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Abstract—Many vision applications require precise measurement of scene radiance. The function relating scene radiance to image

intensity of an imaging system is called the camera response.We analyze the properties that all camera responses share. This allows us

to find the constraints that any response function must satisfy. These constraints determine the theoretical space of all possible camera
responses. We have collected a diverse database of real-world camera response functions (DoRF). Using this database, we show that

real-world responses occupy a small part of the theoretical space of all possible responses. We combine the constraints from our
theoretical space with the data from DoRF to create a low-parameter empirical model of response (EMoR). This response model allows

us to accurately interpolate the complete response function of a camera from a small number of measurements obtained using a
standard chart. We also show that the model can be used to accurately estimate the camera response from images of an arbitrary scene

taken using different exposures. The DoRF database and the EMoR model can be downloaded at http://www.cs.columbia.edu/CAVE.

Index Terms—Radiometric response function, camera response function, calibration, real-world response curves, empirical modeling,

high-dynamic range, recovery of radiometry, nonlinear response, gamma correction, photometry, sensor modeling.

!

1 SCENE RADIANCE TO IMAGE INTENSITY

COMPUTATIONAL vision seeks to determine properties of a
scene from images. These properties include 3D geome-

try, reflectance, and lighting. Algorithms to determine such
properties require accurate models of image formation.
Models of image formation must account for the character-
istics of the imaging system. For example, algorithms that
recover geometric properties of a scene must model the
system’s imaging geometry and account for the system’s
spatial resolution. Algorithms that require accurate color
measurements must account for the system’s spectral
response.

Many computer vision algorithms require precise mea-
surements of scene radiance to recover desired scene
properties. Examples of algorithms that explicitly use scene
radiance measurements are color constancy [10], [19],
construction of linear high-dynamic range images [3], [21],
[26], [6], [22], photometric stereo [2], [28], [31], shape from
shading [17], [28], [33], estimation of reflectance and
illumination from shape and intensity [20], recovery of
BRDF from images [4], [7], [25], [29], [32], and surface
reconstruction using Helmholtz stereopsis [34].

The goal of this work is to provide an accurate and
convenient model of the mapping from scene radiance to
image intensity by an imaging system.1 In general, this
mapping comprises several complex factors, including
vignetting and lens fall-off [1]. In a digital camera, some
other factors are fixed pattern noise, shot noise, dark
current, and read noise [16]. Note, we focus on modeling

the expected image intensity given a scene radiance at a
pixel. Thus, we will ignore zero-mean noise for determining
the mapping. In the case of a film camera, factors
influencing the mapping include the photosensitive re-
sponse of the film as well as the film developing process
[18]. The mapping must also account for the results of
digitally scanning the film.

Regardless of the individual factors involved, we can
assume the mapping is a composite of just two functions, s
and f , as shown in Fig. 1. The function s represents the
effect of transmission through the imaging system’s optics
as well as the fixed pattern noise which is present in digital
cameras. This function may vary spatially over the image,
but can be assumed to be linear with respect to scene
radiance [1], [16]. The function s models the transformation
of scene radiance to image irradiance. We also note that to
simplify our exposition, we assume fixed integration time.

The photosensitive elements of the image sensor respond
to the image plane irradiance E by producing a signal either
electronically in a solid state camera, or chemically on film.
For an analog video camera, this typically passes through a
capture board which then produces a value we call image
intensity B: For film, the developed image must be digitally
scanned to obtain an image intensity.2 We model the entire
imaging system response with the function f from Fig. 1.
This response is generally a nonlinear function of image
irradiance and is called the camera response function.

In many imaging devices, the nonlinearity of f is
intentional. A nonlinear mapping is a simple means to
compress a wide range of irradiance values within a fixed
range of measurable image intensity values. Manufacturers
produce photographic films with specific nonlinear char-
acteristics. In the case of solid-state cameras, the CCD or
CMOS responds linearly to irradiance. Nonlinearities are
purposely introduced in the camera’s electronics to mimic
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the nonlinearities of film, to mimic the response of the
human visual system, or to create a variety of aesthetic
effects. Once we determine the camera response function,
we can invert it, making it possible to transform pixel
intensity values to image irradiances. Going from image
irradiance to scene radiance can then be accomplished by
finding s, [1], [16].

Though nonlinear, a camera’s response function f is
generally uniform across the spatial dimensions of the
image. Hence, it is described by a one-variable function of
irradiance, B ¼ fðEÞ. Inversion of the camera response
function allows the transformation of image intensity to
image irradiance. Going from image irradiance to scene
radiance can then be accomplished by finding s, which is
easy to do once the response f is known [1], [16]. In any
case, this work will focus on the first step, which is the
recovery of the nonlinear camera response.

A number of algorithms have been introduced in
computer vision and computer graphics to estimate the
camera response from multiple images of a scene taken
with different exposures [6], [23], [22], [26], [30]. All these
methods make a priori assumptions about the form of the
response function.3 For example, in [22], Mann and Picard
describe the recovery of the parameters for a parameterized
response model, such as when the response has the form of
a gamma curve, fðEÞ ¼ !þ "E# . They find the parameters
#, !, and " from multiple registered images of a static scene
taken using different exposures. The single image recovery
algorithm presented in [9] also assumes the response is a
gamma curve. The response functions found in cameras,
however, can vary significantly from a gamma curve.

In [23], Mann lists a number of alternative analytical
forms for modeling response functions. In contrast, in [6]
[24], and [30], no particular form is assumed, instead
smoothness constraints are imposed. In what can be
considered a compromise between these two extreme
assumptions, Mitsunaga and Nayar [26] use the general
approximation model of polynomials. They assume a low
degree polynomial gives a sufficient approximation to the
response and estimate its coefficients.

It is important to note that, while much recent work
acknowledges the importance of the camera response, a
careful analysis and modeling of the response has yet to be
done. We wish to address this void. In doing so, we seek
answers to the following fundamental questions:

. What is the space of possible camera response
functions? We show that all response functions
must lie within a convex set that results from the
intersection of a hyperplane and a positive cone in

function space. This gives us both guidance on the
form of our model as well as constraints.

. Which camera response functions within this space
arise in practice? We compiled a Database of
Response Functions (DoRF) of a variety of imaging
systems including film, CCD, and solid-state camera
components that are currently used. Our goal is to
represent the variety of response functions which
occur in complete imaging systems. The database
currently includes a total of 201 real-world response
functions.

