial objects and they are complement
to each other. Cascading these two types of queries on multiple
rasters allows users to identify interesting patterns, such as, pat-
terns related to the spatial distributions of geospatial phenomena
with certain value thresholds (e.g., storms with precipitation greater
than 10mm) and potential casual relations between multiple rasters
through co-location analysis (e.g., biodiversity decrease and defor-
estation/climate changes across the globe).

At a first glance it seems that it is straightforward to utilize the
massively parallel computing power provided by GPGPU devices
for raster geospatial data due to the regular layouts of raster data.
Indeed, many GPGPU based image processing techniques [57] and
environmental models [36] have been developed since the debut of
GPGPU computing technologies by taking advantage of per-pixel
based algorithms, which can be effortlessly parallelized, in a way
similar to computer graphics applications where GPU technologies
originate from, such as iso-surface generation [63] and ray-tracing
[29]. However, from a raster data processing perspective, most of
existing techniques focus on local and focal operations, i.e., oper-
ations on a single raster cell or neighborhood of a single cell [60],
which are relatively easy to parallelize. On the other hand, the ir-

regularity of data layout in global and zonal operations often makes
parallelization non-trivial and very little research on parallelizing
zonal or global raster operations has been reported. We consider
indexing raster geospatial data as a special global operation. More
specifically we focus on quadtree based indexing due to its well-
known data compression and pruning power in query processing
[54]. Low footprint memory-resident quadtrees with nodes associ-
ated with proper derived information can be used to answer window
queries and ROI-type queries efficiently by minimizing costly ac-
cesses to disks. We note that while it is feasible to perform window
query by scanning relevant raster cells that fall within the query
window in disk files and then retrieve desired information, it is ad-
vantageous to retrieve the desired information from main-memory
resident tree indices directly without accessing data files on disks.
This is especially beneficial to queries with large query windows
where a large portion of data files need to be scanned without in-
dices. As for processing ROI-type queries, it is inevitable to scan
all the raster cells if no indices are available. For both window
queries and ROI-type queries, with quadtree indexing, the query
results will be returned as quadrants rather than individual raster
cells which is desirable in many applications. Previous work has
shown that assembling individual raster cells into regions could be
very expensive [55] and may not be suitable for online interactive
applications.

Different from local or focal raster operations that transform one
raster to another, quadtree based raster data indexing transforms a
regularly shaped grid into an irregular, hierarchical data structure.
While the irregularity can be relatively easily handled on CPUs
through dynamic memory allocations and pointer linking, as the
current GPGPU computing does not support dynamic memory al-
locations and recursions, it is technically challenging to generate,
store and manipulate tree data structures on GPUs. In this study,
we propose a Cache Conscious Quadtree (CCQ-Tree) data struc-
ture for GPUs. CCQ-Tree completely eliminates pointers that are
used in traditional main-memory based quadtrees by laying out the
tree nodes as array elements. A CCQ-Tree can be easily mapped
between main memory and disk without the expensive index tree
reconstruction as required by traditional linear quadtrees [56]. We
design a set of algorithms to generate CCQ-Trees on GPUs by uti-
lizing a few pyramid data structures. Compared to constructing
pointer-based main-memory quadtrees on CPU, GPU based CCQ-
Tree construction has shown significant speedups. Our technical
contributions can be summarized as follows:

• We design a cache conscious, pointerless quadtree data struc-
ture (CCQ-Tree) that has low memory footprint, is suitable
for GPU indexing and allows fast mapping between main
memory and hard disks.

• We develop a set of algorithms to construct CCQ-Trees on
GPU devices based on GPGPU computing technologies.

• We perform experiments that show that CCQ-Tree indexing
using GPGPU computing speeds up its construction more
than 20 times on average using an Nvidia Quadro FX3700
GPU card. Higher speedups are expected using the next gen-
eration Fermi GPU devices when they become available.

The remainder of the paper is structured as follows. Section 2 in-
troduces related works. Section 3 presents the CCQ data struc-
ture and its construction algorithm on GPUs. Section 4 presents
our experiments on the WorldClim global precipitation data at the

30 arc-seconds (approximately 1km) resolution. Finally, Section 5
concludes the paper and outlines future research directions.

2. BACKROUND AND RELATED WORK
2.1 GPGPU-based Parallel Computing Archi-

tecture
A Graphics Processing Unit (GPU) is a hardware device that is
originally designed to work with CPU to accelerate rendering of
3D or 2D graphics. The highly parallel structures of modern GPU
devices, such as AMD/ATI Radeon [7] and Nvidia GeForce [66]
series, make them more effective than general-purpose CPUs for
a range of complex graphics-related algorithms. The concept of
General Purpose GPU (GPGPU) turns the massive floating-point
computational power of a modern graphics accelerator’s graphics-
specific pipeline into general-purpose computing power [21]. GPGPU
computing technologies provide a cost effective alternative to clus-
ter computing and have gained considerable interests in many sci-
entific research areas in the past few years[46][45]. According to
the Nvidia website, when compared to the latest quad-core CPU,
Tesla 20-series GPU computing processors deliver equivalent per-
formance at 1/20th of power consumption and 1/10th of cost [42].
As many reasonably current desktop computers have already equipped
with GPGPU enabled graphics cards, GPGPU based processing
of raster geospatial data can improve system performance signif-
icantly without additional costs. In this study, we utilize an Nvidia
Quadro FX 3700 GPU card with 512M device memory that comes
with a Dell T5400 workstation. Obviously a more powerful Tesla
GPU card will speed up the performance even more but requires ad-
ditional monetary cost. Despite the differences among the GPGPU
enabled devices and development platforms, a GPGPU device can
be viewed as a parallel Single Instruction Multiple Data (SIMD)
machine with a limited instruction set [40]. Although our exper-
iments are performed on an Nvidia GPU device and based on its
Compute Unified Device Architecture (CUDA, [39]), we argue that
our CCQ-Tree index construction algorithm can be easily adapted
to other types of GPUs such as AMD/ATI Stream programming
enabled ones [3]. We next briefly introduce the Nvidia GPU archi-
tecture and its parallel programming abstraction based on CUDA.

