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57 ABSTRACT

The quality (e.g., resolution) of image data, video data, and
sound data representing a scene or signal is enhanced by a
quality enhancement function trained on high quality and
low quality representations of a portion of the same scene or
signal. The enhancement function is thus optimized to the
most relevant input. A training algorithm uses low quality
image of a scene or scene portion, along with a high quality
image of the same scene or scene portion, to optimize the
parameters of a quality enhancement function. The opti-
mized enhancement function is then used to enhance other
low quality images of the scene or scene portion. Sound data
is enhanced by using a low resolution sample of a portion of
a signal, and a high resolution sample of the same signal
portion, to train a quality enhancement function which is
then used to enhance the remainder of the signal.

38 Claims, 16 Drawing Sheets
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METHOD AND SYSTEM FOR ENHANCING
DATA QUALITY

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Patent
Application Ser. No. 60/367,324, entitled “Enhanced Imag-
ing Using Self-Training Sensors,” filed on Mar. 25, 2002,
which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with support in part from the
U.S. Government under National Science Foundation
Research Award No. 1IS-00-85864. Accordingly, the U.S.
Government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

An imager, such as a video or still camera, images a scene
by receiving and detecting light emanating from the scene.
The incoming light signal from a particular point in the
scene has characteristics, such as an intensity, a wavelength
spectrum, and a polarization. In addition, the entire light
field received by the imager varies with the angle at which
the light is received by the imager. Of course, the angle at
which a particular light ray or light ray bundle is received
depends upon the location of the scene point from which the
light emanated.

A number of applications require precise and accurate
measurement of the light field. For example, in Imaged
Based Rendering (IBR), a scene is imaged and then re-
rendered to simulate navigation around the scene. Measure-
ment of the entire light field with respect to both space and
direction allows extraction of the geometric structure of the
scene. As another example, light reflected from each mate-
rial and emanating from each illumination source has its
own characteristic spectral curve and polarization charac-
teristics. With high spectral resolution it is possible to
identify different types of material and illumination, and/or
to re-render the scene under different, simulated illumina-
tion. Measuring the polarization of light from a scene point
provides further information regarding the type of material
present at the scene point, and regarding the illumination
incident on the scene point. Polarization information has
also been used to compensate for the effects of weather
conditions when rendering outdoor scenes, and to help
measure depth—i.e., the distance of a scene point from the
imager. As can be seen from the above examples, a system
which precisely and accurately measures the light field has
a variety of useful applications.

However, conventional imagers are limited in their inten-
sity resolution, spectral resolution, and polarization resolu-
tion—i.e., their ability to resolve differences in intensity,
wavelength, and polarization—and are also limited in their
spatial resolution—i.e., their ability to resolve differences in
the locations of respective scene points. For example, there
currently exist digital still cameras capable of capturing high
spatial resolution images. However, because of the amount
of data involved, these cameras are not capable of producing
high resolution video. On the other hand, inexpensive cam-
eras exist that can capture video at 30 frames/second—a
respectable temporal resolution. However, such video cam-
eras provide only low spatial resolution. It is particularly
difficult to design an imager having high time resolution and
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high spatial resolution. In addition to the engineering prob-
lems associated with high resolution in multiple dimensions,
there are often fundamental physical problems. For example,
low light conditions require longer exposure times, resulting
in coarser temporal resolution and, accordingly, more blur-
ring in imaging of moving objects.

One approach for addressing the above-described prob-
lems uses multiple sensors which are “co-located” (i.e., have
the same viewpoint) to measure different aspects of the light
field. For example, it is possible to co-locate a thermal
imager, a range finder, and a visible-light camera. In some
cases a multiple-sensor approach can overcome some of the
physical limits imposed on single sensors, such as the
trade-off between exposure and temporal resolution. How-
ever, such an approach requires additional imaging
resources. In a situation in which the available resources are
finite—e.g., in which there is a fixed number of pixels, a
fixed amount of memory, and trade-offs between exposure
and time—it is desirable to use these resources as efficiently
as possible.

