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Quantitative Restoration for MODIS Band 6 on Aqua

Irina Gladkova, Michael D. Grossberg, Fazlul Shahriar, George Bonev, and Peter Romanov

Abstract—Due to the harsh conditions of space, the detectors
within satellite-based multispectral imagers are always at risk
of damage or failure. In particular, 15 out of the 20 detectors
that produce the 1.6-pm band 6 of Moderate Resolution Imag-
ing Spectroradiometer (MODIS) on Aqua are either dead or
noisy. In this paper, we describe a quantitative image restoration
(QIR) algorithm that is able to accurately estimate and restore
the data lost due to multiple-detector failure. The small number
of functioning detectors is used to train a restoration function
that is based on a multivariate regression using the information
in a spatial-spectral window around each restored pixel. The
information from other spectral bands allows QIR to perform
well even when standard image interpolation breaks down due
to large contiguous sections of the image being missing, as is the
case for MODIS band 6 on Aqua. We present a comprehensive
evaluation of the QIR algorithm by simulating the Aqua damage
using the working 1.6-um band of MODIS on Terra and then
comparing the QIR restoration to the original (unbroken) Terra
image. We also compare our results with other researchers’ prior
work that has been based on the assumption that band 6 could be
approximated well solely as a function of the related band 7. We
present empirical evidence that there is information in the other
500- and 250-m bands, excluding bands 6 and 7, that can inform
the estimation of missing band 6 data. We demonstrate superior
performance of QIR over previous algorithms as reflected by a
reduced root-mean-square-error evaluation. The QIR algorithm
may also be adapted to other cases and provides a powerful and
general algorithm to mitigate the risks of detector damage in
multispectral remote sensing.

Index Terms—Aqua, band 6, Moderate Resolution Imaging
Spectroradiometer (MODIS), restoration, stripping.

I. INTRODUCTION

EW understanding of the Earth’s environment is increas-
Ningly dependent on multispectral satellite imager data.
Potential system failures in an imager may result in the loss
of these precious data. Typically, an imager collects the data
via many sensitive detectors. The launch processes, deployment
into the harsh environment of space, particle bombardment,
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and exposure to radiation and space dust can result in detector
damage at any point in an imager’s life cycle.

When a damaged detector produces noisy or distorted data
in a scanning imager such as Moderate Resolution Imaging
Spectroradiometer (MODIS), it results in periodic stripes. This
is because, during every scan, the set of detectors produces a
group of scanlines in the image. A single detector produces a
single scanline, and as the groups of scanlines are built up to
produce an image, the broken detectors produce periodic noisy
or dropped lines which appear as stripes. Detector damage, and
thus striping, is an unavoidable risk to remote sensing projects.

There are many examples of imagers that suffer from strip-
ing. Classical examples include Landsat 4 and 5, and a more re-
cent example is the water vapor (WV) 6.2 band on the Spinning
Enhanced Visible and Infrared Imager (SEVIRI). To deal with
this problem, the European Organisation for the Exploitation of
Meteorological Satellites developed an anomaly compensation
algorithm designed to suppress visible stripes from occurring
in two out of its three detectors for that band. That algorithm is
guided by heuristic arguments and not generalizable because it
is based around the specific problems with the WV 6.2 band on
SEVIRI

A particularly important example of periodic line drop is the
1.6- pm band in the MODIS instrument on the Aqua satellite of
the National Aeronautics and Space Administration (NASA).
Fifteen out of 20 detectors in this band are broken, meaning
that their data are missing or so noisy as to be considered
unusable [6], [7]. Currently, the data are published with the
locations of missing data recorded in the metadata. In addition,
NASA publishes band 6 with the missing scanlines filled in
using columnwise linear interpolation. This simple interpola-
tion method results in artifacts due to the significant data loss,
and it sometimes even fills pixels with statistically or physically
implausible image values.

