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Abstract. The performances of many image analysis tasks depend on
the image resolution at which they are applied. Traditionally, resolution
selection methods rely on spatial derivatives of image intensities. Differ-
ential measurements, however, are sensitive to noise and are local. They
cannot characterize patterns, such as textures, which are defined over
extensive image regions. In this work, we present a novel tool for resolu-
tion selection that considers sufficiently large image regions and is robust
to noise. It is based on the generalized entropies of the histograms of an
image at multiple resolutions. We first examine, in general, the variation
of histogram entropies with image resolution. Then, we examine the sen-
sitivity of this variation for shapes and textures in an image. Finally, we
discuss the significance of resolutions of maximum histogram entropy. It
is shown that computing features at these resolutions increases the dis-
criminability between images. It is also shown that maximum histogram
entropy values can be used to improve optical flow estimates for block
based algorithms in image sequences with a changing zoom factor.

1 Introduction

The performances of many image analysis and interpretation algorithms depend
on the image resolution at which they are applied. Therefore, the selection of the
appropriate resolution is a critical preprocessing step. In this work we suggest
the use of the generalized entropies of multiresolution histograms of an image
for resolution selection. We first compute the multiresolution of an image, where
resolution decreases with the standard deviation σ of a Gaussian filter [1,2].
Then, we transform the images of the various resolutions into their histograms.
Finally, we compute the Tsallis generalized entropies of the histograms [3] for
certain orders q. We call the plot of the Tsallis histogram entropy of order q as
a function of image resolution σ the entropy–resolution plot of order q.

Histogram entropies have several properties which enable their use for reso-
lution selection. One such property is that their values are directly related to the
significance of a resolution. A high resolution busy image with many high count
histogram bins has large histogram entropy. In the limit of low resolution, an im-
age has uniform intensities, such as that shown in figure 1(g), and zero histogram
entropy. Moreover, histogram entropies are inherently non–monotonic with res-
olution with one or more maxima. The local maxima correspond to significant
resolutions.
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Generalized histogram entropies are defined over the whole image. This is
desirable when the detection of significant resolutions of an image requires the
consideration of a certain image extend. This is obviously the case for textures
which are commonly defined over extensive parts of images. Generalized his-
togram entropies can also detect multiple significant resolutions; for example,
for textures with two levels of texel aggregation. Finally, they are robust to
noise.

We first examine the entropy–resolution plots of images containing shapes
and the sensitivity of these plots to the shape boundary. We then relate the
entropy–resolution plots of shapes to those of textures. We also discuss the de-
pendence of the entropy–resolution plots on their order q.

It is shown that computing image features at the resolution of maximum
histogram entropy increases the discriminability between images. It is also shown
that the maximum entropy values can be used to improve the performance of
block based optical flow estimation for image sequences with a changing zoom
factor.

2 Previous Work

The need for resolution selection was first realized, and exclusively used, in
the context of edge detection. For example, Marr and Hildreth used multiple
image resolutions to detect an arbitrary edge [4]. Later, several authors suggested
the selection of image resolutions using the derivatives of pixels normalized by
resolution [5,6]. To reduce noise, Lindeberg retained edges only if they fell along
chains of connected pixels [6]. Elder and Zucker [7], as well as Marimont and
Rubner [8], computed the edge magnitude at a number of resolutions and selected
the lowest resolution that exceeded the sensor noise. Jeong and Kim [9] used pixel
differential measurements to formulate a global regularizing function to select
resolution.

Pixel differential measurements have more recently been used to select res-
olutions in problems other than edge detection. Lindeberg has used them to
determine the characteristic length of objects [6], and to track features in an
image sequence [10]. Another application has been to select resolutions that
are appropriate to compute image features [11,12]. Finally, they have been used
directly in image indexing systems [13,14].

It is not obvious, however, that differential measurements are the most ap-
propriate technique for general resolution selection problems. Differential mea-
surements have several limitations. In general, they are monotonically decreasing
with image resolution. They can only be made non–monotonic by using normal-
ized differential expressions. Both the expression and its normalization, however,
are selected heuristically.

