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Abstract— We have developed a semi-automatic method for

multi-modality image segmentation aimed at reducing the

manual process time via machine learning while preserving

human guidance. Rather than reliance on heuristics, human

oversight and expert training from images is incorporated into

logistic regression models. The latter serve to estimate the prob-

ability of tissue class assignment for each voxel as well as the

probability of tissue boundary occurring between neighboring

voxels given the multi-modal image intensities. The regression

models provide parameters for a Conditional Random Field

(CRF) framework that defines an energy function with the

regional and boundary probabilistic terms. Using this CRF,

a max-flow/min-cut algorithm is used to segment other slices

in the 3D image set automatically with options of addition user

input. We apply this approach to segment visible tumors in

multi-modal medical volumetric images.

I. INTRODUCTION

A key requirement in high-precision radiotherapy is the
accurate spatial delineation of the tumor and the critical
normal organs abutting it. For this purpose, it is crucial to
use images from multiple modalities. Computed tomography
(CT) images provide high resolution images of both soft
tissues and bony structures. Relative to CT, magnetic reso-
nance imaging (MRI) provides improved soft tissue contrast
in many anatomical sites. Positron emission tomography
(PET) reveals functional data, though with much poorer
resolution than CT or MRI. Figure 1(a) shows images from
these modalities for the same patient. The complementary
information provided by these images is heavily relied upon
by the radiation oncologists in defining the tumor volume
and designing an optimized treatment plan.

However, there are challenges in how to combine these
images in treatment planning. For example, it is well known
that large variability exists in target-delineation by different
doctors using a single modality image [4]. In addition, it
has been reported [22] that significantly different tumor
volumes can be delineated by the same observer on images
from different modalities. Given the above, it would be
desirable to develop a computer-aided multiple modality
image segmentation tool that incorporates both expert-user-
input and machine-learning capabilities. We hypothesize that
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Fig. 1. (a) An image slice from co-registration of 3 modalities: CT,
MRI and PET, showing greatly different image characteristics. CT virtually
provides no distinguishable information on the tumor. The red contour was
manually drawn by an expert on MRI only. The green contour was manually
drawn by an expert on PET only. The blue contour was drawn by an export
probably referring to both MRI and PET. The variation of the tumor contours
is considerable. (b) Our method obtained training on one of the image slice
in the same volume with all 3 modalities(left). The trained models were
used to segment the same image slice shown on row (a). The resulting
segmentation is the yellow contour on MRI and PET to show how our
method utilizes information across the modalities by learning from the user’s
inputs.

such an approach will reduce both inter-modality and inter-
observer variability.

We have developed a semi-automatic statistical framework
for multi-modality image segmentation. Our work is based
on Conditional Random Fields (CRF) [14] and energy min-
imization with a max flow/min cut algorithm. We define
purely probabilistic regional and boundary terms in an energy
function. The terms are based on logistic regression models
statistically estimated. The parameters of the models are
learned online from a training multi-modal image with the
inputs of the expert user. The other image slices in the same
data set then are segmented using the same parameters of
the CRF framework without the need of user interactions on
every image slice. Optional user input on further slices allows
for correction of the segmentation as well as refinement of
the CRF framework parameters. An overview of our seg-
mentation method is shown in Figure 2. The novelty of the
present work is exploring the use of CRF in simultaneously
segmenting images from multi-modalities, and the use of
regression models, trained with human supervision, for both
the regional and boundary properties in context of tumor
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Fig. 2. The overview of the segmentation work flow. In a training phase,
brush strokes are drawn on a training multi-modal image slice (Image 1).
Parameters of the logistic regression model for the regions are calculated
and basic graph cut method with contrast based boundary energy term
is used to get a segmentation. Additional brush strokes are optional for
correction to re-estimate the parameters and obtain new segmentation. Once
the segmentation on the training image is accepted, the parameters of the
logistic regression model for the boundary are estimated from the accepted
segmentation. Both regional and boundary regression models are used in
our energy function defined in CRF to segment the other images. Further
training can be added at any point later to improve the segmentation.

image-segmentation.

A. Previous work
Active contour and level-set methods [10][15][20] are

commonly available in tools for medical image segmentation.
These methods evolve an initial contour iteratively with a
speed function usually defined from gradient based edge
features which attract the contour toward the boundary or
with an external force constraint that maintains the regional
homogeneities inside the contour [16]. Due to the shape of
the target anatomical structure, the parameters controlling
how the contour evolves need to be manually adjusted and
usually are not intuitive to medical specialists. State-of-
art commercial software, such as Smart Segmentation [9]
from Varian (Palo Alto, CA) and Smart Probabilistic Image
Contouring Engine (SPICE) [17] from Philips (Eindhoven,
Netherlands), now employs deformable models and/or atlas-
based methods for automatic segmentation. Recent stud-
ies [6][9][21], however, reported that reliability of advanced
model-based methods is generally still inferior to interactive
methods due to the large variation of the shapes in some
anatomical structures. Furthermore, these methods are de-
signed to work with normal organs, thus may not suitable
for tumor segmentation since representing irregularly shaped
tumors with a mutual shape model or an atlas is improbable.