Ifthe light field were simply an unrelated and arbitrary set
of intensities, there would be little hope of a solution other
than building bigger, faster, and more densely packed sen-
sors. However, there is tremendous structure and redun-
dancy in the light field. For example, when the viewpoint is
shifted slightly, the view of the scene typically changes in
predictable ways. In addition, the spectral response across a
material of a single color will often be relatively uniform.
Furthermore, the motions of objects in a scene are often
regular and predictable. For example, most objects are rigid,
and in many cases, objects tend to move at nearly constant
velocities. All of these factors create great redundancies in
the light field. As a result, it is usually not necessary to
sample the light field at every point in its domain to
reconstruct, approximate, or predict the light field.

To exploit the above-described redundancy in the light
field, assumptions can be made regarding the structure of
this redundancy. For example, interpolation and sampling
theory uses assumptions about the regularity of a signal to
recover the signal from a limited number of samples. As a
particularly well-known example, the Nyquist theorem
states that the maximum required signal sampling frequency
is limited, provided that the signal being sampled is band
limited—i.e., has frequency components within a finite
range. In the context of images, the requirement of finite
frequency range essentially translates to a limit on the
permissible sharpnesses of discontinuities such as edges and
corners. The functions used in the Nyquist theorem are
trigonometric functions, but polynomials can also be used
for interpolation of images. Simple examples include bilin-
ear and bi-cubic interpolation. Unfortunately, the improve-
ment possible from simple interpolation techniques is lim-
ited. In particular, the resolution increases provided by such
techniques are typically rather modest. Moreover, since
natural images often do not conform to the mathematical
assumptions inherent in interpolation techniques, such meth-
ods can produce aesthetically unpleasant artifacts.

Sparsely sampling an image and interpolating the result-
ing data effectively acts as a low-pass filter. Accordingly,
increasing the spatial resolution of an image can be
expressed as a problem of “de-blurring” the image. Sharp-
ening filters, such as Pseudo Inverse and Weiner Filters,
have been used to invert Gaussian blur. Other previously
used approaches include Bayesian analysis, interpolation
along edges, adaptive filtering, wavelet analysis, fractal
interpolation, projection on convex sets, variational meth-
ods, and level sets. Such approaches improve on basic
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interpolation, but because they only use local image struc-
ture or apply a hypothesized global prior to the behavior of
the light field—i.e., an assumption regarding the regularity
of the light field—their ability to exploit redundancies is
somewhat limited.

Related to sampling and interpolation are techniques
known as “super-resolution,” in which relatively course
sampling is performed multiple times to improve the effec-
tive resolution of the sampling. As with the above-described
interpolation methods, super-resolution makes assumptions
about the regularity of the light field, and has recently been
shown to have theoretical limits.

Various multi-camera systems have been proposed for
capturing light fields over wide areas. Such systems typi-
cally use interpolation image warping to fill in missing data.
For example, in hybrid imaging, images are captured using
multiple cameras with different characteristics—e.g., differ-
ent frame rates or spatial resolutions. A larger part of the
light field is filled in based on computed camera geometry,
using a combination of interpolation and image warping.

An additional approach is based on texture synthesis and
scene statistics. Rather than make mathematical assumptions
about the structure of the redundancy in a light field,
statistics or pattern analysis are used to model and exploit
the redundancy. One technique uses correlations of pixels at
different scales. Another approach is to “train” the model
using a variety of different textures and a variety of different
images of everyday scenes. In the training approach, the
training algorithm should be capable of extracting and
utilizing the redundancies in the image to improve the image
and increase its resolution. If the domain of image types is
very limited—such as in the well-known “hallucinating
faces” method, in which high resolution images of human
faces are synthesized from low-resolution data—training
approaches can dramatically improve resolution. However,
attempts to model broader domains typically encounter
standard problems of machine learning. For example, if the
model is trained on very specific domains, the model
becomes over-fitted to the particular training data, resulting
in poor generalization. For example, if a resolution-enhance-
ment algorithm is trained on faces and then applied to
buildings, the algorithm will tend to produce artifacts and
low quality enhancement results. On the other hand, if the
model is trained on a very broad domain of image types, it
learns only very general redundancies that occur in most
images. As a result, although a broadly trained model will
provide some benefit for most domains, it will not provide
extremely good results for any domain.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a method and system which enhances the quality of data
such as image data (e.g., video and still image data) and
sound data while using hardware resources efficiently.

It is a further object of the present invention to provide
such data quality enhancement in a manner which avoids
undesirable side effects such as visually unpleasing artifacts.