Pixel differential measurements are very sensitive to noise and are local.
They cannot characterize textures, for example, which can cover extensive parts
of an image. For large shapes, resolution selection requires two steps. First, the



222 E. Hadjidemetriou, M.D. Grossberg, and S.K. Nayar

detection of the boundary pixels, and then the connection of the boundary pixels.
Finally, differential measurements give only one significant resolution [6,7,8].

To alleviate these problems several researchers have suggested resolution se-
lection using image entropy, which is a global image function. Further, image
entropy is not dependent upon edge measurements, and is robust to noise [15,
16,17]. Sporring and Weickert [17] have considered resolutions as significant if
they correspond to local maxima of the rate of entropy increase. Jagersand com-
puted the characteristic length of objects based on resolutions which correspond
to a local maximum of the rate of increase of mutual image entropy [15].

It has been shown, however, that image entropy is monotonic with resolution
[18,19]. Similarly, image mutual entropy and generalized entropies are monotonic
with resolution [18,20]. Moreover, the rates of change of both image entropy and
mutual entropy with resolution have also been shown to be monotonic [21,22].
The monotonicity of image entropies limits their ability to select resolutions.
Hence, in this work we use exclusively histogram entropies, which are inherently
non–monotonic with resolution. They are also based on extensive image regions,
they are robust to noise, and can detect multiple significant resolutions.

A similar application of entropies of histograms has been as an auto–focus
criterion in the problem of depth from defocus [23], where it has been assumed
that the histogram entropy is a monotonic function of focus. Another similar
technique has been to compute the change of histogram entropy over an image,
of a specific resolution, by varying the extend of the image region considered [24,
25,26]. This technique has been used for image segmentation.

In an early work Wong and Vogel [27] computed the Shannon entropy of
histograms at multiple image resolutions for 2–3 images. Moreover, Roldan et al
[28] derived some mathematical results about the Shannon histogram entropy of
a critically subsampled pyramid constructed with a box filter. They showed that
the histogram entropy normalized by the pyramid level is monotonically decreas-
ing [28]. They also showed that an image in the form of a Gibbs distribution has
maximum entropy at all pyramid levels [28].

3 Tsallis Entropies of Histograms

The Shannon entropy measures the average information of all the densities in
the histogram. In some cases, however, it is desirable to use an information mea-
sure whose value is influenced selectively by some of the intensities. For example,
ignore high bin count intensities of a uniform background, or increase sensitivity
to high bin count significant intensities. To achieve this we use nonlinear general-
ized entropies. We choose the Tsallis generalized entropies because they simplify
the analytical part of this work.

The Tsallis generalized entropy of order q over histogram h with unit L1
norm is given by [3,29]:

Sq(h) =
m−1
∑

j=0

hj − hq
j

q − 1
(1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. The image in (a) is binary. Filtering the image in (a) moderately gives the
image in (c). Filtering the image in (a) significantly gives the image in (e). Eventually
filtering the image in (a) gives the image in (g) of uniform intensity equal to the average
intensity of the image in (a). Next to each image is its histogram.

where m is the number of intensity levels, and hj is the histogram density of
intensity j. In the limit q → 1 the Tsallis generalized entropies reduce to the
Shannon entropy.

The minimum value of all Tsallis entropies is zero and occurs for histograms
with non–zero count in a single intensity bin. That is, for uniform intensity
images such as that shown in figure 1 (g). All Tsallis entropies obtain their
maximum value for histograms where all intensities are equally frequent.

The sensitivity of the entropies for histograms which do not have minimum
or maximum entropy values depend not only on the histogram, but also on the
order q of the entropy. The order q appears as exponent in the numerator of the
entropy expression given in equation (1). Hence, the entropies of q < 1 have a
large value for histograms with many low bin count intensities and a low value
for histograms with many high bin count intensities [3,20]. Conversely, entropies
of q ≥ 1 have a large value for histograms with many frequent intensities and a
small value for histograms with many low bin count intensities [3,20].