Instead of simply filling in the missing data via interpola-
tion, we propose that the missing values should be estimated
statistically from all available information. More narrowly, we
note that, for multispectral imagers, the other spectral bands
often jointly contain enough information to accurately estimate
the missing data. Our approach is based on the fact that,
while individual channels may not share strong enough pair-
wise correlation with the missing band, nonlinear multivariate
relationships can still be exploited to recover the missing pixel
values. In this paper, we demonstrate this idea by presenting
an algorithm for the restoration of band 6 MODIS/Aqua using
data from other spectral bands within the same multispectral
image (granule). We use a spatial-spectral (i.e., multiband)
neighborhood of undamaged band 6 pixels to train a mul-
tilinear piecewise restoration function. With this restoration
function, we can restore a missing pixel value from the values
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in a surrounding spatial-spectral neighborhood. This approach
preserves the statistical structure of the uncorrupted data and
avoids the artifacts of simple interpolation.

This paper makes several novel contributions. First, we
present a method for estimating the missing pixels of band 6
from MODIS/Aqua at 500-m resolution, extending the method
first presented in [2]. This extended method differs from our
prior work in that we now use information from the 250-m
bands 1 and 2 in addition to the functioning 500-m bands. It also
differs from prior work that estimates the missing value in band
6 from the corresponding pixel in band 7 [6], [7]. In contrast,
the quantitative image restoration (QIR) algorithm exploits a
local spatial neighborhood in all the 250- and 500-m channels.

In addition to presenting the algorithm, we demonstrate the
superior performance of our algorithm compared to NASA’s
basic interpolation and two algorithms which estimate band 6
using band 7 alone, through a comprehensive evaluation using
ground truth data from the undamaged MODIS/Terra.

II. RELATED WORK

The simplest approach to replacing missing data is data
interpolation. Interpolation is most effective when restoring
scattered isolated missing pixels of scenes at points where it
can be assumed that no edges or fine details are present, but
this assumption does not apply to band 6 MODIS/Aqua images
because they often contain fine cloud and land structural detail.
In addition, rather than the lost pixels being isolated, many
contiguous lines have been dropped, leaving large gaps in the
data. Because whole rows of data have been dropped, NASA
publishes band 6 MODIS/Aqua with the missing data filled in
through linear interpolation along columns. The problem with
this method is that there is not enough information coming
from the good 25% of the detectors to restore the missing data;
thus, columnwise interpolation introduces significant artifacts.
Because of these artifacts, the image is smoother along columns
than along rows. Since the rowwise interpolation dramatically
corrupts image gradients, the image is unusable for any al-
gorithm that uses gradients as input, such as edge detectors.
A more general issue is that pure mathematical interpolation
methods are based on heuristic assumptions of how missing
data should be filled in; without scientific validation of these
assumptions, there is no guarantee that the filled-in data will be
accurate.

A more appropriate approach is to treat restoring the missing
data as an estimation problem. In [7], the authors exploit this by
fitting, at good band 6 detectors, a cubic polynomial expressing
the band 6 pixel values as a function of band 7. They then use
this polynomial to fill in the missing values. They evaluate this
approach using MODIS/Terra bands 6 and 7 as proxies for the
MODIS/Aqua band 7 and damaged band 6. They show that, by
using regression to find the polynomial coefficients, they obtain
a restoration that is significantly better than basic interpolation.
A weakness in this approach is that, given the complex spectral
reflectances of materials, there is no true functional relationship
between band 6 and band 7.

A local cubic regression approach was proposed by
Rakwatin et al. [6]. This approach drops the unrealistically
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strong assumption that a global relationship between bands 6
and 7 exists and instead assumes that this relationship is only
true locally. Thus, they let the parameters of a functional
relation between bands 6 and 7 to vary. To do this, they
define a sliding window of pixels centered at the pixel to be
filled in, and then, they use the working sensors of band 6,
and the corresponding sensors of band 7 within the sliding
window, to perform a locally varying cubic regression. This
local regression is then applied to the band 7 data to restore
the band 6 data at the damaged sensors. Each pixel is filled
in using a cubic polynomial with a potentially different set
of coefficients. Note that, although a window is used to find
the coefficients of the polynomial regression, the input to the
regression is just the band 7 value. In addition to allowing the
regression to vary across the image, they also applied histogram
matching to the radiances to further improve the consistency of
the regression and simultaneously reduce striping artifacts.

The fundamental problem with any approach that uses band 7
alone to determine band 6 is that these bands behave differ-
ently depending on surface and cloud composition; thus, while
there are special cases—such as generally uniform parts of the
image—where a functional relationship between band 7 and
band 6 may be approximately valid, it does not hold in general.
Moreover, if it did, there would be little need for inclusion of
band 6 in the MODIS imager. While a single pixel value at
the corresponding point in band 7 alone cannot provide enough
information to restore band 6, we argue that, through the use
of multiple bands and a local window as input (not just to train
coefficients), much more information is available with which to
perform the restoration.

