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ABSTRACT 
Advances in geospatial technologies have generated large 
amounts of raster geospatial data. Massively parallel General 
Purpose Graphics Processing Unit (GPGPU) computing 
technologies have provided personal computers with tremendous 
computing capabilities. In this paper, we report our work on fast 
indexing of large-scale raster geospatial data using GPGPU 
computing. We have designed a cache conscious quadtree data 
structure (CCQ-Tree) that is suitable for GPU indexing. A set of 
algorithms have been developed and integrated to construct CCQ-
Trees on GPUs by utilizing multiple pyramid data structures and 
Z-order based prefix sum. Experiments on multiple 4096*4096 
blocks of a global precipitation raster data have shown that CCQ-
Tree indexing using a 112-core Nvidia Quadro FX3700 GPU 
device reduces construction times from around 9.83 seconds to 
0.42 seconds (23X speedup).  

Categories and Subject Descriptors 
H.2 [Database Systems] 
Keywords 
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1. INTRODUCTION 
Advances in geospatial technologies have generated 

large amounts of raster geospatial data at ever increasing speeds. 
Different from vector geospatial data that sophisticated indexing 
techniques have been extensively developed and applied, research 
on indexing raster geospatial data is limited. Traditionally raster 
geospatial data are mostly used for sophisticated offline analysis 
(such as image classification and physics based environmental 
modeling) and simple online display (such as tiling based image 
display in Google Map/Earth). Massively parallel General 
Purpose Graphics Processing Unit (GPGPU) technologies [1], 
which allow using graphics processing units for general purpose 
computing, have provided personal computers with tremendous 
computing capabilities. For example, a single Nvidia Fermi-based 
GeoForce GTX480 GPU device has 480 cores and a peak floating 
point performance of 1.35 Terra Flops [2] at the cost of a few 
hundreds of dollars. The computing power provided by GPGPU 
enabled devices will enable many traditionally offline applications 
to run online and interact with users.  

In this study, we aim at fast indexing of large-scale 
raster geospatial data on GPGPU enabled devices to support 
Region-of-Interests (ROI) type of queries. A ROI-type query 
returns all spatial objects (including quadrants) that satisfy one or 
more value range criteria, e.g., temperature in the range [t1,t2) and 
precipitation in  [p1,p2). We consider indexing raster geospatial 
data as a special global operation in processing geospatial data 
which is technically more challenging than parallelizing some 
local and focal operations on raster data. More specifically, we 
focus on quadtree based indexing due to its well-known data 
compression and pruning power in query processing [3]. Different 
from local or focal raster operations that transform one raster to 
another, quadtree based raster data indexing transforms a 
regularly shaped grid into an irregular, hierarchical data structure. 
While the irregularity can be relatively easily handled on CPUs 
through dynamic memory allocations and pointer linking, as 
current GPGPU computing does not support dynamic memory 
allocations and recursions, it is technically challenging to 
generate, store and manipulate tree data structures on GPUs. Our 
technical contributions can be summarized as follows:   

• We design a cache conscious quadtree data structure (CCQ-
Tree) that is suitable for GPU indexing.  

• We develop a set of algorithms to construct CCQ-Trees on 
GPU devices based on GPGPU computing technologies.  

• We perform experiments that show that CCQ-Tree indexing 
using GPGPU computing speeds up its construction more 
than 20 times on average using a 112-core Nvidia Quadro 
FX3700 GPU card.  

The remainder of the paper is structured as follows. 
Section 2 presents the CCQ data structure and its construction 
algorithm on GPUs. Section 3 reports our experiments on a real 
global dataset before concluding the paper in Section 4.  