While different models of Nvidia GPU cards have different archi-
tectures, CUDA-enabled GPU devices are organized into a set of
Stream Multiprocessors (SMs). Each SM has a certain number
(e.g., 16 or 32) of computing cores. All the cores in a SM share
a certain amount (e.g., 16k or 64k) of fast memory called shared
memory and all the SMs have access to a large pool of global mem-
ory (e.g., 512M or 4G) on the device. According to CUDA, de-
velopers write a special C-like code segments called kernels. The
kernels are invoked by the companioning CPU code to run on GPU
devices. The kernel code does not allow dynamic memory alloca-
tion and recursion which imposes significant technical challenges
for many database applications that rely on these techniques, in-
cluding tree indices constructions. CUDA based GPGPU program-
ming makes it easier for task and data decomposition and subse-
quent parallel computing. Basically a developer specifies the sizes
of the layout of the data to be processed in the units of data blocks
and the number of threads to be launched inside a data block. The
GPU device is responsible for mapping the data blocks to the SMs
through space and time multiplexing which is transparent to devel-
opers/users. Since each SM has limited hardware resources, such
as the number of registers, shared memory and thread scheduling
slots, a SM can accommodate only a certain number of blocks sub-
jected to the combination of the constraints. Carefully selecting

block sizes allows a SM to accommodate more blocks simultane-
ously and, subsequently, improve parallel throughputs.

2.2 Database Applications of GPGPU Com-
puting

GPGPU technologies have attracted quite a lot of interests in re-
search and application from many areas including databases. A set
of GPGPU primitives to support relational operators have been de-
veloped on top of classic parallel algorithms including sorting and
scan [24]. As part of the open source GDB release, a Cache Con-
scious B+-tree has been implemented on GPU to support indexed
nest loop join, in addition to non-index nest loop join, sort-merge
join and hash join [27]. More recently, Bakkum and Skadron [8]
have implemented a subset of the SQLite command processor di-
rectly on GPU. While these pioneering works have demonstrated
the effectiveness of speeding up read-only relational operations and
have set a solid base for further investigations, it is unclear how
they can be extended to indexing and querying raster geospatial
data as relational data has quite different characteristics from raster
geospatial data. More recently, GPU has been used to batch pro-
cessing a large number of simultaneous queries on tree structures
[31]. GPU has also been used to speed up similarity joins on point
data using the Set of Z-Lists (SZL) data structure [32] which is
based on space filling curve and is non-hierarchical. It is also un-
clear how the technique can be applied to raster geospatial data to
process ROI-type query efficiently. We note that for the works re-
ported in [58][9][20], while GPU was used to accelerate database
operations, they were based on the graphics rendering pipelines and
not GPGPU computing technologies.

Different from the works by [24] and [8] that try to build a com-
plete database on GPU, in this study, we use GPU more as an ac-
celerator for indexing in a way similar to the GPU’s original role
as an accelerator for graphics rendering. This is partially because
quadtree indexing of large-scale raster geospatial data is computa-
tionally expensive and it is mostly one-time process for read-only
data. On the other hand, processing window queries and ROI-type
queries is much less expensive. Our previous work has shown that
ROI-type queries can be processed in a fraction of a second for
global 1-km resolution data with a 16-level quadtree using a single
CPU core[73]. Another disadvantage of using GPU for indexed
query processing is that the overheads of data transfer between
CPU and GPU may overshadow the benefits of GPU based par-
allel query processing. In addition, compared with CPU, the GPU
global memory is still very limited and can not hold large indices
and/or data. Frequently swapping data/indices between CPU and
GPU memory may not be desirable with respect to overall perfor-
mance. As such, we will be focusing on indexing large-scale raster
geospatial data on GPUs while leaving query processing on CPUs.

2.3 Indexing Raster Geospatial Data
There are relative few works on indexing raster geospatial data
compared with indexing vector geospatial data. While interval tree
[15], octree [68][63] and kd-tree [22][29] have been extensively
used in 3D graphics such as iso-surface rendering and ray-tracing,
quadtrees have been widely used to index binary and gray scale
2D rasters for compression purposes [53][33][12][14]. Data struc-
tures and algorithms designed for compression are not necessar-
ily suitable for query processing. Pyramid and tiling techniques
have also been used to speed up image display but usually they do
not allow queries on the underlying raster data. Oracle GeoRaster
[43]allows storing the bounding boxes and derived attributes of tile

images as vector geospatial data, which subsequently can be in-
dexed and queried so that only selected tile images need to be re-
trieved for display. A few of existing works have addressed the
issue of managing a set of similar/related rasters based on over-
lapping quadtrees [62][34][35]. The techniques are similar to in-
dexing spatial-temporal vector geospatial data such as Historical
R-Tree [38], MV3R-Tree [59], TPR-Tree [51] from a methodol-
ogy perspective. All the above indices construction algorithms are
serial. It is desirable to investigate how modern GPU hardware
devices and GPGPU parallel computing technologies can be effec-
tively used to index large-scale raster geospatial data to support fast
ROI-type queries.

Techniques such as linear quadtrees [52] have been developed to
externalized main-memory based quadtrees and make them disk-
resident. Linear quadtrees can be used to support certain types
of queries on top of B+-Tree [62][1][34]. Dynamically loading
disk-resident quadtrees into main-memory when they are needed
certainly reduces memory requirement; however, converting lin-
ear quadtrees to pointer quadtrees may incur significant overheads.
In our previous work on managing large-scale species distribution
data [71], we have associated a set of species identifiers with linear
quadtree nodes and have used the PostgreSQL LTREE module to
perform window queries by coordinating both the query client and
the database server. We have also developed a Binned Min-Max
Quadtree (BMMQ-Tree) data structure that associates min/max val-
ues of raster cells of a quadrant to the corresponding quadtree node
to speed up ROI-type query processing in a Web environment [73].
BMMQ-Tree is a main-memory data structure constructed through
a recursive procedure and can not be easily adapted to GPU de-
vices. In this research, we focus on developing a main-memory
data structure with low memory footprint, and, more importantly,
can be efficiently constructed on GPUs.

We note that ROI-type queries on a set of large-scale 2D rasters
are quite different from iso-surface generation or ray-tracing for
3D rasters [63][29]. First, techniques designed for 3D rasters fo-
cus on tracing boundaries (iso-surfaces) and intersecting with lin-
ear objects (ray-tracing) while 2D ROI-type queries find spatially
continuous regions that satisfy compound query criteria. Second,
unlike 3D data, there is a mismatch between X/Y and Z dimensions
for 2D rasters. At the 30 arc-seconds (approximately 1 kilometer)
resolution, a global 2D raster data has a size of 43200 by 21600
while the cell sizes along the X and Y dimensions typically do not
exceed 1024 by 1024 in 3D applications. Data structures that are
suitable for high resolution 3D data (e.g., 1024*1024*1024) are not
necessarily suitable for a set of large-scale 2D rasters.