An illustrative example are histograms which consist of a central main lobe
together with sidelobes. In histograms with a narrow central main lobe and
wide sidelobes the side lobes contribute many low bin count intensities. Thus,
entropies with q < 1 have a large value. As the width of the main lobe increases,
the number of frequent intensities increases with it. Consequently, the orders q
of the entropies which attain large values also increase. For very large values of q
large entropy values are attained only for extreme histograms with a very wide
main lobe. All other histograms have a small entropy values. Similarly, for very
small value of q large entropy values are attained only for extreme histograms
with a very narrow main lobe. Again, all other histograms have a small entropy
values. Therefore, in this work, we examine entropies in a range of q close to
unity, −0.5 ≤ q ≤ 2.5.

The number of independent generalized entropies of the histogram of a dis-
crete image is finite. It is shown in appendix A.1 that this number can be as large
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as the number of image pixels. In this work, we only use five different histogram
entropies of orders q = (−0.5, 0.2, 1.0, 1.3, 2.3).

4 Entropy–Resolution Plots of Shapes

A binary image of a shape has a histogram which consists of two impulses like
those shown in figure 1 (b). Filtering the image with a Gaussian changes the
binary image into grayscale by smoothing the intensity step along the shape
boundary. In the histogram, Gaussian image filtering changes the impulses into
wider distributions with long sidelobes like those shown in figure 1 (d). Each
impulse in the histogram of the original binary image gives rise to a different
distribution in the histogram. The low bin count intensities between the initial
impulses correspond to the intensities of regions of steep intensity changes at
the border between the shape and the background. This is particularly true for
images whose initial histograms consist of distant impulses such as binary and
halftone images.

When an image is filtered extensively the widths of the distributions in the
histogram increase. Further, the peaks of the distributions move towards the
mean image intensity. At some resolution the border between the shape and the
background disappears and the two are joined. At that resolution, the individ-
ual distributions in the histogram meet to form a single distribution, like that
shown in figure 1(f). Beyond that resolution the intensities of the image become
uniform, the histogram has a count at a single bin such as that shown in figure 1
(h).

Limited image filtering simply increases the width of the main lobes of the
histogram distributions. Therefore, it increases the order q of the histogram
entropies which attain large values. Filtering, eventually, contracts the histogram
towards the mean intensity and finally turns it into an impulse. Hence, the value
of histogram entropy eventually decreases and finally becomes zero.

The images in figures 2 (a) and (g) have the same histogram. Some entropy–
resolution plots of the two images are shown next to them in order of increasing q.
The plots verify that the resolution of maximum entropy increases as a function
of q. Note that the maxima of the entropy–resolution plots for which q ≥ 1 occur
at resolutions beyond those shown in the entropy–resolution plots of figure 2.

The resolutions at which the entropy–resolution plots attain large values also
depend on the boundary of the shape in the original image. In appendix A.2 we
examine the rates at which the Tsallis entropies of the histogram of image L
change with Gaussian filtering. We show that they are linearly proportional
to Fisher information measures of m different orders q. The generalized Fisher
information measures Jq(L) are given by [20,21,22]:

Jq(L) =
∫

D

∣

∣

∣

∣

∇L(x)
L(x)

∣

∣

∣

∣

2

Lq(x)d2x. (2)

where L(x) is the intensity value of image pixel x. The Fisher information mea-
sures are nonlinearly weighted averages of pixel sharpness, which is defined as
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Fig. 2. The binary images of two shapes are shown in (a) and (g). Next to each image
is a sequence of entropy–resolution plots of orders q = (−0.5, 0.2, 1.0, 1.3, 2.3) left to
right. The maxima in the entropy–resolution plots with q < 1 of the convoluted shape
in (g) occur at finer resolutions than those of the entropy–resolution plots of the same
orders of the image in (a).

|∇L(x)/L(x)|2 [22]. The generalized Fisher information measures increase non-
linearly as the shapes become more eccentric or convoluted [30].