We note that there are a number of other methods to re-
construct missing pixel values from an image. For example,
digital image inpainting is often used to describe a kind of
interpolation where the regions of missing data are so large
that traditional interpolation fails; the variational and partial-
differential-equation-based methods fill in missing data by find-
ing the solution to a differential equation constrained by values
surrounding the missing region. Examples of these methods can
be found in the works of Ballester er al. [8], Bertalmio et al.
[9], and Chan et al. [10]. These methods work well when the
hole is relatively small and surrounded by large-scale geometric
structure; however, when the surroundings of the hole consist
of stochastic textures, such methods tend to produce blurred
restoration and not to reproduce the texture. They also do not
work well when the available undamaged data are sparse, as it
is in the case of band 6.

Another set of methods based on work in texture synthesis
generates plausible values within a missing region by randomly
sampling from a probability distribution estimated from regions
where the texture is assumed to be similar [11], [12]. These
methods are inappropriate in the case of band 6 because we
do not know, a priori, the class of texture that should be filled
in. In addition, the sparse lines in band 6 from the working
detectors do not provide the continuous patches that these
methods typically use for sampling. These methods also tend
to fail on regions with large-scale geometric structures like
a coastline, or cloud edges. Exemplar-based methods such as
those by Criminisi ef al. [13] and Efros and Freeman [14] search
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Fig. 1. Joint PDF of band 5 radiance and the residual of band 6 radiance with
the portion predicted by band 7 subtracted.
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Fig. 2. Product of band 5 probability and residual of band 6 radiance with the
portion predicted by band 7 subtracted.

for image patches which partially match pixels surrounding the
hole but can be extended to cover the hole. These image patches
are pasted in as filling for the missing pixels. Again, the sparse
data available from the working detectors of channel 6 make
this method inappropriate.

III. QIR ALGORITHM

As discussed previously, prior work has treated band 6 as
a function of band 7. The general approach that we propose
is to restore each missing pixel value in the damaged band
using values taken from a spectral—spatial window, composed
of all the nearby bands around that pixel. By introducing more
variables, we can potentially improve our estimation if the
new variables provide new information. In order to show that
the new variable from band 5 provides additional information
over that provided by band 7, we estimate the band 6 value
using a cubic polynomial as in [7]. The difference between this
estimated band 6 value and the actual band 6 value, which we
call radiance error, is the part of the band 6 value not explained
by band 7. The joint probability distribution of band 5 with
the radiance error from band-7-estimated band 6 is shown in
Fig. 1. If band 5 were not informative about this error, then
the distribution would be independent, i.e., it would be the
product of the single variable distributions, shown in Fig. 2. The
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Fig. 3. Block diagram showing the overall structure of the QIR algorithm.
failure of this product to match the joint probability distribution
function (PDF) is evidence that band 5 contains information
about band 6 not captured by band 7.

The clear distinction between the distributions shown in
Figs. 1 and 2 simply illustrates that band 5 radiances provide
new information about band 6 not provided by band 7. Sim-
ilarly, as we add other spatial and spectral variables, we can
improve the estimation of band 6. We carefully balance the
gain in information with potential overfitting by limiting the
model to a multilinear estimator and adjusting the window size
according to results obtained on independent test data. The
effectiveness of this approach is validated in Section VI.

The outline of the QIR algorithm is presented in the diagram
shown in Fig. 3. The damaged band to be restored, for example,
band 6 on MODIS/Aqua, is referred to as the “bad band.” The
bands which we use in the QIR algorithm as input, bands 1-5
and band 7 in the MODIS/Aqua example, are referred to as
“good bands.” The first preprocessing step deals with the fact
that there are some scattered pixels in the good bands with
missing or out-of-valid-range values.

We start processing the data by attempting to fix out-of-valid-
range values because pixels with values outside of the valid
range will wreak havoc with regression since good band values
provide input for the QIR algorithm. We preprocess out-of-
range values using an adaptive mean value filter, which replaces
isolated missing pixels with the mean value of the valid pixels
in a window with an adaptive size. The adaptive window size
is the minimum size such that the majority of the pixels in the
window are within valid range. Note that the window is limited
to a fixed maximum size. The restoration is aborted if more than
half of the pixels in the good bands are bad.