2.4 Parallel Processing of Geospatial Data
Parallel and distributed processing of geospatial data is not a com-
pletely new concept. Quite a few works on parallel spatial data
structures [13][30][28][2], spatial join [74][47], spatial clustering
[70], spatial statistics [5][64] and handling terrain data [50] have
been reported. However, as discussed in [16], research on parallel
and distributed processing of geospatial data prior to 2003 has very
little impact on mainstream geospatial data processing applications,
possibly due to the accessibility of hardware and infrastructures in
the past. Among these works, very few of them specifically ad-
dressed query processing for raster data. Cary et al [11] reported
their experiences on processing spatial data with MapReduce on a
Google and IBM cluster using the Hadoop framework [4]. Their
experiments include R-Tree construction on point data and image
tile quality computation. Parallel computing on LIDAR data us-

ing cluster computers [23] is getting increasingly popular due to
its computation intensive nature. More recently, works reported in
[65] have demonstrated significant speedups by using grid comput-
ing for spatial statistics. However, none of these works adopted
GPGPU computing technologies.

3. THE PROPOSED SOLUTION
3.1 Array-Representation of CCQ-Tree
The Cache Concisions Quadtree (CCQ-Tree) we propose in this
paper is motivated by the pioneering works on Cache Sensitive
Search Tree (CSS-Tree) and Cache Sensitive B+-Tree (CSB+-Tree)
by Rao and Ross [48][49]. CCQ-Tree uses an array representation
and places all nodes in an one-dimensional array to completely re-
move non-continuous memory allocations. The layout of a CCQ-
Tree node includes a user-defined data field and a field indicting the
position of its first child on the node array. In both spatial window
and ROI-type queries, all the child nodes of a tree node being ex-
amined need to be visited sequentially. As such, putting all its child
nodes consecutively in an array instead of storing them in disparate
memory addresses will improve cache hits [48][49]. Compared
with classic main memory quadtrees storing memory pointers to
four child nodes, storing only one position number to a node’s first
child reduces memory consumption significantly. This is especially
true when a node’s data field is small. Also CCQ tree allows user to
define the lengths of the data field as well as the first child position
field. While a pointer usually requires the length of a word, e.g.,
64 bits for a 64 bits machine, a 32 bits first child position field can
refer to 4 billion nodes which is sufficient in most cases. When the
node size is fixed, CCQ allows flexible allocations of the two fields
based on applications. For example, assuming the node size is fixed
to 64 bits, CCQ has the flexibility to either designate 32 bits to the
data field and 32 bits to the first child position filed or designate 40
bits to the data field while 24 bits to the first child position field.

The lower part of Fig. 1 illustrates the layout of a CCQ-Tree through
an example. In this particular example, the data field of a tree node
includes a minB component and a maxB component to store the
minimum and maximum values of all the raster cells under the
node. The root node’s minB and maxB are 0 and 4, respectively
and the first child position is 1. We can visit the second child of
the root by adding the first child position of the root node (which
is 1) and the offset (which is 1) and retrieve the node from the
array at position 2. Empirical studies have shown that, while en-
vironmental data are well-known for significant spatial autocorre-
lation due to the first law of geography [61], i.e., "Everything is
related to everything else, but near things are more related than
distant things", neighboring cells values often are slightly differ-
ent which makes traditional quadtree-based indexing that requires
the uniformity of quadrants inappropriate. By binning cell values
using proper boundary values, quadrant uniformity can be derived
and the complexity of the derived quadtree can be reduced, includ-
ing number of levels and memory footprint of the tree. The binning
process is shown in the upper part of Fig. 1 using a predefined bin
boundary lookup table.

3.2 Overview of CCQ-Tree Construction on
GPGPUs

Constructing hierarchical data structures on GPUs imposes a ma-
jor technical challenge compared to well-established recursive ap-
proaches on CPUs. Current GPGPU computing does not allow dy-
namic memory allocations and pointer referencing and dereferenc-
ing. Also, under the CUDA architecture, communications among

blocks are very difficult if not impossible.

Recall that a CCQ-Tree node consists of a data field and a first
child position field. We need to fill both fields of all the nodes to
successfully construct a CCQ-Tree. In addition, since the nodes are
processed in parallel, each node needs to know its position in the
array representing the tree. The main idea of our CCQ-tree con-
struction algorithm includes the following components: (1) build a
pyramid of matrices from the raw raster data to materialize the data
field in each node, (2) at each level of the pyramid, by checking
whether an element of the matrix at the level has a valid value, it
can be determined that whether the tree node corresponding to the
element should be pruned. By traversing the pyramid from top to
bottom and follow Morton-order [37] or Z-order [44] at the each
level, the position of each tree node can be computed (3) At each
level of the pyramid, by checking the number of valid children for
each node, the first child position of a tree node can be determined
using a similar approach.

Although the three steps are executed sequentially on CPU, quad-
rants of the raster are processed in parallel in all the three steps on
GPU. The constructed tree in the form of an array of tree nodes
will be finally transferred back to CPU and is ready for processing
queries. Since the maximum of threads allowed by our GPU device
(Nvidia Quadro FX3700) is 512, we have used a square layout of
T*T (T = 2U where U<=4) threads per block. Assuming that our
raster size is N*N (N = 2K) and we use P*P blocks (P = 2L)
blocks, then each thread will be responsible for processing Q*Q
elements (Q = 2K−L−U) at the finest level. We will present the
algorithm in details in the following subsections.

3.3 Parallel Building Data Pyramid
Given a raster R of size N*N where N = 2K , the pyramid for the
raster includes K-1 matrices of sizes N/2 by N/2, N/4 by N/4 ...
and 1*1. The value of an element of matrix at the level k of the
pyramid is a function of the four elements under it at the level k+1
(assuming the root has a level of 0), i.e., dk = f(dk+1

i |i = 0, 3).
We define function f as computing minimum and maximum values
to make it comparable to our previous work on Binned Min-Max
Quadtree (BMMQ-Tree) [73] although it can be defined differently
depending on applications. In this case, each matrix element matrix
has two fields, the minimum and the maximum. Note that while the
pyramid does not include R, the bottom level matrix is computed
from R by applying function f to the corresponding elements of
R. It is not difficult to compute the total number of elements of the

pyramid as M = (1
4
+ 1

42 +...+ 1
4K−1)∗N ∗N = N2

4
(
1−(1

4)K

1− 1
4

) =

N2

3
(1 − (1

4
)K). When K is reasonably large, M is approximately

N2/3, i.e., one third of the total size of R.