The maxima of the entropy–resolution plots in figures 2(h) and (i) occur at
finer resolutions than the maxima of the plots in figures 2(b) and (c), respectively.
This is because, compared to the shape in figure 2 (a), the boundary of the shape
in figure 2 (g) is more convoluted with a higher rate of change of histogram
entropy.

In summary, the entropy–resolution plots of binary shapes are initially in-
creasing, they reach a maximum, and eventually decrease to zero. The resolution
at which a plot reaches its maximum depends on its order q and on the boundary
of the shape.

5 Entropy–Resolution Plots of Textures

In this section we consider a simple texture model where the texture is con-
structed by contracting shapes such as those discussed in the previous section
to form texels. Subsequently the texels are tiled r = p2 times to form a regular
p×p texture. To preserve the size of the texture the texels are also contracted by
a uniform transformation A whose determinant is given by detA = 1/r. Since,
(detA)r = 1, textures for all p have the same histogram [31].

In appendix A.2 we show that the rate of change in the entropy–resolution
plots of a shape multiplied by p2 gives the rate of change in the entropy–
resolution plots of of the corresponding regular texture. That is, in going from
a shape to the corresponding regular texture the horizontal resolution coordi-
nate of the entropy–resolution plot is scaled by 1/p. Thus, the resolution of
maximum entropy is scaled by the same factor. As discussed in section 4 the
resolution of maximum entropy for shapes is attained at the resolution at which
the border between the shape and the background disappears. For texture im-
ages, the resolution of maximum entropy corresponds to the resolution at which
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different texels come in contact. Note that the discussion above assumes circular
boundary conditions.
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Fig. 3. The images in (a) and (g) are two synthetic textures. Next to each image is
a sequence of some of its entropy–resolution plots of orders q = (−0.5, 0.2, 1.0, 1.3, 2.3)
left to right. The texture in (a) can be contracted to give part of the texture in (g).
Similarly, the horizontal σ axis of each entropy–resolution plot of the image in (a) can
be contracted to give part of the corresponding entropy–resolution plot of the image
in (g).

The textures shown in figure 3(a) and figure 3(g) are obtained by minifying
the same shape, shown in figure 2(a). The width of the texels in figure 3(g) is
70% of those in figure 3(a). Both textures have the same histogram entropies.
The entropy–resolution plots are shown next to the textures. The horizontal
coordinate σ of the entropy–resolution plots of the image in figure 3(a), shown
in figure 3 (b–f), can indeed be contracted by 0.7 to give part of the entropy–
resolution plots of the image in figure 3(g), shown in figures 3 (h–l). Moreover,
the resolution of maximum entropy of the image in figure 3(a) can be multiplied
by 0.7 to give the resolution of maximum entropy of the image in figure 3(g).

Above we examined texture models and entropy–resolution plots of regular
textures. We now examine entropy–resolution plots of textures with random texel
placement. Randomness monotonically increases image entropies and decreases
the generalized Fisher informations [20], which are linearly related to the rate
at which the histogram entropies change with resolution. Therefore, randomness
in the placement of texels decreases the rate at which the histogram entropies
change [20] and shifts their maxima to lower resolutions.

In figure 4(a) we show a regular texture and in figure 4(c) we show a random
texture. Both textures are synthetic with identical texels and histograms. The
maximum of the entropy–resolution plot of q = 1.3 of the regular texture shown
in figure 4(b) occurs at a lower σ than the maximum of the entropy–resolution
plot of the same order of the random texture in figure 4(d). The random textures
consist of aggregates of texels. The distance between aggregate texels is larger
than the distance between individual texels regularly placed. Thus, the maximum
for randomly placed textures in figure 4 is shifted to a higher σ value.