. What is a good model for response functions? We
combine the constraints from our analysis and the
data from DoRF to formulate a new Empirical Model
of Response (EMoR) which can model a wide gamut
of response functions with a very small number of
parameters. We show that EMoR outperforms
alternative models including previously used ones,
in terms of accuracy. We provide a comparison with
a log-space version of our model.

We show that EMoR works well by using a number of
different evaluation metrics. We demonstrate that EMoR
can be used to recover complete response functions from an
image of a chart with a few known reflectances. It can also
be used to accurately determine a camera’s response from a
set of images of a scene taken at different exposures. We
have made the DoRF database and the EMoR model
available at http://www.cs.columbia.edu/CAVE.

2 WHAT IS THE THEORETICAL SPACE OF CAMERA

RESPONSE FUNCTIONS?
Defining the theoretical space of camera response functions
helps us build a model of these functions. It guides us as to
the form such a model should take. It also determines the
constraints these functions must satisfy. We begin by stating
our assumptions.

Our first assumption is that the response function f is the
same at each pixel. In theory, an imaging system could have
a different camera response function for every pixel. For
example, a CCD has a linear variation called fixed pattern
noise [15] which changes the response from pixel to pixel.
Linear spatial variations can be folded into the function s
(see Fig. 1), which includes effects such as lens fall-off [1].
As pointed out in Section 1, after removing such variations,
the response is a one-variable function of image irradiance,
fðEÞ ¼ B, where B is image intensity.

Our second assumption is that the range of our camera’s
response goes from BMIN to BMAX: These values are easily
computed. For example, in digital cameras BMIN is the mean
of the thermal noise. This may be estimated from an image
taken with the lens cap on. The number BMAX may be
determined by taking an image of a very bright object such
as a light source, so that parts of the image are saturated.
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Fig. 1. Flow diagram showing the two basic transformations, s and f, that map scene radiance L to image intensity B. The function s models the
optics of the imaging system. This function may vary spatially, but is generally linear. The mapping f of image irradiance to image intensity is called
the camera response function. It is usually nonlinear, but can be assumed to be spatially uniform.

3. It was recently shown in [13] that, to avoid ambiguities, a priori
constraints on the response function are imperative when finding the
response from multiple images.



The units of response are arbitrary, so we normalize the
response so that BMIN ¼ 0 and BMAX ¼ 1.

Our third assumption is that the normalized response
function is monotonic. If the response is not strictly mono-
tonic, it is many to one and, thus, cannot be linearized. This
limits its usefulness in computer vision. In our analysis, it is
easier to work with monotonic functions. In practice, the
minor discrepancy between monotonic and strictly mono-
tonic isnot aproblem.Without lossofgenerality,weassumef
monotonically increases. If f is monotonically decreasing,
such as in the case of a negative image, we replace the given
response with the function 1% f . This implies that corre-
sponding to BMIN and BMAX are minimum and maximum
detectible irradiances, EMIN and EMAX. These parameters
may be incorporated into the function s in Fig. 1, since they
represent a linear scaling and shift along the irradiance axis.
Therefore, we normalize irradiance so that EMIN ¼ 0 and
EMAX ¼ 1.

With these assumptions, we define the space of camera
response functions as:

WRF :¼ffjfð0Þ ¼ 0; fð1Þ ¼ 1;

and f monotonically increasingg:

The exact form of the space WRF is easier to understand
in terms of vectors. Any function f of irradiance (not
necessarily a response) may be thought of as a vector by
sampling it at a set of fixed increasing irradiance levels.
That is, the function f becomes the finite-dimensional
vector4 ðB1; . . . ; BP Þ ¼ ðfðE1Þ; . . . ; fðEP ÞÞ: We set the
brightest sampled irradiance to be EP ¼ 1.

Response functions f are normalized such that BP ¼
fð1Þ ¼ 1. Therefore, all response vectors must lie in the
hyperplane W1 shown in Fig. 2, where the last component
BP is 1. If f and f0 are any two response vectors in the
hyperplane W1; the difference h ¼ f % f0 lies in a parallel
hyperplane W0 going through the origin (see Fig. 2).
Therefore, any response function can be expressed as f ¼
f0 þ h where f0 is some base response function and h 2 W0.

Now, the additional constraint that a response function is
monotonic, can be interpreted as requiring the function’s
first derivatives to be positive. Any positive linear combina-
tion of two functions with positive derivatives must also
have positive derivatives. We know that a set is a cone
when it has the property that positive linear combinations
of its elements lie within it. Therefore, monotonic functions
can be represented by a cone, shown as ! in Fig. 2.

Combining both of the above constraints, we see that
WRF is the intersection (the darkly shaded region in Fig. 2)
of the cone ! with the hyperplane W1:

WRF ¼ W1 \ !: ð1Þ

Note that the convexities of the hyperplane and the cone
imply that the intersection of (1) is also convex. If p; q 2 WRF

and 0 & ! & 1, then !pþ ð1% !Þq 2 WRF. That is, positive
weighted sums of response functions are also response
functions. As a consequence, the mean of any set of camera
response functions is also a valid camera response function.
Another consequence of convexity is that we can approx-
imate the set response functions with a series of linear
inequalities. By approximating the set in terms of linear
inequalities, we can use standard optimization algorithms
to, for example, find the closest function in WRF to an
arbitrary function f .

3 APPROXIMATION MODELS FOR THE RESPONSE

FUNCTION

Even though the theoretical space of response functionsWRF

is restricted to an intersection of a hyperplane and a cone, it is
still infinite-dimensional. However, there are a limited
number of processes that are used in films and in solid state
detectors to collect light. As a result, many functions within
the theoretical spacenever arise inpractice. It thereforemakes
sense to look for a finitely parameterized subset ofWRFwhich
approximates the set of real-world response functions. We
describe two approaches which give approximation models.
In each approach we choose the number of parametersM of
our model. As M becomes large, the model better approx-
imates elements inWRF.