To build the pyramid on GPU, we allocate a one-dimensional ar-
ray of size N2/3 on CPU, initialize the array and transfer it to
GPU. A kernel using P*P blocks for the whole data grid and 16*16
threads per block was adopted. When the kernel to populate the
pyramid was invoked, as discussed before, each thread needs to
process Q*Q elements at the level K-1 of raster R. All the matrices
are generated bottom-up in parallel at each level. For the matrices
between levels K-1 and L+U, the workload of each thread is re-
duced to 1/4 due to the aggregations of elements. At the level L+U,
each thread will only process four elements of the level L+U+1 ma-
trix. The sizes of matrices between level L and L+U are below the
number of threads that are allocated to the previously defined ker-
nel. To utilize the GPU device fully, we reduce the block size and

(0,4)(1)

(0,0)(0,-1)
(0,2)(5) (0,3)(9) (2,4)(13)

(0,0)
(-1)

(2,2)
(-1)

(1,1)
(-1)

(1,2)
(17)

(0,0)
(-1)

(0,1)
(21)

(1,1)
(-1)

(1,1)
(-1)

(2,2)
(-1)

(3,3)
(-1)

(4,4)
(-1)

(3,3)
(-1)

0 1 5

34 35 36 35 34 32 49 50
33 32 33 35 35 33 48 51
36 35 34 36 42 43 47 46
34 36 34 35 48 49 48 47

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

34 35 36 38 48 51 53 90

33 36 42 44 49 50 80 91
39 44 76 80 88 90 100 109

38 43 77 79 89 91 107 104

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 36

34 0 0 0 0 0 2 2
0 0 0 0 0 0 2 2
0 0 0 0 1 1 2 1
0 0 0 0 1 1 2 2

3434343434343434343434343434340

34 0 0 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 3 3 3 3 4 4
1 1 3 3 3 3 4 4

3434343434343434343434343434340

0 [32-37) 25
1 [37,47) 12
2 [47,52) 11
3 [52,92) 12
4 [92-110] 4

Binning

(minB: 16bits;maxB: 16bits)
(position of first child: 32bits)

9 13 17 21

Figure 1: Illustration of CCQ-Tree Layout and Raw Data Binning

thread size per block gradually by lunching new kernels at each
level. At the certain level S, we switch to serial execution either
on CPU or use a single thread per SM, as the costs of launching
new kernels may overshadow the parallel processing benefits. For
large rasters, P*P (P = 2L) may be quite larger than the number of
blocks that can be accommodated by all the SMs at the same time,
thus S is likely to be smaller than L.

3.4 Parallel Computing of First-Child Node Po-
sitions

As mentioned earlier, a multiple-level Z-order [44] based algorithm
is proposed to compute the first child node positions that are re-
quired for all the non-leaf tree nodes in a derived CCQ-Tree. The
algorithm to compute first child node positions has three steps.
First, similar to the min/max pyramid (A), we also create a pyramid
of matrices to record the number of children for each matrix ele-
ments of the pyramid (B). The computation can be performed by
launching GPU kernels in a way similar to the method presented
in the previous subsection. Also in this step, a prefix sum (scan)
[26][10]is performed in parallel to accumulate the numbers of chil-
dren for all elements with at least one child. The value of the last
element in the matrix at every level is the total number of children
for all the elements at the level. The numbers at the all levels are
used to formulate an array (W) and subsequently a prefix sum is
performed to compute the starting position of the first valid ele-
ment at all the levels. As the number of levels is limited (typically
<20), this step can be performed at CPU quickly. Note that the
root takes one position and should be counted as shown in Fig. 3.
The last step of the algorithm is to finally compute the first node
positions of all elements that have at least one child. This is done

by adding the starting position of the first valid element at the each
level to all the matrix elements after applying prefix sum as in the
first step. As discussed in the next subsection, we need the number
of children pyramid (B) to generate a CCQ-Tree in the final step, it
is not possible to perform in-place prefix sum. As such, we make
a copy of B and use its value as the initial for the first child node
position pyramid (C).

An issue unexplained in the algorithm given above is how to deter-
mine whether an array element in the matrices of pyramid A should
be considered as a tree node. While different rules can be applied
which may generate different trees, the following rule is used in
this study: if an element has different minimum and maximum val-
ues or if any of its min/max values is different from its parent’s
min/max values, respectively, then the element is considered to be
a tree node. To help illustrate the algorithm better, an example is
presented in Fig. 3. As shown in the top part of Fig. 3, all the
elements of A1 should be considered to be tree nodes as they have
different min/max values and their min/max values are different
from their parent’s min/max values. In contrast, the top-left four
elements of array A2 have the same min/max values and they are
the same as their parent’s min/max values. As such, they will be
pruned from the quadtree. Based on the rule, we can derive B2
from R and A2, derive B1 from A2 and A1 and derive B0 from A1
and A0 by following step 1. The numbers of children at the three
levels are thus 4, 12, 8, respectively. Since the root node takes a
position, the numbers of children array will be W=(1,4, 12, 8) and
thus the corresponding array after prefix-sum will be W=(0,1,5,17)
after step 2, as shown in the middle of Fig. 3. To illustrate step
3, we use the derivation of C1 as an example. The initial value of

Level L+U (thread)

Level 0 (root)

Level L (block)

Processed by a single thread
by looping through the levels

Processed by CPU or
a single GPU thread

Using separate kernels
with variable
block/thread sizes

Level S (Parallel/Serial boundary)

Figure 2: Decomposition Schema for Data Pyramid on GPU

34 -1 -1 -1
-1 -1 -1 0
343434343434343434343434343434-1

34 0 0 0 0 0 2 2
0 0 0 0 0 0 2 2
0 0 0 0 1 1 2 1
0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 3 3 3 3 4 4
1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0,0 0,0 2,2

0,0 0,0 1,1 1,2

0,0 0,1 2,2 3,3

1,1 3,3 3,3 4,4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0,0

34 0,2

0,3 2,4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0,0
0,4

34 0 0 0
0 0 0 4
0 4 0 0
0 0 0 0

3434343434343434343434343434340
34 4
4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 4