2. PROPOSED SOLUTIONS 

2.1 Array-Representation of CCQ-Tree 
The Cache Concisions Quadtree (CCQ-Tree) we 

propose in this paper is motivated by the pioneering works on 
Cache Sensitive Search Tree (CSS-Tree) and Cache Sensitive B+-
Tree (CSB+-Tree) [4][5]. CCQ-Tree uses an array representation 
and places all nodes in a one-dimensional array to completely 
remove non-continuous memory allocations. The layout of a 
CCQ-Tree node includes a user-defined data field and a field 
indicating the position of its first child on the node array. In ROI-
type queries, all the child nodes of a tree node being examined 
need to be visited sequentially. As such, putting all its child nodes 
consecutively in an array instead of storing them in disparate 
memory addresses will improve cache hits. Compared with classic 
main memory quadtrees that store memory pointers to four child 
nodes, storing only one position number to a node’s first child 
reduces memory consumption significantly. The lower part of Fig. 
1 illustrates the layout of a CCQ-Tree through an example.  
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Fig. 1 Illustration of CCQ-Tree Layout  

 

2.2 Overview of CCQ-Tree Construction on 
GPGPUs 

 Constructing hierarchical data structures on GPUs 
imposes a major technical challenge compared to well-established 
recursive approaches on CPUs. Current GPGPU computing does 
not allow dynamic memory allocations and pointer referencing 
and dereferencing. Recall that a CCQ-Tree node has a data field 
and a first child position field. We need to fill both fields of all the 
nodes to successfully construct a CCQ-Tree. In addition, since the 
nodes are processed in parallel, each node needs to know its 
position in the array representing the tree. The main idea of our 
CCQ-tree construction algorithm includes the following 
components: (1) build a pyramid of matrices from the raw raster 
data to materialize the data field in each node, (2) at each level of 
the pyramid, by checking whether an element of the matrix at the 
level has a valid value, it can be determined that whether the tree 
node corresponding to the element should be pruned. By 
traversing the pyramid from top to bottom and following Morton-
order [6] or Z-order [7] at each level, the position of each tree 
node can be computed (3) At each level of the pyramid, by 
checking the number of valid children for each node, the first 
child position of a tree node can be determined using a similar 
approach.  

Although the three steps are executed sequentially on 
CPU, quadrants of the raster are processed in parallel in all the 
three steps on GPU. The constructed tree in the form of an array 
of tree nodes will be finally transferred back to CPU and is ready 
for processing queries. Since the maximum of threads allowed by 
our GPU device (Nvidia Quadro FX3700) is 512, we have used a 
square layout of T*T (T=2U where U<=4) threads per block. We 
refer to [1] for more details on CUDA-based GPU computing. 
Assuming that a raster dataset has a size of N*N (N=2K) and P*P 
computing blocks (P=2L) are used in CUDA programming, each 
thread will be responsible for processing Q*Q elements (Q=2K-L-U) 
at the finest level. We will present the algorithm in details in the 
following subsections. 

2.3 Parallel Building Data Pyramid 
Given a raster R of size N*N where N=2K, the pyramid 

for the raster includes K-1 matrices of sizes N/2 by N/2, N/4 by 
N/4…and 1*1. The value of an element of the matrix at the level k 
of the pyramid is a function of the four elements under it at the 
level k+1 (assuming the root has a level 0), i.e., dk=f({di

k+1|i=0,3}). 
We define f as a function to compute the minimum and maximum 
values to make it comparable to our previous work on Binned 
Min-Max Quadtree (BMMQ-Tree) [8] although it can be defined 

differently depending on applications. In this case, each matrix 
element has two fields, the minimum and the maximum. Note that 
while the pyramid does not include R, the bottom level matrix is 
computed from R by applying function f to the corresponding 
elements of R. It is not difficult to compute the total number of 
elements of the pyramid 
as
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When K is reasonably large, M is approximately N2/3, i.e., one 
third of the total size of R. To build the pyramid on GPU, we 
allocate a one-dimensional array of size N2/3 on CPU, initialize 
the array and transfer it to GPU. When the kernel to populate the 
pyramid was invoked, each thread processes Q*Q elements at the 
level K-1 of raster R as discussed before. All the matrices are 
generated bottom-up in parallel at each level. For the matrices 
above level K-1, the workload of each thread is reduced to 1/4 due 
to the aggregations of elements.  