The simplest approach to parameterizing WRF uses (1).
We note that W1 ¼ f0 þW0: We further observe that any
choice of basis h1; h2; . . . for the vector space W0 gives an
approximation model. The first M basis elements give the
Mth order approximation:

f0ðEÞ þ
XM

n¼1

cnhnðEÞ; ð2Þ

where c1; . . . ; cM are the coefficients or parameters of the
model.5

A somewhatmore complex approach generalizes both the
gamma functions6 used inMann and Picard [22] and the log-
space least-squares solutions used in Debevec andMalik [6]:
We parameterize the log of the response functions Wlog.
Functions glog 2 Wlog in this space have glogð1Þ ¼ 0; and
limE!0 glogðEÞ ¼ %1. These linear conditions define a vector
space. If we choose a basis for this space hlog;1; hlog;2; . . . , then
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4. We will treat f interchangeably as a vector and a function. We assume
the function f is smooth enough so that we can recover it from a vector of
dense samples by interpolation.

5. Note that, due to normalization of f in Section 2, the model implicitly
has the scale and offset parameters BMIN, BMAX, EMIN, and EMAX.

6. For a normalized response, ! ¼ 0 and " ¼ 1, in the notation of
Section 1.

Fig. 2. To visualize the theoretical space of camera response functions,
we represent the response functions as vectors. Vectors that satisfy
fð1Þ ¼ 1 lie on the hyperplane W1. Vectors satisfying the monotonic
condition lie in the shaded solid polygonal cone !. The theoretical space
WRF of camera response functions is the darkly shaded intersection
! \W1.



the finite span
PM

n¼1 cnhlog;nðEÞ in log-space becomesQM
n¼1ðehlog;nðEÞÞcn in the space of response functions. This gives

an M-parameter approximation space, with c1; . . . cM being
the parameters of the model. If the basis is chosen so
hlog;1ðEÞ ¼ E, then the one parameter approximation is the
family of gamma functions.

In both approaches, an approximation is determined by a
choice of basis in W0 or in Wlog: For example, in [26], the
polynomial basis presented is a special case of the above
simpler approach of parameterizing W0; to approximate
WRF: If we instead use a finite-dimensional discrete
approximation of log-space by sampling at integer gray-
levels and let the basis hlog;n be delta functions at those gray-
levels, this specializes to the method used in [6].

In our notation in (2), the polynomial model is obtained
using f0ðEÞ :¼ E and hnðEÞ :¼ Enþ1 % E: One can also
obtain a trigonometric approximation model by using
f0ðEÞ :¼ E and the half-sine basis hnðEÞ :¼ sinðn$EÞ.
Clearly, there are many more choices. Thus, while the
description of WRF in Section 2 in terms of W0 and f0 has
suggested the general form of an approximation model, it
has not given us criteria to decide which basis of W0 to use.
The efficiency of any basis depends on how close the
responses of actual imaging systems are to the space
spanned by the first few basis elements. Hence, a natural
approach is to use the response curves of real-world
imaging systems to determine the appropriate basis for
the approximation model.

4 REAL-WORLD RESPONSE FUNCTIONS

We collected a diverse set of response curves in order to
cover the range of curves found in complete imaging
systems. Examples of such systems include video cameras
with capture cards and digitally scanned photographs. We
collected response curves for a wide variety of CCD
sensors, digital cameras (detector + electronics), and
photographic films. The response curves for photographic
film remain important even as the use of film declines. The
film response curves have been designed to produce
attractive images. Digital cameras often emulate these
curves.

Companies such as Kodak, Agfa, and Fuji have
published response curves for some of their films on their
Web sites. The curves we gathered include representatives
from positive and negative films, consumer and profes-
sional films, still and motion picture films, in both color as
well as black and white. We treated the three response
curves for color films as three different responses. We also
included curves of the same film type but different ASA
speeds. For some of the black and white films (for example,
Agfa Scala 200), the response curves for different develop-
ing times were available and so included. Examples of film
brands we included are Agfacolor Future, Auxochrome RX-
II, Fuji F125, Fuji FDIC, Kodak Advanced, Kodak Gold, and
Monochrome.

We also obtained response curves for several CCD
sensors, in particular, Kodak’s KAI and KAF series. In the
case of digital cameras, the manufacturers we contacted
were unwilling to provide the responses of their cameras.
However, Mitsunaga and Nayar have measured the
responses of a variety of digital and video cameras,
including the Sony DC 950 and the Canon Optura using
their algorithm RASCAL [26]. These curves were included.
Many camera manufacturers design the response to be a
gamma curve. Therefore, we included a few gamma curves,
chosen from the range 0:2 & # & 2:8, in our database.
Currently, the database contains a total of 201 curves, a
few of which are shown in Fig. 3.

The companies provided the curves for film and CCDs in
an assortment of formats. We first converted all the plotted
curves to high-resolution images. We manually removed all
extraneous information from these images. After removal of
this information, some of the curves had gaps. To
interpolate through these gaps, as well as to remove any
effects of rasterization, we applied a local linear regression
to the curves.

As we discussed in Section 2, we assume that response
curves are monotonic. For this reason, the 201 response
curves we chose were all monotonic. The few nonmono-
tonic ones we came across were disregarded. In the case of
negative film, we transformed the curves to make them
monotonically increasing rather than monotonically de-
creasing. Many of the film curves we collected were
originally published on log-linear or log-log scales. All
curves were converted to linear-linear scale in response and
irradiance. Those curves that were not originally provided
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Fig. 3. Examples from our database of 201 real-world response functions (DoRF). The database includes photographic films, digital cameras, CCDs,
and synthetic gamma curves. Note that even within a single brand of film, for example, Agfa, there is considerable variation between response curves.



on a linear-linear scale were no longer uniformly sampled
after conversion. We resampled these curves uniformly
using linear interpolation to preserve monotonicity. We
choose the original sampling densely enough for any
interpolation error to be small.

5 AN EMPIRICAL MODEL OF RESPONSE

In this section, we present a new model for the camera
responsewhich combines the general formof the approxima-
tionmodel of (2)with the empirical data in theDoRFdatabase
described in Section 4. To create as well as test such a model,
we segregated the DoRF database into a training set of
175 response curves and a testing set with 26 curves. We
denote the training curves as fg1; . . . ; gNg ' WRF, whereN ¼
175 and WRF is the theoretical space of responses defined in
Section 2.

Strictly speaking, WRF is a space of continuous functions,
we may extend fg1; . . . ; gNg to continuous functions using
interpolation since they are densely sampled. Alternatively,
we may think of WRF in terms of its finite-dimensional
approximation where it consists of functions sampled
uniformly at the sample points of fg1; . . . ; gNg.