The next step when working with the data is destriping
the radiances. As observed in [6], destriping can significantly
improve regression. In theory, an image of properly calibrated
radiances should not have stripes; nevertheless, some striping
artifacts remain and can be removed using histogram specifi-
cation as is commonly done [4], [5]. We apply destriping to
all bands, but if a band’s detectors are well matched so that
destriping is not required, then the algorithm essentially returns
the unstriped values.

We describe a general QIR algorithm in which we have
K — 1 good bands and one bad band with broken detectors
whose data must be reconstructed. In the case of MODIS/Aqua,
we consider all the 250-m bands and all of the functioning
500-m bands as good bands, so we have a total of K = 7 bands
with 6 good bands. Without loss of generality, we can renumber
the bands so that the good bands are numbered 1 through K — 1
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Fig. 4. Diagram showing the process of determining the restoration function
for a tile.

and the band to be reconstructed is labeled K. We write the
value of a pixel p = (4,7) in the ith scanline (row), the jth
column, and the kth band of an image I as I; ;. This pixel
value can be a digital count, radiance, reflectance, or other value
type. The QIR algorithm does not depend on the value type
and can produce a restoration function that takes inputs and
produces output in any of these types.

The restoration function is a composite (piecewise) function
built from smaller restoration functions defined on large over-
lapping portions of the image, which we refer to as tiles. The
tiles are defined by first partitioning the image into a grid of
nonoverlapping tiles, and for MODIS/Aqua, we used 200 x 200
pixel tiles. The grids of tiles are shifted horizontally by a half
tile (100 pixels), vertically by a half tile, and diagonally by a
half tile, as shown at the far left of the diagram in Fig. 4. As a
result, pixels in a corner region are in only one tile, pixels near
the image boundaries but not in corner regions are members of
two overlapping tiles, and pixels at least a half tile away from
the boundary are covered by four overlapping tiles.

We determine a restoration function independently for each
tile. Since a pixel may belong to several tiles, the restored value
in the bad band is the average of the independent restoration
functions for each tile to which it belongs. For the pixels in
the corner regions, the value is determined by the corner tile
restoration function, and there is no averaging because there
is only a single function. For the other regions, such as pixels
away from or near the boundary, a restored pixel value is the
average of four or two restoration functions, respectively, one
for each tile containing the pixel.

QIR could be generalized to accommodate weighted aver-
ages based on distance to the boundary of a tile, but in the
MODIS/Aqua case, the extra complexity was unwarranted. We
also considered tiles which overlapped by more than half a
tile. An extreme case that we considered was using sliding
overlapping tiles centered at the band 6 pixel to be restored,
providing for a per-pixel varying restoration function. In this
case, it might not even be necessary to average restoration
functions and could potentially improve accuracy, but it is
very expensive when compared to half-tile overlaps. Training
data are used to empirically find a balance between accuracy
and speed when setting the tile size and the overlaps between
the tiles.

For each pixel from a scanline with a broken detector in band
K, the restoration function F' must provide a value I;, j, x =
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z(q), with ¢ = (49, jo), where we think of z(gq) as the dependent
variable. For each pixel ¢, the independent variables are taken
from the values in the image [ for an m x n spatial window,
wy centered at g, with m and n odd, as shown in Fig. 4. The
m -n - (K — 1) independent variables of w, are

X(q) = {xO(Q)v <o Tmans (K1) (q)}

= Uigkdiigjemst jjolengt ncher - (D

To determine I, we separately and independently determine
an Frp for each tile 7. We do this by first collecting a training
set made up of the set of independent and dependent values
{(x(p), 2(p)) } pevy» With Vi being the set of all pixels p
corresponding to working detectors in the bad band, as shown
at the top right of Fig. 4. This is indicated in Fig. 3 as the box
“True Band 6 Value” which is z(p) and as the box “Windows
in Bands” which is the variable x(p) for the window w,,.
Every per-tile restoration function Frr(x(p)) has a training error
defined as

Error(Fr) = . |Fr (x(p)) —20)F. @

peVT

To determine F, we would like to find a function which
minimizes this error without overfitting the training set Frr. We
partially address the overfitting issue by restricting Frr to one
of the simplest possible families of functions, i.e., multilinear
functions of the form

Fra (x(p)) = Z oz (p) (3)

where a = (a1, ..., Qpun«(x—1)). Therefore, for our imple-
mentation of the QIR algorithm, we determine Fp by op-
timizing for parameters oy that minimize the training error
Error(Fr) [defined in (2)]. The optimal solution for ay is
computed using a least squares solver to obtain the per-tile
multilinear regression illustrated by the box at the top right
of Fig. 3.