It is a still further object of the present invention to
provide data quality enhancement with good performance
for a wide variety of different types of images, sounds, etc.

These and other objects are accomplished by a quality
enhancement function which is trained on a sub-portion of
the data set which will be enhanced. For example, the system
can capture low quality image data from an entire scene and
high quality image data from a narrow field of view of the
scene. The high quality image data—which represents a
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sub-portion of the scene—and a corresponding sub-portion
of the low quality image data—which represents the same
sub-portion of the scene—are processed by a training algo-
rithm which trains the quality enhancement function based
on these sets of image data. In other words, the quality
enhancement function has one or more parameters, and the
training algorithm determines which values of these param-
eters are optimal for allowing the quality enhancement
function to derive, from the sub-portion of the low quality
data, a data set closely approximating the high quality
image. Because the quality enhancement function is trained
on high quality and low quality data drawn from the same
scene as is represented by the entire low quality image—i.e.,
the very data that is to be enhanced—the enhancement
function is optimized to the most relevant data set. After
training, the quality enhancement function is used to
enhance the remaining low quality data. The system thus
provides the benefits of learning-enhanced imaging without
the drawbacks (e.g., poor performance with new domains)
associated with conventional systems.

The above-described procedure is not limited to image
data, but can also be applied to audio (i.e., sound) data. To
enhance a sampled audio signal, a low quality data set
representing the signal is captured, along with a high quality
data set representing a sub-portion of the same signal. The
high quality data set representing the sub-portion of the
signal and the corresponding portion of the low-quality data
set are processed by a training algorithm which determines
optimum, learned values of one or more parameters of a
quality enhancement function. The learned parameters are
selected such that the quality enhancement function is
operable to derive, from the relevant portion of the low
quality data set, a data set closely approximating the high
quality data set. Once the training has been performed, the
quality enhancement function is used to enhance the remain-
ing low quality data.

In accordance with an additional aspect of the present
invention, a sequence of images having varying quality can
be used to train a quality enhancement function which will
then be used to enhance low quality images in the sequence.
A high resolution image of a scene and a low resolution
image of the same scene are processed by a training algo-
rithm to determine learned values of one or more parameters
of'a quality enhancement function. The learned values of the
parameters are selected such that, with those parameter
values, the quality enhancement function is operable to
derive from the low quality image an image closely approxi-
mating the high quality image. Once the parameters of the
quality enhancement function have been learned, the quality
enhancement function is used to process additional low
quality images of the same scene to derive higher quality
images.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features, and advantages of the present
invention will become apparent from the following detailed
description taken in conjunction with the accompanying
figures showing illustrative embodiments of the present
invention, in which:

FIG. 1 is a diagram illustrating exemplary image data to
be processed in accordance with the present invention;

FIG. 2 is a flow diagram illustrating an exemplary pro-
cedure for enhancing quality of image data in accordance
with the present invention;

FIG. 3 is a diagram illustrating exemplary sound data to
be processed in accordance with the present invention;
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FIG. 4 is a block diagram illustrating an exemplary
procedure for enhancing quality of image data in accordance
with the present invention;

FIG. 5 is a flow diagram illustrating an exemplary pro-
cedure for enhancing quality of sound data in accordance
with the present invention;

FIG. 6 is a block diagram illustrating an additional
exemplary procedure for enhancing quality of sound data in
accordance with the present invention;

FIG. 7 is a diagram illustrating exemplary image data to
be processed in accordance with the present invention;

FIG. 8 is a diagram illustrating additional exemplary
image data to be processed in accordance with the present
invention;

FIG. 9A is a diagram illustrating a system for enhancing
quality of image data in accordance with the present inven-
tion;

FIG. 9B is a diagram illustrating an additional system for
enhancing quality of image data in accordance with the
present invention;

FIG. 9C is a diagram illustrating yet another system for
enhancing quality of image data in accordance with the
present invention;

FIG. 10A is a diagram illustrating a still further system for
enhancing quality of image data in accordance with the
present invention;

FIG. 10B is a diagram illustrating yet another system for
enhancing quality of image data in accordance with the
present invention;

FIG. 11 is a diagram illustrating an exemplary video
sequence to be processed in accordance with the present
invention;

FIG. 12 is a diagram illustrating a system for generating
image data in accordance with the present invention;

FIG. 13 is a diagram illustrating exemplary video and still
image data to be processed in accordance with the present
invention;

FIG. 14 is a diagram illustrating an exemplary system for
enhancing quality of image data in accordance with the
present invention; and

FIG. 15 is a block diagram illustrating an exemplary
processing arrangement for use in the systems and proce-
dures illustrated in FIGS. 1-14.