We would like to find a low-dimensional approximation
of WRF; based on our linear model from (2). Our goal is to
determine a base function f0 and a basis fh1; h2; . . . ; hMg for
(2) so that the root mean square approximation error of the
model is small for the empirical data from DoRF. We can
achieve this by applying Principal Component Analysis
(PCA) to the training curves from DoRF. We will refer to
this basis as the Empirical Model of Response (EMoR).

Recall from Section 2 that WRF is a convex set. This
implies that the mean curve ð1=NÞ

PN
n¼1 gn is also a

response function. We choose f0 in (2) to be the mean
curve, which is shown in Fig. 4a. It represents the 0th order
approximation to WRF.

Performing PCA on continuous functions, we obtain the
basis functions fh1; h2; . . .g as eigenfunctions of the covar-
iance operator.7 The covariance operator is an integral
operator C, where ðCfÞðEÞ ¼

R 1
0 cðE; xÞfðxÞdx; and the

kernel of this operator cðE1; E2Þ is defined as

cðE1; E2Þ ¼
XN

n¼1

ðgnðE1Þ % f0ðE1ÞÞðgnðE2Þ % f0ðE2ÞÞ: ð3Þ

This integral operator is symmetric and, hence, diagonaliz-
able with a basis of eigenvectors.

To find the basis of (2) using PCA, we work with a finite-
dimensional approximation. By densely sampling each
response curve f at points fE1; . . . ; EPg; , we approximate
f by the vector ðfðE1Þ; . . . ; fðEP ÞÞ: Using all the response
vectors in our training set, the elements of its symmetric
covariance matrix C are found as:

Cm;n ¼
XN

p¼1

ðgpðEnÞ % f0ðEnÞÞðgpðEmÞ % f0ðEmÞÞ:

We write VM for the span of the eigenspaces associated with
the largest M eigenvalues of the matrix C. The space VM is
the best M-dimensional approximation to the space W0 [8].
The curves in Fig. 4b are the eigenvectors for the four
largest eigenvalues of the covariance matrix C.

The cumulative energies associated with the eigenvalues
increase rapidly, as seen in Fig. 4c. This shows that EMoR
represents the space of response functions well. In fact,
three eigenvalues explain more than 99.5 percent of the
energy. This suggests that even a 3-parameter model should
work reasonably well for most response functions found in
practice.

Although this analysis gives us a parametric model, it
also gives us some insight into the nature of the regularity
of response functions. A number of current calibration
methods use a global regularity parameter % to constrain
the response rather than explicitly parameterize the
response [6], [23], [30]. Our analysis suggests that the
regularity of response functions varies since the mean and
the principal component curves are quite smooth toward
the middle of the domain with higher derivatives occurring
near the endpoints. This suggests it would be more
appropriate to use a varying regularity constraint to restrict
the approximation.

To approximate a new response function f in WRF with
an M-parameter EMoR, we project f % f0 2 W0 into VM . Let
H :¼ ½h1 ) ) )hM * be the matrix whose columns are the firstM
unit eigenvectors. Then, the EMoR approximation ~ff to the
response curve f is

~ff ¼ f0 þHc; ð4Þ
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Fig. 4. (a) The mean of 175 camera responses in DoRF used as the base curve f0 in the EMoR model. (b) Four eigenvectors (functions)
corresponding to the largest four eigenvalues of the covariance matrix for the 175 curves. (c) A plot showing the percentages of the energies
captured by VM , the span of the M principal components. The subspace corresponding to the three largest eigenvalues (an EMoR model with three
parameters) captures more than 99.5 percent of the energy.

7. We restrict our attention to functions which are square integrable on
[0, 1].



where c ¼ HT ðf % f0Þ are the model coefficients. We also
performed PCA in log-space. In that case, the mean curve in
log-space flog;0, corresponds to the geometric mean in WRF,
shown in Fig. 5a. The first four principal components
hlog;1; . . .hlog;4 in log-space of the DoRF curve are plotted in
Fig. 5b as they appear in WRF after being exponentiated.
With this model, a response function f is approximated

fðEÞ + ðeflog;0ðEÞÞ
YM

n¼1

ðehlog;nðEÞÞcn : ð5Þ

Since Wlog is a vector space, the isolation of the mean
flog;0ðEÞ is not necessary the way it is in the linear case.
Isolating the mean does, however, improve the approxima-
tion. The log model gives comparable results to the simpler
technique of finding a linear basis directly in WRF. Never-
theless, there may be cases where it is better to use a log
model. For example, consider images coming from a digital
capture card connected to a video camera. Some cards
apply a gamma to the camera response. Thus, the response
of the complete imaging system is a composite of one
response followed by the other. In log-space application of
gamma corresponds to multiplication by a constant. Thus, a
linear model in log-space is able to represent such
composite responses easily. However, we should note that
PCA is no longer optimal with regard to least-squares in
WRF for the log model. Moreover, the log-model is very
sensitive for small irradiance values.

6 IMPOSING MONOTONICITY

The EMoR approximation ~ff from (4) satisfies the constraint
that the function lies in the hyperplane ~ff 2 W1. Never-
theless, as discussed in Section 2, functions in the theoretical
space WRF must also be monotonic. In this section, we will
describe finding a monotonic EMoR approximation in terms
of finding a least squares approximation subject to a set of
inequalities.

We first note that the space of monotonic EMoR
approximations LM :¼ ðf0 þ VMÞ \WRF is convex. This is
because it is an intersection of convex sets. Suppose f is the
true response curve to be approximated. The convexity of
LM implies that there is a unique closest point, ~ffmon, in LM

to f . Here, we measure distance in terms of the norm in L2.
Thus, ~ffmon is the monotonic least squares EMoR approx-
imation to f .

Wenote that the function ~ffmon ismonotonic if itsderivative
is positive. If D is the discrete derivative matrix, then the
monotonicity constraint becomes a system of inequalities,
which in matrix form can be writtenD~ffmon , 0. LetH be the
matrix with the first M PCA eigenvectors as columns. Then,
~ffmonwill beof the form ~ffmon ¼ f0 þHĉc; ,where the coefficient
vector ĉc is determined as ĉc ¼ argminc jjHc% f % f0jj2, subject
to the constraint

DHĉc , %f0: ð6Þ

Thus, finding ĉc turns into a standard problem of quadratic
programming. More details on how we performed this
minimization are given in the Appendix. We note that since
the function log is monotonic, a function is monotonic in
log-space if and only if it is monotonic. Thus, the
monotonicity may be also be imposed in log-space using
quadratic programming.