4 12 8

015

34 0
4 8
343434343434343434343434343434-1

34 5 6
 7 8

9 10 13 14
11 12 15 16

343434343434343434343434343434

34 2
3 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1

1

Root

17

34

 17 18
 19 20

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

34 21 22
 23 24

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

0
-1 4 -1 -1
-1 -1 -1 -1

1

2

3

R

A2

A0
A1

B0B1
B2

C0

C1C2

1

Figure 3: Illustration of Parallel Computing First-Child Node Positions

C1 is copied from B1, i.e., (0,4,4,4). After applying the prefix sum
based on the Z-order, C1 becomes (0, 4, 8, 12). After adding the
start position of the level, i.e., W[1]=1, to all the elements of C1
(except those whose values of the corresponding elements in B are
0), C1 becomes (-1, 5, 9, 13). Each element of C1 is the first child
node position of the corresponding tree node being constructed.
For example, the tree node corresponding to the second element of
A1 has four children (B1[1]=4) and its first child node position is
5 (C1[1]=5). On the other hand, the tree node corresponding to the
first element of A1 has 0 children (B1[0]=0) and its first child node
position is set to -1 (C1[0]=-1).

3.5 Parallel Generating CCQ-Tree
After computing the first child node positions of all the valid matrix
elements in pyramid C, we are ready to convert the pyramid repre-
sentation into a compact one-dimensional array representation to
reduce memory footprint. After the step 2 of the first child node
position calculation algorithm, we are able to know the total num-
ber of nodes for the CCQ-Tree being generated (assuming S) which
is given by the last element of the W array after prefix sum in the
step. We thus allocate an array (E) of structures with size S on
GPU. A major remaining question is, for each valid matrix element
in the pyramid, how do we tell their positions in the array represen-
tation? The answer is to apply a similar technique described in the
previous section. What we need to do is to replace the numbers of
children with 0s and 1s based on whether the elements have at least
one child. After Step 3 is finished, the matrix element values in the
pyramid (D) will be the positions in the one-dimensional array of
the corresponding matrix elements. Note that prefix sum on D can
be done in-place.

Assuming the data pyramid is A, the number of child pyramid is B,
the first child position pyramid is C, the node position pyramid is
D and the CCQ-Tree array is E, then we can derive E from A, B, C
and D on GPU in parallel as follows: using a similar block/thread
layout as discussed in Section 3.2, for each matrix element in raster
R’s pyramid (A, B, C or D), the algorithm first checks its number
of children using B, if the number is large than 0, then the element
should be a node in the CCQ-Tree and should be put in array E at
the correct position; the position of the node in array E can be re-
trieved from pyramid D, the data field can be copied from pyramid
A and the first child node position can be retrieved from pyramid C,
all from the corresponding matrix elements in the respective pyra-
mid.

3.6 Discussions
By using a few auxiliary pyramids, we have successfully devel-
oped a highly parallel algorithm to generate a CCQ-Tree on GPUs.
The algorithm only uses GPU’s global memory and SIMT (Single-
Instruction Multiple-Thread) parallel computing paradigm to achieve
maximum interoperability. As discussed previously, the total num-
ber of matrix elements in each of the A, B, C, and D pyramids
is approximately one third of the total size of R. Assuming R is
the short integer type, the min/max value and the number of chil-
dren can be packed into 24 bits and the node position and the
first child position, each takes a 24 bit short integer, then the ad-
ditional memory requirements is about the 3/2 of the raw data, as
1
3
N2∗(24+24+24)/16 = 3

2
N2. We note that 24 bits for node po-

sitions can address 224=16M array elements which should be more
than enough for a CCQ-Tree. Most likely the GPU global memory
will be used up by the raw raster data and the auxiliary pyramids
before a CCQ-Tree’s number of nodes reaches such a level.

We are in the process of exploring Nvidia GPU devices’ unique fea-
tures to further improve system performance, such as shared mem-
ory, coalesced memory access and const/texture memories [40]. As
global memory access is one of the most expensive operations (usu-
ally a few hundreds of cycles) and the most workload of the algo-
rithm is at the lower levels where each thread needs to access a
large number of raster cells and pyramid matrix elements, it is de-
sirable to reduce memory access times as much as possible. Unlike
caching in CPU, coalesced memory access in CUDA can only be
shared by threads in the same execution group, not by the next ex-
ecution of the same thread [40]. This makes it very tricky to utilize
coalesced memory access in CUDA for Nvidia GPUs. Fortunately,
the next generation Nvidia Fermi GPU architecture provides a uni-
fied L2 cache in addition to allowing users to allocate a part of the
per-block based shared memory as L1 cache [41]. We plan to ex-
plore these new features when the Fermi-based GPU devices are
available to us.

Another related issue under investigation is how to combine mul-
tiple non-overlapping CCQ-Trees into a bigger one. Due to the
limited global memory on GPU devices and the extra memory con-
sumptions incurred by the auxiliary pyramids, a single GPU can not
process very high resolution raster data (e.g., 1 km) at the global
scale. A possible solution is to generate smaller CCQ-Trees on
multiple GPU devices or generate smaller CCQ-Trees on a single
GPU with multiple runs and then combine them. We are investigat-
ing both possibilities.

4. EXPERIMENTS AND EVALUATION
To verify the correctness of the proposed CCQ-Tree construction
algorithm on GPUs and tests its efficiency, we report our results on
a real raster dataset. We compare the GPU based solution with sin-
gle core CPU based one with respect to index construction time.
We also compare memory footprints and index loading time of
CCQ-Tree with that of classic pointer-based quadtrees as they are
important to query processing.

4.1 Data and experiment setup
We use the current climate data published by WorldClim [25][69].
It is the same dataset that we have used for the experiments reported
in our previous works [73][72] to allow direct comparisons as de-
tailed in the next two subsections. For the sake of completeness,
here we provide a brief description of this dataset. The World-
Clim dataset is the interpolations of in-situ observed data from
1950-2000 and includes monthly precipitation, minimum tempera-
ture and maximum temperature (12 month) and 18 derived biocli-
matic variables at the global 30 arc-seconds (1 kilometers) reso-
lution. Thus the number of grid cells is 43200*21600 for each of
12*3+18=54 rasters. Due to space limit, we only report the exper-
iment results using the January precipitation data. The minimum
and maximum precipitation values are 0 and 1003, respectively.
We set the maximum level of the CCQ-Tree to 16, i.e., K=16, as
216=65536 is already larger than 43200. While experiments using
different bin numbers have been performed, we only report the re-
sults using 8 bins due to space limit. Clearly using larger number of
bins results in more complex quadtrees but incur less false positive
rates and there is a tradeoff between index memory footprint and
disk IOs to remove the false positives.