Resolution Selection Using Generalized Entropies 227

Fig. 4. The textures in (a) and (c) are synthetic with identical texels and histograms.
The texel placement in the texture in (a) is regular, whereas the texel placement in
the texture in (c) is random. Next to each image is its entropy–resolution plot of order
q = 1.3. The maximum in the entropy–resolution plot of the regular texture occurs
at a finer resolution than the maximum in the entropy–resolution plot of the random
texture.

In summary, the resolution of maximum entropy depends on the entropy
order, on the shape of the texels, on the size of the texels, and on the distance
between them. Moreover, it depends on their placement pattern.
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Fig. 5. The images, shown in (a) and (e), have identical foreground but differ in the
area of the background. Next to each image are three of its entropy–resolution plots of
orders q = (−0.5, 1.0, 2.3) left to right. The entropy–resolution plot of order q = −0.5
is not sensitive to a change in the area of the background. The entropy–resolution plots
of order q ≥ 1, however, are significantly affected by the increase in the background
area.

6 Significance of Entropy–Resolution Plots of q ̸= 1

The entropy–resolution plots of order q < 1 are significant in cases where it is
desirable to diminish the effect of the variation of the background. Figures 5
(a) and (e) show two images with identical foregrounds [32], but backgrounds of
different size. In figure 5(a) the background is much smaller than in figure 5(e).
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Fig. 6. In (a), (d), (g), and (j) are 4 images with fine structure. Next to each image
are two of its entropy–resolution plots of orders q = (0.2, 2.3) left to right. The images
in (a) and (d) contain texels of more than one shape and size. The images in (g)
and (j) contain two levels of structure. This is revealed by the two maxima in the
entropy–resolution plots of order q = 2.3.

Some of the entropy–resolution plots are shown next to the images. These plots
show that increasing the area of the background shifts the maxima of all entropy–
resolution plots to higher σ values. This is because the filtering required to reach
equilibrium, that is an image of uniform intensity, is more extensive.

The shift of the entropy–resolution plots of q < 1 is much smaller than that
of the entropy–resolution plots of q ≥ 1. This is because entropies with q < 1
are more sensitive to low bin count intensities and less sensitive to frequent
intensities, which in this case correspond to the background [3]. On the other
hand, entropy–resolution plots of q > 1 are significantly affected by the frequent
image intensities of the background.

The entropy–resolution plots of order q > 1 are significant in cases where
it is desirable to increase sensitivity to high bin count significant intensities
of an image and decrease the sensitivity to low bin count ones. This can be
used to decrease noise sensitivity. Also, in some histograms there are no low bin
count intensities. Instead, all intensities are frequent. In such a case generalized
entropies of q ≤ 1 are not sensitive to histogram changes with image resolution,
and it is necessary to use entropies of order q > 1.

A histogram with many high count bins can arise as a binary image containing
multiple different shapes is filtered. The two impulses in the histogram of such
a binary image meet more than once. In consecutive meetings after the first,
however, the histogram has many high count bins. Therefore, only entropies of
order q > 1 are sensitive to maxima corresponding to consecutive meetings.

In figures 6 (a), (d), (g), and (j) we can see textures that have texels of more
than one shape and size. Next to each image we show 2 of its entropy–resolution
plots of orders q = (0.2, 2.3). Each of the images in figures 6 (a) and (d) has
texels of 2 different sizes. This causes their entropy–resolution plots in figures 6
(c), and (e–f) to have 2 maxima. The image in figure 6 (g) shows a checkerboard
pattern with stripes superimposed upon it. In the entropy–resolution plots in
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figures 6 (h–i) the first maximum corresponds to the size of the stripes. The
second maximum corresponds to the size of the squares.

The image in figure 6 (j) shows a board with electronic components. The
entropy–resolution plot in figure 6(l) has 2 maxima. The first maximum cor-
responds to the size of the components of the board. The second maximum
corresponds to the size of the entire board. As we can see in figure 6, the mul-
tiple maxima in the entropy–resolution plots are more obvious for entropies of
order q > 1. Also, entropy–resolution plots of orders q > 1 are less sensitive to
noise.