As an example, we apply quadratic programming to
approximate all the DoRF curves in the 2-parameter
approximation space L2 :¼ ðf0 þ V2Þ \WRF: In this space,
it is possible to visualize both the space of response
functions WRF and how the DoRF curves appear within it.
In Fig. 6, L2 is the pie shaped region and the black dots and
circles are all the curve approximations to DoRF curves L2:
For reference, the approximation to the gamma curves in
DoRF are shown as circles.

The space of curves V2 is two-dimensional and can be
parameterized by the derivatives of the curves at 0 and 1:
Monotonicity bounds the coefficients and thus the deriva-
tives. From Fig. 6, one can see that the bounds on the
derivatives at 0 and 1 are approximately 44 and 5.1,
respectively. As pointed out in [26], we can use the
derivative of the response function to estimate the signal-
to-noise ratio (SNR) of any given gray-level. Note also that
there are large sections of the pie-shaped convex region
where no curves (dots or circles) appear. Although this tells
us nothing about dimensionality, it does indicate that the
space occupied by the diverse set of 201 response curves in
DoRF is quite localized in L2.

7 EVALUATING THE EMOR MODEL

The various approximation models described in Section 3
can fit increasingly complex response functions at the cost
of using many parameters (model coefficients). What
distinguishes these models from each other is the rate and
manner with which the quality of the approximation varies
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Fig. 5. (a) The mean of the camera responses in DoRF in log-space. This is equivalent to the geometric mean of the curves in DoRF. (b) Four
principal components in log-space. (c) A plot showing the percentages of the energies in log-space. This shows a three-dimensional subspace
captures more than 99.6 percent of the energy in log-space.



with the number of parameters. To see this in the case of
EMoR, we chose two curves from the DoRF database which
were difficult to fit. Fig. 7 shows approximations of these
two curves with the number of parameters M ¼ 1, 3, 5, 7,
and 9. Even the low-parameter approximations follow the
curves grossly. With five parameters, it is hard to
distinguish the response curves from the approximations.
The approximations for M ¼ 11 are almost identical to the
original curves. These worst-case curves show qualitatively
how fitting improves with the number of parameters.

We conducted an extensive quantitative evaluation of
the EMoR model. Table 1 shows how accuracy increases
with dimensionality. We used EMoR to approximate the
175 training curves as well as the 26 testing curves
described in Section 4. We used four metrics with each set
to evaluate the results. The results are shown in Table 1. The
error values based on root-mean-square error (RMSE)
appear in rows labeled RMSE Case. We compute the Mean
Error by averaging the RMSE over all curves in each set
(training and testing). The largest RMSE over all curves in
the set gives the value called Worst Curve. The errors in

rows labeled Disparity Case are computed from the
maximum disparity of the fit and the original curve. The
columns of Table 1 correspond to the dimensions (para-
meters) used for the EMoR model. Note that most curves
are well-approximated using an EMoR model with just
three parameters.

Taking % log2 of the entries in Table 1 gives the accuracy
in bits. The number of parameters needed for acceptable
accuracy depends on the application. For example, suppose
we wish to construct a mosaic by blending a set of images
taken with an 8-bit camera, and an error of four gray-levels
is acceptable. Choosing three parameters gives an RMSE
Case/Mean Error accuracy of 6:8. In an application that is
more sensitive to errors, such as stereo, choosing six
parameters exceeds 9:0 bits of accuracy using the same
measure. Some algorithms may require very accurate scene
radiance measurements. The Disparity Case/Mean Error
metric gives the average of the worst errors. This measure
indicates that using 11 parameters ensures 8:3 bits of
accuracy.
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Fig. 6. The span of the eigenvectors associated with the two largest
eigenvalues. We parameterize this span by the derivatives of the
response curves at 0 and 1. The pie-shaped region (bounded by the
solid curve) is the intersection with the cone of monotonic functions. The
circles are approximations to the gamma curves and the black dots are
approximations to the remaining curves in DoRF. The unoccupied areas
in the pie-shaped region represent monotonic functions that typically are
not camera response functions in practice.

Fig. 7. A qualitative illustration of how the fit of the EMoR model
improves with the numbers of model parameters. Here, we show two of
the most difficult responses in the DoRF database. For each of these
responses, approximation curves with one, three, five, seven, and nine
parameters are shown. Even with five parameters, the approximation is
quite good. With 11 parameters, there is little difference between the
approximate and actual curves.

TABLE 1
An Evaluation of the Performance of the EMoR Model as the Number of Parameters Increase

The model was used to approximate curves in our training set of 175 curves and testing set of 26 curves from DoRF. In the RMSE Case, the Mean
Error is the RMSE averaged over all the curves in each set. The largest RMSE for the set is listed in the row labeled Worst Curve. The Disparity
Case uses the maximum disparity between approximated and actual curves. In this case, theMean Error and theWorst Curve values are the mean
disparity and maximum disparity computed over all the curves in the set. Most curves are well-approximated using only three parameters.



We evaluated EMoR by comparing its performance to
other approximationmodels, whenmonotonicity is imposed
in all cases. These include the gamma function,E# , as well as
the polynomial and trigonometric approximation models
described at the end of Section 3. The gamma curve has only
one parameter, given our normalizations. Table 2 sum-
marizes our results for theDoRF testing curves. The accuracy
of the gamma curve model, using the RMSE averaged across
the testing curves, is 4.86 bits. For one-parameter models, the
gamma curves are superior to other models. All models,
except the gamma curve, may be made more accurate by
using more parameters. As the number of parameters
increases, the EMoR-based monotonic fit significantly out-
performs the other models. Table 3 shows that EMoR is also
superior to othermodelswhen accuracy ismeasured in terms
of themaximumdisparity of theworst curve in the testing set.

We also evaluated the empirical approximation model of
(5) using log-space. Table 4 is identical to Table 1, except the
DoRF curves were transformed to log-space. The model
curves were exponentiated as in (5) before the errors were
measured. The errors are comparable but more often larger
than those in Table 4. This is an indication that approximat-
ing a response in log-space does not minimize the least-
square error for curves in WRF: Since PCA in log-space does
not minimize the least square error in WRF, we are not even
guaranteed that increasing the number of parameters will
yield a better least squares answer. Nevertheless, as pointed
out in Section 5, the model in log-space is advantageous

when the imaging system’s response consists of a camera
response composed with a gamma response. With either the
linear or log-space EMoR model, we can achieve a good
monotonic approximation with a small number of para-
meters. Our evaluation shows that our empirical models
perform better than those based on polynomials, trigono-
metric functions, or gamma curves.