The dataset is stored in BIL format and we use GDAL [19] to ac-
cess the data file and read the data into main memory. We do not
count disk I/O costs for data as our motivation is to use indices
to minimize disk I/Os. With indices, unnecessary disk I/Os can

be significantly reduced. Our Nvidia Quadro FX 3700 card is a
fairly aged model and it only has 512M device memory available
to GPGPU computing. As such, we are only able to generate CCQ-
Trees for image tiles of 4096*4096 and there are 11*5 raster tiles in
our experiments. Note that some of the tiles on the bottom or right
boundaries are padded with NO-DATA values. Also some of the
tiles that mainly cover oceans have very few cells with valid data.

4.2 Tests on Indices Construction Times
The CCQ-Tree construction times on GPU for the 55 4096*4096
image tiles are shown in Fig. 4. For easy comparisons, the quadtree
construction times on CPU are also shown in Fig. 4. The minimum
and maximum CCQ construction times are 0.38 second and 0.47
second, respectively, with an average of 0.42 second. In contrast,
the quadtree construction on CPU takes 9.28 seconds at minimum
and 10.11 seconds at maximum with an average of 9.83 seconds.
The average speedup among the 55 tests is 23.4 times which is
considerably significant.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 10 20 30 40 50 60

Image Tile #

In
de

x
Co

ns
tru

ct
io

n
Ti

m
e

(s
)

CPU-Pointer
GPU-CCQ

Figure 4: Comparison of Indices Construction Times on GPU
and CPU

While it takes 23.02 seconds for the CCQ-Tree construction algo-
rithm to index the global 1-km dataset with 43200*21600 cells, we
expect that the construction time can be reduced to 1-5 seconds us-
ing Fermi based GPU cards for the following reasons. First, while
FX3700 card has only 112 cores, Fermi cards have 480 cores which
are four times more in addition to higher clock rate. Second, as
indexing geospatial raster data is data intensive, accessing global
memory is likely to be a major factor that affects indices construc-
tion times. As Fermi cards now support a unified 768K L2 Cache
and per-SM L1 cache up to 48K, we expect the overall indices con-
struction times to be significantly reduced by utilizing the caches
which are not available to the FX3700 card that we are currently
using. It is also possible to further reduce construction times by
using multiple GPU cards. When the indices construction times for
global 1km resolution data can be reduced to a few seconds, many
traditional offline applications can then be performed online in an
interactive manner which may potentially have significant implica-
tions in managing large-scale geospatial data.

4.3 Test on Memory Footprints and Indices
Loading Times

As CCQ-Tree is designed to be memory-resident for the purpose of
speedup query processing in a way similar to the BMMQ-Tree de-
veloped in our previous work [73], it is important to reduce memory
footprint so that a limited main-memory capacity can accommodate
larger CCQ-Trees for large-scale raster geospatial data. In addition,
in our previous study, we have transformed BMMQ-Trees to linear

quadtrees so that they can be permanently stored on disks. Unfortu-
nately, we have to build BMMQ-Trees from the corresponding lin-
ear quadtrees when they are loaded into main-memory. In this test,
we will compare the memory footprints and index loading times
among BMMQ-Trees and CCQ-Trees.

In addition to the minimum and maximum values that are the same
as in a CCQ-Tree, a BMMQ-Tree has four pointers to its four chil-
dren instead of a number indicating the position of its first child.
As such, for the sake of simplicity, assuming that the minimum
and maximum values are 16 bits short type and the first child node
position is 32 bit integer type, a BMMQ-Tree node will require
16+16+32*4=160 bits (20 bytes) while a CCQ-Tree node requires
16+16+32=64 bits (8 bytes), a 60% reduction. On a 64 bits ma-
chine, a BMMQ-Tree node will be 16+16+64*4=298 bits (36 bytes)
while the size of a CCQ-Tree node remains unchanged (8 bytes)
which indicates 77% reduction.

The speedups of indices loading times for BMMQ-Trees over CCQ-
Trees are plotted in Fig. 5 against the number of tree nodes. As we
can see from Fig. 5, the speedups of loading times quickly reaches
50 to 90 when the numbers of tree nodes are above 5000. This is
not surprising as loading a BMMQ-Tree requires examining all the
bits of the Morton code of the corresponding liner quadtree node,
dynamically allocating memory and set pointers correctly. On the
other hand, it only takes a single read to copy the array representing
a CCQ-Tree into memory.

0
10
20
30
40
50
60
70
80
90

0 100000 200000 300000 400000 500000 600000

of Nodes

Sp
ee

du
p

Figure 5: Plot of Speedup of Indices Loading Times against #
of Tree Nodes

5. CONCLUSIONS AND ONGOING WORK
In this study, we reported our work on indexing large-scale geospa-
tial raster using massively parallel GPGPU computing. Towards
this end, we have designed the CCQ-Tree data structure which is
not only memory efficient but also suitable for GPU-based index-
ing. Using an Nvidia Quadro FX3700 graphics card, we are able to
improve tree indices construction times from 9.28-10.11 seconds
on a CPU core to 0.38-0.47 second with an average speedup of
23 times. Compared with CPU main-memory pointer quadtrees,
CCQ-Tree not only reduces memory footprint to 40% and 23% on
a 32-bits and 64-bits machines but also speeds up indices load-
ing times 50X-90X by eliminating the expensive linear quadtree
to pointer quadtree conversion costs. While currently the total in-
dices construction time for a global 1-km spatial resolution dataset
takes 23.02 seconds on the FX3700 card, we project that a personal
workstation equipped with 1-4 Fermi GPU cards can index global
1-km spatial resolution datasets in a few seconds. The capability
of indexing large-scale high resolution datasets in real time can po-
tentially have significant implications in managing geospatial data.