QIR for a pixel ¢ in band K (band 6/Aqua) for a damaged
detector proceeds by first determining the tile 7" containing
q. The per-tile multilinear estimator F7p is then applied to the
associated window w, to obtain Frr(wg), which is the per-tile
reconstruction of Zr(q) for the pixel ¢ in band K, as shown
in Fig. 4. Finally, as stated previously, the restored value for
4, 2(¢) in the bad band is the average of the per-tile values Zr(q)
that contain ¢. This is indicated as the box “Reconstructed Band
6 Value” in Fig. 3.

Note that, in the QIR algorithm, pixels corresponding to
functioning band K (band 6) detectors help determine the
multilinear estimators F but are not inputs to those estimators.
In other words, none of the input values x(q) for Fr(x(q))
come from band 6, so the only way that the band 6 values from
the good detectors influence the value of Fip(x(g)) is through
the determination of the parameters « in the large tile 7.

We considered extending QIR so that pixel values which are
in the bad band but corresponding to good detectors within
the spatial window w, would also be used as input values
to Fr. Unfortunately, this is problematic for Aqua since the
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pattern of good and bad detectors within the sliding window
changes depending on the scanline of the pixel g, so instead
of having a single training set Vr, we would need to have
a different training set for each configuration and multiple
restoration functions Fr for each tile. This reduction in the
number of examples per training set results in overfitting and
poorer estimation, so we did not take this approach. For other
satellites, with a more regular pattern of broken detectors, this
approach may be feasible.

We also note that we have used multilinear regression. This
may easily be generalized to a polynomial regression. Even
without polynomial regression, the choices of window size
and tile size provide the QIR algorithm the flexibility to trade
off between improved fitting and generalizability, resulting in
better estimation.

IV. ALGORITHM EVALUATION

As mentioned previously, although band 6 MODIS/Aqua has
extensive damage, the corresponding band 6 MODIS/Terra is
functioning normally. This makes it possible to evaluate QIR
by simulating the damage to band 6 MODIS/Aqua on band
6 MODIS/Terra. Our evaluation method compares restored
images obtained from applying each of the algorithms on the
simulated damaged bands to the original undamaged band
6 MODIS/Terra. The same approach was previously used to
evaluate a method to restore band 6 using a cubic polynomial
function of the values in band 7 [6], [7].

We compared our restoration with the algorithms of
Wang et al. [7] and Rakwatin et al. [6] as well as to our
previous algorithm, presented in [2] which only uses the 500-m
bands. It was relatively straightforward to directly implement
the polynomial proposed in the paper by Wang et al., while
Rakwatin et al. graciously provided their code for fair compari-
son. We chose ten granules with varied terrain containing snow,
clouds, mountains, and vegetation in order to challenge all the
algorithms. These representative ten granules were also chosen
from many others because they could be restored with the
prior work implementations without failure. We were unable
to run the implementation that Rakwatin et al. provided on
many granules because it was not robust to the bad data that
sometimes appear in the granules. This is only a problem with
their implementation, not their algorithm. Since we wanted to
minimize any modification to their code, we restricted the eval-
uation to granules on which their implementation ran smoothly.

The result of our evaluation, as seen in Fig. 5, was
that all the algorithms do reasonably well. As reported by
Rakwatin et al. in 2009 [6], their algorithm does consistently
and significantly better than that of Wang et al. [7], and our
algorithm, whether run on just the 500-m bands or with the
250-m bands included, performs better than the other algo-
rithms. When the 250-m bands are included, there is a small
improvement in performance. It is interesting to note that, while
our restoration is more complex in the sense that we use more
bands, it is also less complex in that we use a lower order model
(linear versus cubic).