2.4 Parallel Computing of First-Child Node 
Positions 

A multiple-level Z-order [7] based algorithm is applied 
to compute the first child node positions that are required for all 
the non-leaf tree nodes in a derived CCQ-Tree. The algorithm to 
compute first child node positions has three steps. First, similar to 
the min/max pyramid (A), we also create a pyramid of matrices to 
record the number of children for each matrix elements of the 
pyramid (B). The computation can be performed by launching 
GPU kernels in a way similar to the method presented in the 
previous subsection. Also in this step, a prefix sum (scan) [9][10] 
is performed in parallel to accumulate the numbers of children for 
all elements with at least one child. The value of the last element 
in the matrix at every level is the total number of children for all 
the elements at the level. The numbers at all the levels are used to 
formulate an array and, subsequently, a prefix sum is performed to 
compute the starting position of the first valid element at all the 
levels. As the number of levels is limited (typically <20), this step 
can be performed at CPU quickly. Note that the root takes one 
position and should be counted as shown in Fig. 2. The last step of 
the algorithm is to finally compute the first node positions of all 
the elements that have at least one child. This is done by adding 
the starting position of the first valid element at each level to all 
the matrix elements by applying prefix sum as in the first step. As 
discussed in the next subsection, we need the number of children 
pyramid (B) to generate a CCQ-Tree in the final step. Since it is 
not possible to perform an in-place prefix sum, we make a copy of 
B and use B’s value as the initial for the first child node position 
pyramid (C). 
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An issue that has not been addressed in the algorithm 

given above is how to determine whether an array element in the 
matrices of pyramid A should be considered as a tree node. While 
different rules can be applied which may generate different trees, 
the following rule is used in this study:  if an element has different 
minimum and maximum values or if any of its min/max values is 
different from its parent’s min/max values, respectively, then the 
element is considered to be a tree node. To help illustrate the 
algorithm better, an example is presented in Fig. 2. As shown in 
the top part of Fig. 2, all the elements of A1 should be considered 
to be tree nodes as they have different min/max values or their 
min/max values are different from their parent’s min/max values. 
In contrast, the top-left four elements of array A2 have the same 
min/max values and they are the same as their parent’s min/max 
values. As such, they will be pruned from the quadtree. Based on 
the rule, we can derive B2 from R and A2, derive B1 from A2 and 
A1 and derive B0 from A1 and A0 by following Step 1. The 
numbers of children at the three levels are thus 4, 12, and 8, 
respectively. Since the root node takes a position, the numbers of 
children arrays will be (1,4, 12, 8) and thus the corresponding 
array after the prefix-sum will be W=(0,1,5,17) after Step 2, as 

shown in the middle of Fig. 2. To illustrate Step 3, we use the 
derivation of C1 as an example. The initial value of C1 is copied 
from B1, i.e., (0, 4, 4, 4). After applying the prefix sum based on 
the Z-order, C1 becomes (0, 0, 4, 8). After adding the start 
position of the level, i.e., W[2]=5, to all the elements of C1 
(except those of which the values of the corresponding elements 
in B are 0 ), C1 becomes (-1, 5, 9, 13). Each element of C1 is the 
first child node position of the corresponding tree node being 
constructed. For example, the tree node corresponding to the 
second element of A1 has four children (B1[1]=4) and its first 
child node position is 5 (C1[1]=5). On the other hand, the tree 
node corresponding to the first element of A1 has 0 children 
(B1[0]=0) and its first child node position is set to -1 (C1[0]=-1). 