For the future work, first of all, we would like to fine-tune our CCQ-
Tree data structure and its construction algorithm for the Nvidia
Fermi GPU architecture to further improve their performance. Sec-
ond, we are interested in developing a complete set of high-performance
computing primitives on mini-clusters equipped with GPU cards
for visual explorations of large-scale complex geospatial datasets,
such as identifying global biodiversity patterns and their relation-
ships with the environment. Finally we would like to compare our
GPU computing based solution with traditional grid/cluster com-
puting based ones in the context of indices construction, query pro-
cessing and visual explorations of large-scale geospatial data.

6. REFERENCES
[1] A. Aboulnaga and W. G. Aref. Window query processing in

linear quadtrees. Distributed and Parallel Databases,
10(2):111–126, 2001.

[2] M. H. Ali, A. A. Saad, and M. A. Ismail. The pn-tree: A
parallel and distributed multidimensional index. Distributed
and Parallel Databases, 17(2):111–133, 2005.

[3] AMD/ATI. Ati stream technology.
http://www.amd.com/stream.

[4] Apache. Hadoop. http://hadoop.apache.org/.
[5] M. P. Armstrong, C. E. Pavlik, and R. Marciano.

Parallel-processing of spatial statistics. Computers &
Geosciences, 20(2):91–104, 1994.

[6] K. Asanovic and R. B. et al. The landscape of parallel
computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, UC Berkeley,
December 18 2006.

[7] ATI. Ati radeon.
http://en.wikipedia.org/wiki/Radeon.

[8] P. Bakkum and K. Skadron. Accelerating sql database
operations on a gpu with cuda. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics
Processing Units, pages 94–103, 2010.

[9] N. Bandi, C. Sun, D. Agrawal, and A. E. Abbadi. Hardware
acceleration in commercial databases: a case study of spatial
operations. In VLDB’04, pages 1021–1032, 2004.

[10] G. E. Blelloch. Vector Models for Data-Parallel Computing.
MIT Press, 1990.

[11] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on
processing spatial data with mapreduce. In SSDBM’09,
pages 302–319. Springer Lecutre Notes in Computer Science
(LNCS), 2009.

[12] Y. K. Chan and C. C. Chang. Block image retrieval based on
a compressed linear quadtree. Image and Vision Computing,
22(5):391–397, 2004.

[13] C. H. Chien and T. Kanade. Distributed quadtree processing.
In Proceedings of the first symposium on Design and
implementation of large spatial databases, pages 213 – 232,
1990.

[14] K. L. Chung, Y. W. Liu, and W. M. Yan. A hybrid gray
image representation using spatial- and dct-based approach
with application to moment computation. Journal of Visual
Communication and Image Representation,
17(6):1209–1226, 2006.

[15] P. Cignoni, P. Marino, C. Montani, E. Puppo, and
R. Scopigno. Speeding up isosurface extraction using
interval trees. IEEE TVCG, 3(2):158–170, 1997.

[16] A. Clematis, M. Mineter, and R. Marciano. High
performance computing with geographical data. Parallel

Computing, 29(10):1275–1279, 2003.
[17] B. Dally. The future of gpu computing.

http://www.nvidia.com/content/GTC/
documents/SC09_Dally.pdf.

[18] V. Gaede and O. Gunther. Multidimensional access methods.
ACM Computing Surveys, 30(2):170–231, 1998.

[19] GDAL. Geospatial data abstraction library.
http://www.gdal.org/.

[20] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In SIGMOD’04, pages 215–226, 2004.

[21] GPGPU. General purpose graphics processing unit.
http://gpgpu.org/.

[22] A. Gress and R. Klein. Efficient representation and
extraction of 2-manifold isosurfaces using kd-trees.
Graphical Models, 66(6):370–397, 2004.

[23] S. H. Han, J. Heo, H. G. Sohn, and K. Yu. Parallel processing
method for airborne laser scanning data using a pc cluster
and a virtual grid. Sensors, 9(4):2555–2573, 2009.

[24] B. S. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query coprocessing on
graphics processors. ACM Transactions on Database
Systems, 34(4), 2009.

[25] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and
A. Jarvis. Very high resolution interpolated climate surfaces
for global land areas. International Journal of Climatology,
25(15):1965–1978, 2005.

[26] W. D. Hillis and J. Guy L. Steele. Data parallel algorithms.
Communications of the ACM, 29(12):1170–1183, 1986.

[27] HKUST. Gpuqp: Query co-processing using graphics
processors.
http://www.cse.ust.hk/gpuqp/gdb.zip.

[28] E. G. Hoel and H. Samet. Data-parallel polygonization.
Parallel Computing, 29(10):1381–1401, 2003.

[29] D. M. Hughes and I. S. Lim. Kd-jump: a path-preserving
stackless traversal for faster isosurface raytracing on gpus.
IEEE TVCG, 15(6):1555–1562, 2009.

[30] I. Kamel and C. Faloutsos. Parallel r-trees. In SIGMOD’92,
pages 195–204, 1992.

[31] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. Fast:
fast architecture sensitive tree search on modern cpus and
gpus. In SIGMOD’10, pages 339–350, 2010.

[32] M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A fast
similarity join algorithm using graphics processing units. In
ICDE’08, pages 1111–1120, 2008.

[33] T. W. Lin. Compressed quadtree representations for storing
similar images. Image and Vision Computing,
15(11):833–843, 1997.

[34] Y. Manolopoulos, E. Nardelli, G. Proietti, and E. Tousidou. A
generalized comparison of linear representations of thematic
layers. Data & Knowledge Engineering, 37(1):1–23, 2001.

[35] M. Manouvrier, M. Rukoz, and G. Jomier. Quadtree
representations for storage and manipulation of clusters of
images. Image and Vision Computing, 20(7):513–527, 2002.

[36] F. Molnar, T. Szakaly, R. Meszaros, and I. Lagzi. Air
pollution modelling using a graphics processing unit with
cuda. Computer Physics Communications, 181(1):105–112,
2010.

[37] G. M. Morton. A computer oriented geodetic data base; and
a new technique in file sequencing. Technical report, IBM

http://www.amd.com/stream
http://hadoop.apache.org/
http://en.wikipedia.org/wiki/Radeon
http://www.nvidia.com/content/GTC/documents/SC09_Dally.pdf
http://www.nvidia.com/content/GTC/documents/SC09_Dally.pdf
http://www.gdal.org/
http://gpgpu.org/
http://www.cse.ust.hk/gpuqp/gdb.zip

Ltd., 1966.
[38] M. A. Nascimento and J. R. O. Silva. Towards historical

r-trees. In Proceedings of the 1998 ACM symposium on
Applied Computing, pages 235 – 240, 1998.