Since we were only able to run the cross algorithm evaluation
on ten granules, we wanted to verify that the resulting range
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Fig. 5. RMSE, in reflectances, of previous algorithms over ten test granules.
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Fig. 6. (Probability) Distribution of the QIR RMSEs in reflectances. These
are the errors only for the restored pixels using band 6 MODIS/Terra in which
the damage was simulated.

of errors was typical for QIR. To do this, we ran the QIR
algorithm on 113 MODIS/Terra granules using just the 500-m
bands. We then ran the QIR algorithm on 82 of those granules
using all 500- and 250-m bands for restoration; the sample size
was reduced because some of the 250-m bands failed the out-
of-valid-range preprocessing step. Fig. 6 shows the normalized
histogram of root-mean-square errors (RMSEs) for QIR using
all the bands (the dashed line) and just the 500-m bands (the
solid line). The mean of the 82-granule sample (QIR using six
bands) is around 0.004 RMSE, which is consistent with that
of the 10-granule sample shown in Fig. 5. The mean RMSE
of the 113-granule sample (QIR using only 500-m bands)
is slightly higher, which is also consistent with that of the
10-granule sample. The overall improvement when compared
to the restoration based on only the 500-m bands is consistent
between the smaller and larger samples. We can see, however,
that there is a considerable variation in QIR’s accuracy depend-
ing on the granule. Note that we use reflectances in Figs. 5
and 6 since they were used in prior work [6], [7]. However,
the calculation of reflectance uses the solar angle and intensity
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Fig. 7. Image showing band 6 radiances from MODIS on Terra, after simu-
lated Aqua damage and subsequent restoration using QIR.

116

{14

Fig. 8. Image showing band 6 radiances from MODIS on Terra, for compari-
son with restoration after simulated damage.

and involves further processing, potentially amplifying or even
masking errors in the restoration. Thus, for the remainder of this
section, our evaluation will be in units of radiance.

In Fig. 7, we show an example of a band 6 MODIS/Terra
radiance image that was restored using the QIR algorithm,
after first being damaged to simulate band 6 on Aqua. When
compared with the original (undamaged) band 6 radiance image
(Fig. 8), it is virtually impossible to discern a difference. Using
simulated damaged band 6, the scatter plot in Fig. 9 shows
how the restored band 6 values compare to the true band 6
values for the same 200-by-200 patch shown in Figs. 7 and 8.
The distribution of errors for all of the ten considered granules
is shown in Fig. 10. The distribution appears to be far from
normal, with many of the errors being quite small.

In the case of MODIS/Aqua, we do not have ground truth
available. Still, we can compare QIR to the results that are
currently produced with interpolation, shown in Fig. 11. Note
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Fig. 9. Scatter plots of band 6 radiances for the patch shown in Fig. 8 to its
simulated band 6 shown in Fig. 7.
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Fig. 11. Detail of band 6 MODIS/Aqua image as published with basic
interpolation.

that the river in the interpolated image is completely distorted
because columnwise interpolation introduces new edges which
completely corrupt spatial derivatives of the image. In contrast,
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Fig. 12. Detail of band 6 MODIS/Aqua image restored using QIR.

Fig. 13.  Detail of a band 6 MODIS/Aqua image with basic interpolation.
the result of QIR in Fig. 12 lacks these strong artifacts. Sim-
ilarly, we can see that the interpolated image containing many
small clouds, shown in Fig. 13, is obviously distorted. There are
no obvious artifacts visible in an image produced with QIR, as
seen in Fig. 14, and it is even possible to clearly see details like
cloud shadows on the ground. The resulting images from our
algorithm are high-quality restorations of the damaged bands,
both qualitatively and quantitatively.

V. CONCLUSION AND FUTURE WORK

We have presented a general QIR algorithm which uses
neighboring pixels, both spectral and spatial, to quantitatively
estimate missing values even when the damage to a target band
is severe. In the case of MODIS band 6, evaluation shows
that our results outperform previous results which were based
purely on band 7. We tested across granules with different
surface types well separated over time and obtained consistent
improvement. We also verified the error rates of our QIR
algorithm on the granules that we used to compare with the
prior work by using a comprehensive sample of granules.

Fig. 14. Detail of a band 6 MODIS/Aqua image restored using QIR.
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