In summary, entropy–resolution plots of order q < 1 are useful for shapes
embedded in background, whereas plots of order q > 1 are useful for textures
with multiple significant resolutions.

7 Applications

We demonstrate two different applications of the entropy–resolution plots. We
first show that the resolutions at which the entropy–resolution plots are max-
imized can also maximize the discriminability between images in a database.
We then use the entropy–resolution plot to adapt the block size in block based
optical flow estimation for a zoom–in sequence. We show that motion estimation
is improved.

7.1 Discrimination between Images

The discriminability of an image feature can be improved by appropriately se-
lecting the image resolution at which it is computed. This is particularly true
for image features which are non–monotonic with resolution. We demonstrate
this for two features. The first is a vector which consists of the energy E(C)
and the Shannon entropy S1(C) of the cooccurrence matrix C [33]. The cooc-
currence matrix is computed over a 3 × 3 neighborhood. The energy is given by
E(C) =

∑m−1
i,j=0 c2

ij , where cij is the element of the cooccurrence matrix at the ith

row and jth column. The Shannon entropy is given by S1(C) =
∑m−1

i,j=0 cij log cij .
The second feature are the parameters of a Gauss Markov random field

(GMRF) [34]. This model assumes that the intensity at each pixel is a lin-
ear combination of the intensities in the surrounding 5 × 5 window. Thus, each
pixel gives an equation for 24 unknowns. Over the entire image this leads to an
overconstraint system of linear equations that we solved with least squares.

The discriminability of the feature vectors can be measured using a database
of images consisting of multiple disjoint classes [35]. Consider a database with k
classes of pj images in class j. The discriminability D can be modeled by the ratio
of the between class scatter Vb to the within class scatter Vw, that is D = Vb

Vw
[35].

The within–class scatter is given by: Vw =
∑k

j=1
∑pj

i=1 ∥fi−µj∥2
2, where µj is the

mean of class j. The between–class scatter is given by Vb =
∑k

i=1 pi∥µi −µtot∥2
2,

where µtot is the mean of the entire database. We compute discriminability D
as a function of image resolution σ for 2 databases of images.
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Fig. 7. The images in (a) and (c) show fingerprints of two different persons. The images
in (b) and (d) show the entropy–resolution plots of order q = 1.3 for the fingerprints
in (a) and (c), respectively. The plot in (e) shows the discriminability–resolution plot
of the cooccurrence matrix features for the fingerprint database. The plot in (f) shows
the discriminability–resolution plot of the GMRF features for the fingerprint database.
For both features the resolution of maximum discriminability coincides with that of
the maxima of the entropy–resolution plots.

Fig. 8. The images in (a) and (c) show two textures. The images in (b) and (d),
respectively, show their entropy–resolution plots of order q = 1.3. The plot in (e)
shows the discriminability–resolution plot of the cooccurrence matrix features for the
texture database. The plot in (f) shows the discriminability–resolution plot of the
GMRF features for the texture database. For both features the resolutions of maximum
discriminability is approximately the same as the resolutions of the maxima of the
entropy–resolution plots.

The first database consists of images of fingerprints of 4 different persons
[36]. The fingerprints of each person form a different class. Thus, there are k = 4
different classes. Each class consists of 8 images of fingerprints from different fin-
gers of the same person. The intensity resolution of all images is 8 bits and their
size is 364× 256 pixels. Figures 7(a) and (c) show two images from two different
classes. Next to each image, in figures 7(b) and (d), respectively, is its entropy–
resolution plot of order q = 1.3. The order of the entropy–resolution plots is
chosen to be greater than one since the structure of the images is fine. Note that
the resolution at which the entropy is maximum is the effective distance between
the ridges of the fingerprints.