8 CAMERA RESPONSE FROM SPARSE SAMPLES

The most popular way to estimate a camera’s response
function is by imaging a color chart of known reflectances,
such as the Macbeth chart [5]. The Macbeth chart includes
six patches with known reflectances going from white
through gray to black. Typically, one applies standard
interpolation to these points to obtain a continuous
response function. There is no guarantee that the inter-
polated values correspond to the actual response function
of the camera.

The EMoR model enables us to obtain accurate inter-
polations from chart measurements. Fig. 8 shows interpola-
tion results obtained by fitting four different 3-parameter
models (including EMoR) to the sparse response samples
obtained from an image of a Macbeth chart taken using a
Nikon 990 digital camera.8
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TABLE 2
Table Showing RMSE of Various Approximation Models Averaged over the Testing Curves

To Compute Accuracy in Bits, Take % log2 of the average RMSE. EMoR clearly outperforms all the other models.

TABLE 3
Table Showing the Maximum Disparity between Curves in the Testing Set and Their Model Approximations

Again, to compute the accuracy in bits, we take % log2 of each table entry. Once again, EMoR has the best performance.

TABLE 4
An Evaluation of the Performance of the Log Version of the EMoR Model as the Number of Parameters Increase as in Table 1

Entries in the table show the log-space version of EMoR gives comparable results to the simpler version of EMoR.

8. The Nikon 990 camera was not part of the training or testing curves in
DoRF.



From the chart and its image, we have six normalized
irradiance values9 E1; . . . ; E6 and corresponding intensity
values B1; . . . ; B6. The three coefficients for the EMoR
model are computed using (4), where the matrix H comes
from the EMoR basis function h1; h2, and h3 evaluated at
E1; . . .E6. Similarly, we take the first three basis vectors for
the polynomial model evaluated at E1; . . .E6 to obtain H
and compute the three coefficients of that model. We also
computed the first three coefficients of the EMoR and the
polynomial model with monotonicity imposed, using the
method described in Section 6.

The interpolations obtained from the different models
were evaluated (using RMSE) against many more chart
measurements obtained by simply changing the camera’s
exposure. For the 3-parameter EMoR, the RMSE was 0:11,
while for the polynomial model, it was 0:12. Moreover, the
polynomial fit is already beginning to exhibit the kind of
oscillations one expects from overfitting. These oscillations
worsen as the number of parameters increases. This is
because we only fit using six data points. When we
constrain the fits to be monotonic, the RMSE for the EMoR
model is 0:11 and the RMSE for the polynomial model is
0:57. In summary, the EMoR model enables accurate
reconstructions of response curves from very few samples.

9 RESPONSE FROM MULTIPLE IMAGES

A number of algorithms recover a camera’s response from
multiple images of an arbitrary static scene taken using
different exposures [6], [23], [22], [26], [30]. These algo-
rithms recover the inverse response function f%1 ¼ g, where
gðBÞ ¼ E. Since an inverse response function has all the

properties of a response function, we can apply PCA to the
inverses of the curves in DoRF to get an EMoR representa-
tion of the inverse camera response. We write gðBÞ ¼
g0ðBÞ þ

PM
n cnhinv

n ðBÞ in terms of the mean g0 and the
eigenvectors hinv

n of the covariance matrix of the inverse
curves.

Now, suppose two images of the same scene are
captured with exposures e and k- e, where k is the ratio
of exposures. Suppose the images are registered. If a
response Ba at a point in one image corresponds to a
response Bb in the second image, then their irradiances
must satisfy gðBaÞ ¼ kgðBbÞ: Since the equations gðBaÞ %
kgðBbÞ ¼ 0 are linear in the coefficients cn; the coefficients
can be found using least-squares techniques, when k is
known.

Using this approach, we recovered the response of the
Nikon 990 Coolpix camera from the three images10 of a
scene shown in Fig. 9, taken using exposures e, 2e, and 4e
(i.e. k ¼ 2). The monotonic EMoR fit (using just three
parameters) is shown as a solid curve in Fig. 10. For
comparison, the polynomial method of Mitsunaga and
Nayar [26], and the log method of Debevec and Malik [6] is
also shown. Measurements from the Macbeth chart (black
dots) are included as ground truth. All the recovered curves
are reasonable fits although only the EMoR fit is monotonic.
The EMoR fit was found to be closest to the ground truth
(chart data).

10 CONCLUSION

Camera response curves represent the critical link between
image measurements and scene radiances. Our goal is to
provide a simple model which takes us from image
intensity to scene radiance for the entire imaging system.
To do this, we began with by analyzing the a priori
properties of response curves. From these properties, we
derived the theoretical space of all camera response
functions. We have shown that all responses must lie
within a convex set that results from the intersection of a
hyperplane and the positive cone of monotonic functions.
We used this space to formulate two general approximation
models for camera responses. One set of models directly
describes response functions with a linear combinations of
component functions. This set of models subsumes pre-
viously used ones such as the polynomial model, as well as
others such as the trigonometric model. A second set of
models represents responses in log-space.

To fully exploit our theoretical insights, we created a
database, DoRF, of 201 real-world response functions. We
used the empirical data from DoRF and the general
approximation model from our theoretical analysis to
develop a powerful approximation model for responses
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Fig. 8. The response curve of a Nikon 990 camera interpolated from
sparse samples, obtained using a Macbeth chart, using 3-parameter
EMoR and polynomial models both with and without monotonicity
imposed. Images of the chart taken with the same camera at different
exposures provide the additional measurements (ground truth) used to
estimate the accuracies of the interpolations. The monotonic EMoR has
the smallest RMS error.

9. We estimated the normalization constant such that EMAX ¼ 1
separately, so in fact, we are using seven samples. Alternately, we can
choose an exposure so that E6 is close to, but not saturated. We then obtain
a response where we treat the unnormalized brightness value associated to
that patch, as if it were the saturation value. 10. “Ernie” image used courtesy of Sesame Workshop.

Fig. 9. Three images of a static scene taken with a Nikon 990 Coolpix
camera using exposures e, 2e, and 4e (left to right). These images were
used to recover the inverse response of the camera (see Fig. 10).



called EMoR. We used several measures to show that the
EMoR model performs far better than other models used in
the literature.