[39] Nvidia. Compute unified device architecture (cuda).
http://www.nvidia.com/object/cuda_home_
new.html.

[40] Nvidia. Cuda programming guide. http://developer.
nvidia.com/object/gpucomputing.html.

[41] Nvidia. Next generation cuda architecture, code named
fermi. http://www.nvidia.com/object/fermi_
architecture.html.

[42] Nvidia. Personal super computing.
http://www.nvidia.com/object/personal_
supercomputing.html.

[43] Oracle. Georaster. http://download.oracle.com/
docs/html/B10827-01/geor-intro.htm.

[44] J. A. Orenstein. Spatial query processing in an
object-oriented database system. In SIGMOD’86, pages
326–336, 1986.

[45] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips. Gpu computing. Proceedings of the IEEE,
96(5):879–899, 2008.

[46] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007. Times
Cited: 161.

[47] J. M. Patel and D. J. DeWitt. Clone join and shadow join:
two parallel spatial join algorithms. In ACMGIS’00, pages
54–61, 2000.

[48] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In VLDB’99, pages
78–89, 1999.

[49] J. Rao and K. A. Ross. Making b+- trees cache conscious in
main memory. In SIGMOD 2000 Conference, pages
475–486. ACM, 2000.

[50] D. K. D. Rokos and M. P. Armstrong. Experiments in the
identification of terrain features using a pc-based parallel
computer. Photogrammetric Engineering and Remote
Sensing, 64(2):135–142, 1998.

[51] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving
objects. In SIGMOD ’00, pages 331–342, 2000.

[52] H. Samet. The quadtree and related hierarchical data
structures. ACM Computing Surveys (CSUR),
16(2):187–260, 1984.

[53] H. Samet. Data-structures for quadtree approximation and
compression. Communications of the ACM, 28(9):973–993,
1985. Times Cited: 25.

[54] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann Publishers Inc., 2005.

[55] R. R. Sinha, M. Winslett, and K. Wu. Finding regions of
interest in large scientific datasets. In SSDBM’09, pages
130–147, 2009.

[56] I. P. Stewart. Quadtrees - storage and scan conversion.
Computer Journal, 29(1):60–75, 1986.

[57] S. H. e. a. Stone, S. Accelerating advanced mri
reconstructions on gpus. Journal of Parallel and Distributed
Computing, 68(10):1307–1318, 2008.

[58] C. Sun, D. Agrawal, and A. E. Abbadi. Hardware

acceleration for spatial selections and joins. In SIGMOD’03,
pages 455–466, 2003.

[59] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access
method for timestamp and interval queries. In VLDB’01,
pages 431 – 440, 2001.

[60] D. M. Theobald. GIS Concepts and ArcGIS Methods,2nd Ed.
Conservation Planning Technologies, Inc, 2005.

[61] W. Tobler. A computer model simulating urban growth in the
detroit region. Economic Geography, 46(2):234–240, 1970.

[62] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos.
Overlapping linear quadtrees: a spatio-temporal access
method. In ACMGIS’98, pages 1–7, 1998.

[63] C. Wang and Y. J. Chiang. Isosurface extraction and
view-dependent filtering from time-varying fields using
persistent time-octree (ptot). IEEE TVCG, 15(6):1367–1374,
2009.

[64] S. W. Wang and M. P. Armstrong. A quadtree approach to
domain decomposition for spatial interpolation in grid
computing environments. Parallel Computing,
29(10):1481–1504, 2003.

[65] S. W. Wang, M. K. Cowles, and M. P. Armstrong. Grid
computing of spatial statistics: using the teragrid for g(i)*(d)
analysis. Concurrency and Computation-Practice &
Experience, 20(14):1697–1720, 2008.

[66] Wikipedia. Nvidia geforce.
http://en.wikipedia.org/wiki/GeForce.

[67] Wikipedia. Nvidia geforce 400 series specification.
http://en.wikipedia.org/wiki/GeForce_
400_Series.

[68] J. Wilhelms and A. Vangelder. Octrees for faster isosurface
generation. ACM Transactions on Graphics, 11(3):201–227,
1992.

[69] WorldClim. Worldclim current conditions data 1950-2000.
http://www.worldclim.org/current.

[70] X. W. Xu, J. Jager, and H. P. Kriegel. A fast parallel
clustering algorithm for large spatial databases. Data Mining
and Knowledge Discovery, 3(3):263–290, 1999.

[71] J. Zhang, M. Gertz, and L. Gruenwald. Efficiently managing
large-scale raster species distribution data in postgresql. In
ACMGIS’09, pages 316–325, 2009.

[72] J. Zhang and S. You. Dynamic tiled map services:
Supporting query-based visualization of large-scale raster
geospatial data. In Com.Geo’10, page To Appear, 2010.

[73] J. Zhang and S. You. Supporting web-based visual
exploration of large-scale raster geospatial data using binned
min-max quadtree. In SSDBM’10, pages 379–396, 2010.

[74] X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for
parallel spatial join processing. GeoInformatica,
2(2):175–204, 1998.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://developer.nvidia.com/object/gpucomputing.html
http://developer.nvidia.com/object/gpucomputing.html
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/personal_supercomputing.html
http://www.nvidia.com/object/personal_supercomputing.html
http://download.oracle.com/docs/html/B10827-01/geor-intro.htm
http://download.oracle.com/docs/html/B10827-01/geor-intro.htm
http://en.wikipedia.org/wiki/GeForce
http://en.wikipedia.org/wiki/GeForce_400_Series
http://en.wikipedia.org/wiki/GeForce_400_Series
http://www.worldclim.org/current

	Introduction
	Backround and Related Work
	GPGPU-based Parallel Computing Architecture
	Database Applications of GPGPU Computing
	Indexing Raster Geospatial Data
	Parallel Processing of Geospatial Data

	The Proposed Solution
	Array-Representation of CCQ-Tree
	Overview of CCQ-Tree Construction on GPGPUs
	Parallel Building Data Pyramid
	Parallel Computing of First-Child Node Positions
	Parallel Generating CCQ-Tree
	Discussions

	Experiments and Evaluation
	Data and experiment setup
	Tests on Indices Construction Times
	Test on Memory Footprints and Indices Loading Times

	Conclusions and Ongoing Work
	References