Throughout the drawings, unless otherwise stated, the
same reference numerals and characters are used to denote
like figures, elements, components, or portions of the illus-
trated embodiments.

DETAILED DESCRIPTION OF THE
INVENTION

In accordance with the present invention, data quality can
be enhanced by performing low quality and high quality
sampling of the same scene or signal to generate data having
a low amount of quality as well as corresponding data
having a high amount of quality. The low quality data and
the corresponding high quality data—which both represent
the same portion of the scene or signal—are used to train a
data enhancement function which can then be used to
enhance the quality of additional low quality data represent-
ing the remainder of the scene or the signal. The term
“amount of quality” as used herein can, for example, refer to
the spatial resolution of data, but need not be limited to
spatial resolution. “Quality” can, in fact, be any character-
istic related to the precision and/or accuracy with which the
data represents a scene, a light field, an audio signal, etc. For
example, an amount of quality can be an intensity resolution
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(e.g., a number of bits per pixel), a spectral resolution (e.g.,
the number of different spectral components into which light
or other radiation has been resolved), a polarization resolu-
tion (e.g., how precisely the polarization components of
light or other radiation can be resolved), a temporal resolu-
tion (e.g., a number of video frames per second or audio
samples per second), a signal level resolution (e.g., a number
of bits per sample in an audio data stream), and/or a
signal-to-noise ratio. An amount of quality can also refer to,
for example, the following attributes of an image: the
accuracy with which edges appearing in the image represent
the actual locations of the edges of objects in a scene, the
accuracy with which the image represents the actual colors
present in an incoming light field; and/or the accuracy with
which the brightness contrast or color contrast of the incom-
ing light field is represented in the image.

FIGS. 2 and 4 illustrate an exemplary procedure for
enhancing quality of image data in accordance with the
present invention. In the illustrated procedure, a scene is
imaged to generate an image of the scene having a low
amount of quality (step 202). A sub-portion of the scene is
imaged to generate high-quality image data—i.e., data hav-
ing a greater amount of quality than the data generated in
step 202 (step 204). Exemplary sets of image data thus
generated are illustrated in FIG. 1. The illustrated data sets
include a low spatial resolution, 384x384 pixel image I of
a wide field of view of the scene, and a high spatial
resolution, 256x256 pixel image I, of a narrow field of view
of'the scene. The middle 128x128 pixel subset of I, denoted
i s (outlined by the white square in the drawing), corresponds
to a lower spatial resolution version of high spatial resolu-
tion image I, The term “spatial resolution” can, for
example, refer to the number of pixels per unit area on a
plane at unit depth via perspective projection. Accordingly,
although image 1, has fewer total pixels than image I,
image 1, has a higher resolution than I. Optionally, low
resolution data set I can be obtained by selecting a portion
of the entire low resolution image I or by degrading the
higher resolution image I, to the resolution of the low
resolution image . For example, a Gaussian blur kernel for
averaging can be applied to the high resolution data, fol-
lowed by sub-sampling to simulate a low resolution image.
A typical Gaussian blur kernel is a square (e.g., 9x9) matrix
of elements whose values are based on a normalized, 2-di-
mensional Gaussian function G=K exp((-x*-y?)/c?), where
K and o are constants and x and y are the horizontal and
vertical coordinates, respectively. An image is blurred by
calculating a new value for each pixel, the new value being
a weighted average of all of the pixels in a square neigh-
borhood (e.g., a 9x9 neighborhood) surrounding the pixel in
question. To calculate the weighted average, each of the
values of the respective pixels in the neighborhood is
multiplied by the corresponding element of the blur kernel,
and the resulting products are added. The resulting sum of
the products becomes the new value of the center pixel. Each
pixel of the image is individually processed by the above-
described procedure to generate a new, blurred image.