As a basis for future work, we note that the same
methodology can be applied to spectral response curves.
Many film and camera manufacturers have published
spectral response curves. The constraint for these response
curves is positivity rather than monotonicity. Like mono-
tonicity, the positivity constraint can be expressed as a
system of inequalities. Therefore, given an empirical linear
model, it is possible to use the methods of quadratic
programing to determine coefficients for an empirical
model for the spectral response that maintains the positivity
constraint.

In this work, we showed two example applications of the
EMoR model. The first used a few patches on a reflectance
chart to fully recover the response curve of the camera. The
second used EMoR to recover the camera response from
three images of an arbitrary scene taken with different
exposures. Our experimental results show that the EMoR
model provides an accurate and efficient low-parameter
model of real-world camera responses. The DoRF database
and the EMoR model can be downloaded at http://
www.cs.columbia.edu/CAVE.

APPENDIX

FORCING MONOTONICITY BY QUADRATIC

PROGRAMMING

In Section 6, we outline how the EMoR model can be used
to approximate a response function while ensuring it is
monotonic. The constrained approximation may be posed
as a standard problem of quadratic programming. To see
this we will show that subject to a linear inequality Aineqs &
bineq our problem is to minimize a quadratic objective
function GðsÞ.

This quadratic objective function comes from recalling
that in Section 6, we showed that for the parameters s ¼ ðs1;
. . . ; sMÞ, the squared approximation error is given by
jjEs% vjj2, where E is the matrix whose columns are basis
vectors of W0, and where v ¼ f % f0, with f the function we
are trying to approximate, and f0 the 0th order approxima-
tion. Therefore, minimizing the squared error is the same as
minimizing the quadratic objective function, GðsÞ :¼ 1

2 s
T

Hsþ dT s, where H :¼ ETE and d :¼ ETv.
We impose themonotonic constraint on ~ffmon ¼ f0 þ Esby

saying that the derivative of the approximation is positive.
This is a linear condition. Using a dense sampling of the
domain, ðE1; . . . ; EP Þ, we represent a function ~ffmon, by the
vector ð~ffmonðE1Þ; . . . ; ~ffmonðEP ÞÞT . We compute the discrete
derivativeD~ffmon, whereD is an ðP % 1Þ - P matrix andwith
Dn;n :¼ %1=Qn, Dn;nþ1 :¼ 1=Qn and zero elsewhere, where
Qn ¼ Enþ1 % En. Then,D~ffmon , 0 can be written asAineqs ,
bineq, where Aineq :¼ DE, and bineq :¼ %Df0. Note, we do not
have to constrain the boundary points.11

To perform the optimization used Matlab 6.0 function
quadprog, which efficiently solves this problem using an
active set method described in [11], [12]. The algorithm
requires an initial guess for the solution for which we use

the EMoR estimate ~ff given by (4). If ~ff satisfies the
constraints, then it is already monotonic and no further
optimization is needed. If not, we note that trivially f0
satisfies the constraints; it is monotonic. Thus, there is some
J such that the convex combination ð1% 2JÞmþ 2J ~ff is an
initial solution to the constraints. Since, in practice, ~ff is close
to monotonic, usually J ¼ 1 or J ¼ 2.

ACKNOWLEDGMENTS

This work was completed with support from a US National
Science Foundation ITR Award (IIS-00-85864) and a grant
from the Human ID Program: Flexible Imaging over a Wide
Range of Distances Award No. N000-14-00-1-0929. The
authors thank Sesame Workshop for granting permission
for use of the “Ernie” image.

REFERENCES

[1] N. Asada, A. Amano, and M. Baba, “Photometric Calibration of
Zoom Lens Systems,” Proc. Int’l Conf. Pattern Recognition, p. A73.7,
1996.

[2] R. Basri and D.W. Jacobs, “Photometric Stereo with General,
Unknown Lighting,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 374-381, 2001.

[3] P.J. Burt and R.J. Kolczynski, “Enhanced Image Capture through
Fusion,” Proc. Int’l Conf. Computer Vision, pp. 173-182, 1993.

[4] B. Cabral, M. Olano, and P. Nemec, “Reflection Space Image
Based Rendering,” Computer Graphics, Proc. SIGGRAPH, pp. 165-
170, 1999.

[5] Y.C. Chang and J.F. Reid, “RGB Calibration for Color Image-
Analysis in Machine Vision,” IEEE Trans. Image Processing, vol. 5,
no. 10, pp. 1414-1422, Oct. 1996.

[6] P.E. Debevec and J. Malik, “Recovering High Dynamic Range
Radiance Maps from Photographs,” Computer Graphics, Proc.
SIGGRAPH, pp. 369-378, 1997.

[7] P.E. Debevec, “Rendering Synthetic Objects into Real Scenes,”
Computer Graphics, Proc. SIGGRAPH, pp. 189-198, 1998.

[8] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed.
New York: Wiley, 2000.

[9] H. Farid, “Blind Inverse Gamma Correction,” IEEE Trans. Image
Processing, vol. 10, no. 10, pp. 1428-1433, Oct. 2001.

[10] G.D. Finlayson, S.D. Hordley, and P.M. Hubel, “Color by
Correlation: A Simple, Unifying Framework for Color Constancy,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 11,
pp. 1209-1221, Nov. 2001.

GROSSBERG AND NAYAR: MODELING THE SPACE OF CAMERA RESPONSE FUNCTIONS 1281

11. Recall that f0ð0Þ ¼ 0 and f0ð1Þ ¼ 1. Moreover, all elements of W0 are
functions which vanish at the endpoints. All elements of f0 þW0 and, thus,
f0 þ Vm, satisfy the boundary conditions.

Fig. 10. Inverse response curves recovered from the images in Fig. 9
using the monotonic EMoR model (with three parameters), the
Mitsunaga-Nayar polynomial model, and the Debevec-Malik log model
(with three smoothing parameters, % ¼ 8; 32; 128). The dots correspond to
ground truth obtained by calibration using a Macbeth reflectance chart.



[11] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright,
“Procedures for Optimization Problems with a Mixture of Bounds
and General Linear Constraints,” ACM Trans. Math. Software,
vol. 10, no. 3, pp. 282-298, 1984.