Markov Random Fields (MRF) with graph cut based en-
ergy minimization, originally for binary image denoising [5],
was extended for image segmentation [2][13][11][18] to in-
clude a contrast based boundary term in the energy function.
The contrast based boundary term, like other boundary based
methods such as level set, usually results in a segmentation
that favors strong edges in the images. For medical images,
however, the target structure often may not have a strong

boundary due to the tissue type or due to the nature of image
modalities, such as PET.

We have previously [7][8] introduced a simple non-
parametric histogram-based boundary model trained from
an accepted segmentation. With single image modality, the
model showed superior segmentations for normal organs than
segmentations using contrast based boundary models. By
extending this work, we have developed a framework for
multi-modality images to utilize information from different
image modalities. Histogram based models, however, are
too expensive in multi-dimensions when the number of the
modalities grows. We choose logistic regression models for
both regional and boundary image features to get segmenta-
tions closer to what physicians may draw in the application
of tumor segmentation. There are prior approaches [3][19]
that learn a segmentation from a training image and applies
the trained models to segment the other related images In
contrast, our approach integrates the option of user inter-
action for training and correction within single work flow.
In addition we use purely statistical regional and boundary
energy terms in the random field framework.

II. METHODS

A. Conditional Random Fields
Let G = (V,E) be the graph representing an image with

N voxels or nodes indexed by i, where V = {i|1  i  N},
E = {{i, j}|i 2 V, j 2 Ni} and Ni are neighbors of
voxel i in a neighborhood system such as 4-connected or 8-
connected system in 2D. We treat the segmentation problem
as a classification problem in a stochastic process, that is,
assigning a class label for each node in the graph based
on the observed image features. Let X = (Xi)i2V be the
multivariate random variable of such assignments. x is an
assignment instance and xi is the class assignment for node
i. Let Y = (Yi)i2V be the multivariate random variable
of images and yi be the extracted image feature vector at
node i. For example, yi = (CTi,MRIi, PETi) is the image
intensity of CT, MRI and PET at voxel i. The segmentation
problem can be simply described as finding an assignment
x such that the conditional probability P (X = x|Y = y)

or P (x|y) is maximum, that is, obtaining a Maximum-A-
Posteriori (MAP) estimate of x.

A CRF obeys the Markov property as does MRF. By
definition, the factorization of the conditional probability
characterized by a Gibbs distribution has the form

P (x|y) / exp

X

i

[ri(xi, y) + �

X

j2Ni

uij(xi, xj , y)] (1)

For image segmentation, ri represents a regional term that
describes the relationship between the image y and label
assignment xi. uij represents a boundary term that describes
the relationship between the image y and label assignments
for the pair of neighboring xi and xj . � is a constant weight
to penalize discontinuity. It should be pointed out that global
y is in both ri and uij . That is, CRF allows the use of not
only the image feature limited at pixel i but also, without
breaking the MAP inference of random fields, more remote
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image features such as contextual local pattern [3] and image
patches [19]. In this work, we simply used the observed
image intensity values from multiple modalities.

B. Logistic regression models

To keep the CRF framework purely statistical without
restrictive assumptions, a probabilistic function is a sensible
choice for both regional and boundary terms. We define

ri(xi, y) = � ln p(xi|yi) (2)

and

uij(xi, xj , y) =

(
0, if xi = xj

� ln p(xi 6= xj |yi, yj), if xi 6= xj
(3)

To estimate the probabilities, we assume a logistic regres-
sion model of probabilities. Let � = (�0,�1, ...,�K) , where
K is number of modalities, be the model parameters for the
regional term and y

0
i = (1, yi). Thus the probability that pixel

i is target class is :

pi = p(xi = 0|yi) =
1

1 + exp (�� · y0i)
, (4)

and the probability for non-target class p(xi = 1|yi) is
simply:

p(xi = 1|yi) = 1� pi. (5)

As for the boundary term, we define a new feature vector
zij = (zij1, zij2, ..., zijK), j 2 Ni, where zijk = |yik�yjk|.
Let the model parameters be � = (�0, �1, ..., �K) and z

0
ij =

(1, zij) then the probability that there is a boundary between
neighboring pixel i and j is:

pij = p(xi 6=xj |yi, yj) =
1

1 + exp (�� · z0ij)
, (6)

C. Training

Instead of building a training database, we collect samples
on-line for both regional and boundary logistic regression
models on a training image slice. To incorporate human
guidance interactively, we use a similar approach as Boykov
et al. [1][2] that enables the user to use paint brushes to
identify locations of target and background regions. The
brush strokes provide a collection of target and non-target
samples for training of the regional model. The segmentation
on the first training image is done using a traditional contrast
based boundary term. The user can apply additional brush
strokes for correction of the segmentation. Once the user
accepts the segmentation on the training image slice, the set
of pairs of neighboring pixels straddling the boundary of
the accepted segmentation provides the samples for bound-
ary training. Pairs of neighboring pixels randomly selected
outside and inside the accepted segmentation serve as non-
boundary samples. To estimate the parameters of logistic
regression models we use stochastic gradient descent. The
trained regional and boundary models are used to segment
other image slices in the same data set.

