
Appendix: Parallel Primitives
Although naming conventions might differ slightly

under different contexts and software implementations, since our
implementation is based on the Thrust library, we next introduce
the primitives that we have used in our design using the Thrust
terminology.

(1) Reduce and Reduce by key. Reduce is used to simplify a
vector/array to a scalar value. For example, reduce([3,2,4])�11.
While the summation is frequently used in reductions, Thrust
allows using a user defined associative binary function for
tailored summation, such as determining the maximum entry or
computing bounding boxes of points. Reduce by key is a
generalization of Reduce to key-value pairs based on groups
where consecutive keys in the groups are the same. For example,
reduce[1,3,3,2],[2,1,3,4])�([1,3,2],[2,4,6]). In this research,
Reduce by key has been extensively used to compute numbers of
points and quadrant that have the same keys based on Morton
codes.

(2) Scan and Scan by Key. The Scan primitive computes the
cumulative sum of a vector/array. The Scan primitive can also
take a user defined associative binary function. Both the
inclusive and exclusive scans are available. For example,
exclusive_scan([3,2,4])�([0,3,5]) while inclusive_scan
([3,2,4])�([3,5,9]). Similarly, Scan by Key works on
consecutive key groups instead of a whole vector/array. In this
research, Scan by Key is extensively used to compute the
positions of entries in a vector after applying Reduce by key
which outputs numbers of entries with same keys.

(3) Copy and Copy_if. The functionality of the two primitives is
self-evident. In this research, we use Copy to move groups of
entries from one location to another, mostly within a same
vector. The Copy_if primitive is mostly used for identifying
points and keys (point quadrants) that satisfy certain criteria and
output the identified entries to a new vector for further
processing.

(3) Transform. The basic form of Transform applies a unary
function to each entry of an input sequence and stores the result
in the corresponding position in an output sequence. Transform
is more general than Copy as it allows a user defined operation
to be applied to entries rather than simply copying. Similar to
Copy_if, there is also a Transform_if primitive which is
essentially the combination of Transform and Copy_if. The
combination usually results better performance. In this research,
Transform has been extensively used to convert points into
Morton codes.

(4) Gather and Scatter. Gather copies elements from a source
array into a destination range according to a map and Scatter
copies elements from a source range into an output array
according to a map. For example,
Gather([3,0,2],[4,7,8,12,15])�([12,4,8]) and
Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*])�([4,*,8,*12,*]). Note *
values are those unchanged in the third input vector. In this
research, we have used the combination of Gather and Scatter to
locate individual points fall within quadrants that have fewer
than K points so that they can be moved to proper locations.

(5) Sort and Sort by Key. Sort is probably among the most
popular primitives in parallel libraries. In fact, our design aims
at utilizing the power of parallel sorting on GPGPUs to speed up
generating point quadrants. The current implementations of the
sorting algorithms in Thrust are based on a combined radix sort

and merge sort which has been proven to be memory bandwidth
friendly and practically efficient. Our design facilitates reducing
memory traffic and further improves sorting efficiency in the
following sense. First, rather than sorting coordinates directly,
we sort Z-order transformed Morton codes. The transformation
preserves spatial adjacency and requires less data movement.
Second, we sort the increasingly longer Morton codes level-by-
level and the data movement overheads are amortized among
multiple steps since keys and points with the same values do not
need to be moved during sorting. Third, keys and points that are
identified as those that should be associated with identified
quadrants do not need to be sorted any more in the subsequent
levels. The last two points have been quantified in Section 4.3.
We are also in the process of combining our application
semantics and Thrust sorting code to develop a tailored sort
primitive implementation to further improve the overall efficacy.
This is important as the sort costs are more than half of the end-
to-end computing costs in generating point quadrants (see details
in Section 4.3).

(6) Remove_if. Remove_if marks elements in a vector that satisfy
a predicate and compact the unmarked elements to the beginning
of the vector so that the marked elements are removed. For
example, Remove_if ([1, 4, 2, 8, 5, 7,is_even])�[1,5,7].
Remove_if is functionally equivalent to Copy_if but it allows in-
place operation in the Thrust library. In contrast, using Copy_if
would require a temporary vector and Remove_if is more
convenient in this case.

(7) Unique. Unique moves unique elements to the front of a
range for each group of consecutive elements. For example,
unique([1, 3, 3, 3, 2, 2, 1])�[1,3,2,1]. Unique needs to work
with sort to obtain globally unique elements.

(8) Binary Search and lower_bound. Binary Search searches for
values in sorted ranges and needs to work with sort for correct
searching. When Binary Search tells whether the searching
elements are in the vector being searched, lower_bound tells the
position of the searched element. Thrust has provided a
vertorized form of both Binary Search and lower_bound. There
is a shuttle implementation issue that requires using Binary
Search and lower_bound together. For example, assuming
A=[0,2,5,7,8] and B=[0,1,2,3,8,9], when searching all elements
of B in A, conceptually the results should be [0,-1,1,-1,4,-1]
where -1 indicates not found. However, lower_bound
(A,B)�[0,1,1,2,4,5] where the numbers indicate the index of
first position where the search value could be inserted without
violating the ordering. The numbers are the same as the
matching positions of elements if there are matches but
meaningless if the searching elements are not in the vector being
searched. Fortunately, binary_search(A,B)�[T,F,T,F,T,F]
which serves the exact purpose. As such, Binary Search and
lower_bound need to be used together.