The plot in figure 7(e) shows the discriminability of the cooccurrence matrix
features between the fingerprint classes as a function of resolution, namely, the
discrimination–resolution plot. The plot in figure 7(f) shows the discrimination–
resolution plot for the GMRF features. The range of the horizontal coordinate
σ of all plots in figure 7 is the same. The discriminability in figures 7(e–f) is
maximum at the resolution at which the entropy–resolution plots are maximized.
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The second database consists of natural textures. It is a subset of the CUReT
database [37]. It consists of images from k = 61 classes of textures. Each class
consists of 5 instances of a physical texture. The 5 instances differ in the illumi-
nation and viewing directions. To account for these differences all images were
histogram equalized. In total there are 305 images. The intensity resolution of
all images is 8 bits and their size is 100 × 100 pixels.

In figure 8(a) and (c) we see images of two different textures from the
database. Next to each image, in figures 8(b) and (d), respectively, is its entropy–
resolution plot of order q = 1.3. The plot in figure 8(e) shows the discrimination–
resolution plot of the cooccurrence matrix features. The plot in figure 8(f) shows
the discrimination–resolution plot of the GMRF features. The range of the hor-
izontal coordinate σ of all the plots in figure 8 is identical. The discriminability
in figures 8(e–f) is maximized at approximately the resolution at which the
entropy–resolution plots of the images achieve their maxima.

The plot in figure 8(e) has two maxima. This is because the images in the
texture database have different resolutions of maximum histogram entropy. The
peak at the finer resolution is higher because most textures are fine. Note that
the discriminability in the plots in figures 7 (e–f) and figure 8(e) increases for
large σ. This is because at those resolutions all images in a class have uniform
intensity and are similar. Thus, the between–class scatter becomes very small.

7.2 Optical Flow Estimation

In optical flow estimation using block matching a very important parameter is
the block size. Clearly, the appropriate block length b must be related to the size
of the objects or the coarseness of the textures in an image sequence. Thus, for
a zoom–in sequence the block size should vary.

We adapt the block size in a zoom–in sequence using the entropy–resolution
plots of order q = 0.2. The order of the entropy–resolution plots used is less
than one since the sequence zooms into the central part of the image which is
surrounded by background. We use the maximum value of the entropy, Smax

0.2 ,
which corresponds to the dominant image structure. The length of the block
bi used for the ith image is given by the block length used for image (i − 1)
multiplied by the factor by which the maximum entropy changes. That is, bi =
bi−1(Si,max

0.2 /Si−1,max
0.2 ).

Figures 9(a) and (d) show 2 frames from two different synthetic zoom–in
sequences where the optical axis coincides with the geometric center of the image.
The size of the images is 281 × 224 pixels and 301 × 200 pixels, respectively. In
each image in figures 9(b) and (e) we can see superimposed the vector field
estimated from the zoom–in sequence. In figure 9(c) and (f) we plot the motion
estimation error as a function of the block length. For the adaptive algorithm
the horizontal axis is the block length used for the first image in the sequence.
The error measure is proportional to the negative of the cosine of the angle by
which the motion vectors deviate from the correct motion direction.

The dotted lines in the plots in figures 9(c) and (f) show the motion esti-
mation error for constant block size. The solid lines show the motion estimation
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Fig. 9. The images in (a) and (d) are from 2 different zoom–in sequences. The images
in (b) and (e) show images of the zoom–in sequences with motion vectors superimposed
upon them. The plots in (c) and (f) are the motion estimation error as a function of
the block size. The error of the constant block size algorithm is the dotted line and
the error of the adaptive block size algorithm is the solid line. For both sequences
the minimum error of the adaptively selected block size algorithm is smaller than the
minimum error of the constant block size algorithm.

error for adaptively selected block size. In both plots the minimum error of the
adaptively selected block size method is smaller than the minimum error of the
fixed block size method.

8 Summary

We have suggested and examined the use of multiresolution histogram entropies
for resolution selection. Multiresolution histogram entropies are appropriate for
this objective because they are non–monotonic with resolution and robust to
noise. Moreover, they represent sufficiently large image regions, and can detect
multiple significant resolutions.