[12] P. Gill, W. Murray, and M. Wright, Numerical Linear Algebra and
Optimization. vol. 1, Redwood City, Calif.: Addison-Wesley, 1991.

[13] M. Grossberg and S. Nayar, “What Can Be Known About the
Radiometric Response Function from Images?” Proc. European
Conf. Computer Vision, pp. 189-205, 2002.

[14] M. Grossberg and S. Nayar, “What Is the Space of Camera
Response Functions?” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2003.

[15] G. Healey and R. Kondepudy, “Modeling and Calibrating CCD
Cameras for Illumination-Insensitive Machine Vision,” SPIE Proc.,
Optics, Illumination, and Image Sensing for Machine Vision VI,
vol. 1614, pp. 121-132, 1992.

[16] G. Healey and R. Kondepudy, “Radiometric CCD Camera
Calibration and Noise Estimation,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 16, no. 3, pp. 267-276, Mar. 1994.

[17] B.K.P. Horn and M.J. Brooks, Shape from Shading. MIT Press, 1989.
[18] Eastman Kodak, Student Filmmaker’s Handbook, 2002.
[19] E.H. Land and J.J. McCann, “Lightness and Retinex Theory”

J. Optical Soc. of Am., vol. 61, no. 1, pp. 1-11, 1971.
[20] Q.T. Luong, P. Fua, and Y. Leclerc, “The Radiometry of Multiple

Images,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 24, no. 1, pp. 19-33, Jan. 2002.

[21] B.C. Madden, “Extended Intensity Range Image,” Technical
Report 366, Grasp Lab, Univ. of Pennsylvania, 1993.

[22] S. Mann and R. Picard, “Being ‘Undigital’ with Digital Cameras:
Extending Dynamic Range by Combining Differently Exposed
Pictures,” Proc. IS&T, Soc. for Imaging Science and Technology 46th
Ann. Conf., pp. 422-428, 1995.

[23] S. Mann, “Comparametric Equations with Practical Applications
in Quantigraphic Image Processing,” IEEE Trans. Image Processing,
vol. 9, no. 8, pp. 1389-1406, Aug. 2000.

[24] S. Mann, “Comparametric Imaging: Estimating Both the Un-
known Response and the Unknown Set of Exposures in a Plurality
of Differently Exposed Images,” Proc. Conf. Computer Vision and
Pattern Recognition, Dec. 2001.

[25] S. Marschner, S. Westin, E. Lafortune, and K. Torrance, “Image-
Based BRDF Measurement,” Applied Optics, vol. 39, no. 16, 2000.

[26] T. Mitsunaga and S.K. Nayar, “Radiometric Self Calibration,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2,
pp. 374-380, June 1999.

[27] S. Narasimhan and S. Nayar, “Removing Weather Effects from
Monochrome Images,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 186-193, 2001.

[28] S.K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from Interreflec-
tions,” Int’l J. Computer Vision, vol. 6, no. 3, pp. 173-195, Aug. 1991.

[29] R. Ramamoorthi and P. Hanrahan, “A Signal-Processing Frame-
work for Inverse Rendering,” Computer Graphics, Proc. SIGGRAPH,
pp. 117-128, 2001.

[30] Y. Tsin, V. Ramesh, and T. Kanade, “Statistical Calibration of the
CCD Imaging Process,” Proc. Int’l Conf. Computer Vision, pp. 480-
487, 2001.

[31] R.J. Woodham, “Photometric Method for Determining Surface
Orientation fromMultiple Images,” OptEng, vol. 19, no. 1, pp. 139-
144, Jan. 1980.

[32] Y. Yu, P.E. Debevec, J. Malik, and T. Hawkins, “Inverse Global
Illumination: Recovering Reflectance Models of Real Scenes from
Photographs,” Computer Graphics, Proc. SIGGRAPH, pp. 215-224,
1999.

[33] R. Zhang, P.S. Tsai, J.E. Cryer, and M. Shah, “Shape from Shading:
A Survey,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 21, no. 8, pp. 690-706, Aug. 1999.

[34] T. Zickler, P.N. Belhumeur, and D.J. Kriegman, “Helmholtz
Stereopsis: Exploiting Reciprocity for Surface Reconstruction,”
Proc. European Conf. Computer Vision, 2002.

Michael D. Grossberg received the PhD
degree in mathematics from the Massachusetts
Institute of Technology in 1991. He is a research
scientist with the Columbia Automated Vision
Environment (CAVE) at Columbia University.
His research in computer vision has included
topics in the geometric and photometric model-
ing of cameras and analyzing features for
indexing. Dr. Grossberg was a lecturer in the
Computer Science Department at Columbia

University. He was also a Ritt assistant professor of mathematics at
Columbia University. He has held postdoctoral fellowships at the Max
Plank Institute for Mathematics in Bonn, and the Hebrew University in
Jerusalem. He has authored and coauthored papers that have appeared
in ICCV, ECCV, and CVPR. He has filed several US and international
patents for inventions related to computer vision. He is a member of the
IEEE Computer Society.

Shree K. Nayar received the PhD degree in
electrical and computer engineering from the
Robotics Institute at Carnegie Mellon University
in 1990. He is the T.C. Chang Professor of
computer science at Columbia University. He
currently heads the Columbia Automated Vision
Environment (CAVE), which is dedicated to the
development of advanced computer vision sys-
tems. His research is focused on three areas:
the creation of cameras that produce new forms

of visual information, the modeling of the interaction of light with
materials, and the design of algorithms that recognize objects from
images. His work is motivated by applications in the fields of computer
graphics, human-machine interfaces, and robotics. Dr. Nayar has
authored and coauthored papers that have received the Best Paper
Honorable Mention Award at the 2000 IEEE CVPR Conference, the
David Marr Prize at the 1995 ICCV held in Boston, Siemens Outstanding
Paper Award at the 1994 IEEE CVPR Conference held in Seattle, 1994
Annual Pattern Recognition Award from the Pattern Recognition
Society, Best Industry Related Paper Award at the 1994 ICPR held in
Jerusalem, and the David Marr Prize at the 1990 ICCV held in Osaka.
He holds several US and international patents for inventions related to
computer vision and robotics. Dr. Nayar was the recipient of the David
and Lucile Packard Fellowship for Science and Engineering in 1992, the
National Young Investigator Award from the US National Science
Foundation in 1993, and the Excellence in Engineering Teaching Award
from the Keck Foundation in 1995.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1282 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004