2.5 Parallel Generating CCQ-Tree 
After computing the first child node positions of all the 

matrix elements in pyramid C, we are ready to convert the 
pyramid representation into a compact one-dimensional array 
representation to reduce memory footprint. After Step 2 of the 
first child node position calculation algorithm, we are able to 
know the total number of nodes for the CCQ-Tree being generated 
(assuming S) which is given by the last element of the array after 
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Fig. 2 Illustration of Parallel Computing First-Child Node Positions 

452



 
 

 

the prefix sum in the step. We thus allocate an array (E) of 
structures with size S on GPU. A major remaining question is that, 
for each valid matrix element in the pyramid, how do we tell its 
position in the array representation? The answer is to apply a 
similar technique described in the previous section. What we need 
to do is to replace the numbers of children with 0s and 1s based on 
whether the elements have at least one child. After Step 3 is 
finished, the matrix element values in the pyramid (D) will be the 
positions in the one-dimensional array of the corresponding 
matrix elements. Note that the prefix sum on D can be done in-
place.  

Assuming the data pyramid is A, the number of child 
pyramid is B, the first child position pyramid is C, the node 
position pyramid is D and the CCQ-Tree array is E, then we can 
derive E from A, B, C and D on GPU in parallel as follows: using 
a similar block/thread layout as discussed in Section 2.2, for each 
matrix element in raster R’s pyramid (A, B, C or D), the algorithm 
first checks its number of children using B.  If the number is large 
than 0, then the element should be a node in the CCQ-Tree and 
should be put in array E at the correct position; the position of the 
node in array E can be retrieved from pyramid D, the data field 
can be copied from pyramid A and the first child node position 
can be retrieved from pyramid C, all from the corresponding 
matrix elements in the respective pyramid. 

3 EXPERIMENTS 
To verify the correctness of the proposed CCQ-Tree 

construction algorithm on GPUs and tests its efficiency, we report 
our results on a real raster dataset. We compare the index 
construction times incurred using the GPU based solution running 
on a 112-core Quadro FX 3700 card (500 MHz) and that using the 
single core CPU based one running on an Intel E5405 processor 
(2.0 GHz) that comes with a Dell T5400 workstation. We use the 
current climate data published by WorldClim [11][12] in our 
experiments. The dataset is the same one that we have used for the 
experiments reported in our previous works [8][13] to allow direct 
comparisons. The Nvidia Quadro FX 3700 card has only 512M 
device memory available to GPGPU computing. As such, we are 
only able to generate CCQ-Trees for image tiles of 4096*4096 
and there are 11*5 raster tiles in our experiments. Note that some 
of the tiles on the bottom or right boundaries are padded with NO-
DATA values. Also some of the tiles that mainly cover oceans 
have very few cells with valid data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Comparison of Indices Construction Times on 
GPU and CPU 

 
The CCQ-Tree construction times on GPU for the 55 

4096*4096 image tiles are shown in Fig. 3. For easy comparisons, 
the quadtree construction times on CPU are also shown in Fig. 3. 

The minimum and maximum CCQ construction times on GPU are 
0.38 second and 0.47 second, respectively, with an average of 
0.42 second. In contrast, the quadtree construction on CPU takes 
9.28 seconds at minimum and 10.11 seconds at maximum with an 
average of 9.83 seconds. The average speedup among the 55 tests 
is 23.4 times which is considerably significant. 

3.   SUMMARY AND CONCLUSIONS  
In this study, we reported our work on indexing large-

scale geospatial raster using massively parallel GPGPU 
computing. Towards this end, we have designed the CCQ-Tree 
data structure that is suitable for GPU-based indexing. Using a 
112-core Nvidia Quadro FX3700 graphics card, we are able to 
improve tree indices construction times from 9.28-10.11 seconds 
on a CPU core to 0.38-0.47 second with an average speedup of 23 
times.  

While currently the total indices construction time for a 
global 1-km spatial resolution dataset takes 23.02 seconds on a 
112-core FX3700 card, we project that a personal workstation 
equipped with 1-4 Fermi GPU cards can index global 30-arc 
seconds spatial resolution (approximately 1km) datasets 
(43200*21600) in a few seconds. The capability of indexing 
large-scale high resolution datasets in real time can potentially 
have significant implications in managing and processing large-
scale raster geospatial data.   
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