We examined the plot of the Tsallis entropy of order q of the histogram as
a function of Gaussian image resolution, namely, the entropy–resolution plot of
order q. We examined the entropy–resolution plots of images of shapes, regular
textures, and random textures. Moreover, we discussed the fact that for q < 1 the
entropy–resolution plots emphasize the foreground and for q > 1 the entropy–
resolution plots are more sensitive to multiple significant resolutions.
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We showed that the discriminability between images is larger at the resolu-
tion at which the histogram entropies are maximized. We also showed that the
entropy–resolution plots can be used to adapt the block size in an optical flow
algorithm and improve its performance.

A Appendix

A.1 Number of Independent Histogram Entropies

Property: The number of independent entropies of the histogram of an image
can be at most equal to the number of the pixels in the image.
Proof: The histogram can be considered to be a distribution. It has been shown
that the entropies of a distribution can be transformed into the histogram of the
distribution [26]. Therefore, the entropies of the histogram can be transformed
into the histogram of the histogram. The dimensionality of the histogram of the
histogram can be as large as the number of image pixels. Therefore, the number
of independent histogram entropies can be at most equal to the number of image
pixels. ✷

A.2 Histograms Entropies and Fisher Information Measures

Lemma: The rate of change of the histogram with respect to Gaussian image
filtering is linearly proportional to m different generalized Fisher information
measures of the image.
Proof: The histogram h is equivalent to any complete set of Lyapunov exponents
[17,26]. In particular, a histogram of m graylevels can be transformed linearly to
a vector of m distinct Tsallis entropies. The transformation is given by S(L) =
R h, where R is an m × m matrix. Appropriate selection of the entropy orders
makes R invertible [17]. Therefore, we have h = R−1S(L) = T S(L), where T is
also an m × m matrix.

The rate at which the histogram changes with respect to image resolution is
given by dh

dσ = T dS(L)
dσ . In turn, the rate at which the Tsallis entropies of the

image change with respect to Gaussian filtering is proportional to the generalized
Fisher information measures of the same order Jq given by equation (2) [20,21,
22]. Therefore, we obtain dh

dσ = T J(L), where J(L) = (J1(L) J2(L) . . . Jm(L))T.
In particular, for histogram density of intensity j we have dhj

dσ =
∑m−1

l=0 tjlJl(L),
where tjl are elements of matrix T . ✷

Property: The rate of change of Tsallis entropies of the histogram, Sq(h), with
respect to Gaussian filtering of the image is linearly proportional to generalized
Fisher information measures of the image of m different orders q.
Proof: The rate of change of the Tsallis entropies of the histogram with respect
to image resolution, σ, is obtained by differentiating equation (1) with respect to
σ to obtain dSq(h)

dσ = 1
q−1

∑m−1
j=0

(

(1 − qhq−1
j )dhj

dσ

)

. By substituting the lemma

above in this relation we obtain: dSq(h)
dσ = 1

q−1
∑m−1

j,l=0

(

(1 − qhq−1
j )tjlJl(L)

)

. ✷
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A.3 Effect of Texel Repetition on the Rate of Change of the
Generalized Entropies of the Histogram

Lemma 1: Consider regular textures constructed from shapes as described in
section 5. The relation between the generalized Fisher information of a shape,
Jq(Ls), to that of the corresponding regular p × p texture, Jq(Lt), is: Jq(Lt) =
p2Jq(Ls).
The proof of Lemma 1 is given by Hadjidemetriou et al [30].
Property: The rate of change of the entropy of the histogram of the texture is
p2 times the rate of change of the entropy of the histogram of the shape.
Proof: The property derived in appendix A.2 for textures becomes dSq(ht)

dσ =
1

q−1
∑m−1

j,l=0

(

(1 − qhq−1
j )tjlJl(Lt)

)

. The corresponding relation holds for shapes
dSq(ht)

dσ . Substituting Jq(Lt) = p2Jq(Ls) in the relation for textures we obtain
dSq(ht)

dσ = p2 dSq(hs)
dσ .✷
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