III. EXPERIMENTS

A. Tumor segmentation

We randomly selected 3 clinical head-and-neck patient
cases consisting of image studies in all 3 image modalities:
CT, MRI and PET, from the patient archive in the Depart-
ment of Radiation Oncology at MSKCC (Memorial Sloan-
Kettering Cancer Center, New York, USA) These image
studies were acquired at different times for different purposes
such that the patient geometry may be significantly different
between images. For example, the patient head in each image
modality may have a different inclination. In each case, the
3 image modalities were manually registered using in-house
rigid registration software. Since the tumor is relatively small
and the slice spacing is 4mm to 5mm, we used small regions
of interest (ROIs) for registrations in order to obtain accurate
registrations around the tumor locations. The ROIs contain
6-8 image slices per case. After registration, MRI and PET
were re-sampled under the same image space of CT. The
dimension of each image slice is 512x512. For comparison,
we use Seg3D, a volume segmentation and processing tool
developed by the NIH Center for Integrative Biomedical
Computing (CIBC) at University of Utah (Salt Lake City,
UT), which implemented the level set segmentation using
Insight toolkit(ITK.) The level set method works for single
modality only and we chose MRI. The number of iterations
is set to 200 and all other parameters for the level set method
are set to default.
� in Eq 1 is 2 for all the cases in our method. Figure 3

shows the results of tumor segmentation from our multi-
modality method (in yellow) compared to the manual con-
tours (in red) and level set segmentations (in cyan.) Man-
ual contours drawn by physicians served as the reference.
Physicians also make use of their professional knowledge
of tumors which cannot be learned merely from the images
alone. Inter-observer variation should also be noted but the
manual contours still represent an acceptable ground truth.
An alternative brush stroke set #2, shown in Figure 4, was
used for comparison of results using different brush strokes.

In this study, tumors are virtually indistinguishable from
the normal tissue on CT. On the other hand, PET has
more discriminating information for determining the tumor
segmentation. Our model parameters, obtained from the
training image in Figure 3(a), reflect such observations. For
example, the parameters of regional model in Case 1 using
brush stroke set #1 are (-0.549, 1.516, 8.495) for CT, MRI
and PET respectively and the boundary model parameters are
(-1.092, 1.759, 3.082). PET, however, has no clear boundary
and the segmentations from our method utilized MRI for
the boundary as shown in Figure 3. This study demonstrates
that our method captures the available information across
modalities and how the probabilistic boundary term helps in
these cases.

We use the Dice coefficient to measure the similarity
between segmentations. On average, using manual contours
as the reference, our method using brush stroke sets #1 and
#2 achieve 0.751 and 0.768 respectively while Seg3D level
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Fig. 3. Multi-modality tumor segmentations of 3 cases. For each case, 1st column is CT, 2nd column is MRI and 3rd column is PET. The 3 modalities are
co-registered in each case. Row (a) shows the training images for each case in which the user drew brush strokes and accepted the segmentations (white
contours) to train our method. Row (b) and (c) show two other image slices of the same image set in each case for comparison. Red contours are manual
contours drawn by physicians, yellow contours are segmentations from our method and cyan contours are segmentations from the Seg3D level set method.
On these images, our segmentations were done automatically without additional brush strokes. Probabilistic regional and boundary terms are estimated
from logistic regression models trained from row (a). Our method utilizes all information across all modalities for the segmentation. For example, in case
1 row (c), the boundary of our segmentation follows the boundary of PET on the lower side but also the boundary of MRI on the upper side.

case 1 2 3 Average
with brush stroke set #1 0.810 0.735 0.708 0.751
with brush stroke set #2 0.815 0.773 0.716 0.768
Seg3D 0.740 0.772 0.577 0.696

TABLE I
DICE COEFFICIENT RESULTS.

Fig. 4. For comparing the results of using different brush strokes in our
method, an alternative brush stroke set (#2) is shown here on the training
MRI images of the 3 testing cases.

set is 0.696. The results for each case are shown in Table I.

IV. CONCLUSIONS AND FUTURE WORKS

We have explored multi-modality medical image segmen-
tation using CRF. In the energy function, we have introduced
purely probabilistic regional and boundary terms that are
estimated from logistic regression models. The models are
directly trained from expert user inputs without ad-hoc
assumptions that favor strong edges. We showed that tumor
segmentations from our method on multi-modality images

are more similar to physicians’ manual segmentations, com-
pared to other semi-automatic techniques such as level set.

Future work will study the following using the same
purposed framework:

• Because CRF relaxes strong independence assumptions
and retains the MAP inference, we will investigate using
contextual regional properties such as texture or patch
profile in the energy function.

• Logistic regression models are good for binary clas-
sification. For multi-class segmentation, for example,
multiple normal organs on multi-modality images, we
may use other discriminative models or non-parametric
methods such as k-NN.

• We will continue to explore applications in other do-
mains such as color video segmentation and time series
of multi-spectrum remote sensing images.
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