The high quality data I, and the corresponding subset I
of the low quality image I are processed (in step 206) by a
training algorithm 402 to determine learned values 404 of
one or more parameters of a quality enhancement function
406, such that if the learned parameters 404 are used in the
quality enhancement function 408, the function 408 is
operable to derive a data set closely approximating the high
quality data I, from the subset I of the low-quality data 1.
Once the appropriate parameters of the quality enhancement
function are learned, the resulting, optimized function can be
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used to process the remainder I, of the low quality data set
I to derive a data set I representing the remainder of the
scene (step 208). The high quality data sets I, and I;' can be
combined (step 408) to derive a high quality image I, of the
entire scene.

Optionally, the low resolution data subset I < and the high
resolution data set I, can be processed by selecting one or
more “training pairs”—small portions taken from a variety
of different regions in the sets of image data. FIG. 7
illustrates a number of training pairs that can be extracted
from the low resolution and high resolution image data sets
I and I, illustrated in FIG. 1. The low resolution, 5x5 pixel
image patches Pg,, Pg,, Pg;, and P, illustrated in FIG. 7
have been taken from I, and the corresponding high reso-
lution, 10x10 pixel patches Py, Py, Pys, and Py, have
been taken from I,. The resulting pairs of image patches—
(Ps1. Po1)s (Psa Poo)s (Psss Pos)s and (Py, Pp,)—provide
the training data for the training algorithm 402.

The quality enhancement function 406 is trained (in
training algorithm 402) by applying polynomial regression
to a set of training pairs (Pg,, Py)), - - . s (Psg Por), where
K represents the number of training pairs. First, the training
algorithm 402 arranges the values of the 25 pixels of each
low resolution patch Pg, to form a 25-element row vector
Ws,,. The values of the 25 pixels can be arranged in any
convenient order, but the same order is used for all patches.
The vectors of the respective patches are then arranged into
a matrix Wo=(W, 7, ..., W, DT (where “T” denotes the
transpose of a vector or matrix). If Wy, is the vector
representing the first low resolution, 5x5 patch Py, then let
7, (Wg,) (where i=1, . . . 25) represent the value of ith pixel
of that patch Pg,. In order to improve the efficiency of the
training algorithm 402, the algorithm 402 preferably only
considers degree-2 polynomials. Accordingly, let t be a list
or vector of all the degree-2 and smaller monomials, includ-
ing: (a) the value 1; (b) the values of the respective pixels;
and (c) all possible degree-2 monomials that can be formed
by multiplying the various pixels of the patch P, with each
other and with themselves:

- 2 2
t=(t; . .. e 295521752125 « « « 5 Z25 )

, t)=(lzy, . . (D

For each low resolution patch, a row vector of these
monomials is formed. For example, the row vector corre-
sponding to patch P, is t(Wg,):=(t,(Wg,), . . . ts(Wg)). I,
as is illustrated in FIG. 8, the patch Pg, has 25 pixels, the
corresponding row vector t(W, ) has 651 elements. The row
vectors for the respective patches are arranged into a matrix:

H(We=(tWs), . . . t(Wsx) D" ()]

In the illustrated example, 4:1 enhancement of spatial
resolution is being performed. Accordingly, each low reso-
Iution pixel in a given low resolution patch corresponds to
four high resolution pixels in the corresponding high reso-
Iution patch. For example, as is illustrated in FIG. 8, pixel
802 in the 5x5 patch P, corresponds to four pixels 804, 806,
808, and 810 in locations a, b, ¢, and d, respectively, within
the corresponding high resolution patch P,,—each of the
locations a, b, ¢, and d being defined in relation to the
location of the pixel 802 in the middle of the low resolution
patch Pg,. The values of high resolution pixels 804, 806,
808, and 810 can be denoted mathematically as (W),
Woi)s W), and (W), respectively. In the illustrated
example, only the four middle pixels, 804, 806, 808, and 810
of the high resolution patch P, are used for training; the
remaining pixels of the high resolution patch P, need not
be used. Each function of a set of quality enhancement
functions being trained will ultimately be used to operate on
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an entire low resolution patch—which can be viewed as a
neighborhood of the pixel in the middle of the patch—to
derive one of the four high resolution pixels which will
replace the aforementioned low resolution pixel in middle of
the neighborhood. For example, in the case of 4:1 spatial
resolution enhancement based on a 5x5 low resolution
neighborhood/patch, each of four separate resolution
enhancement functions f,, f,, f. and f, operates on the
entire low resolution patch to derive one of the four corre-
sponding high resolution pixels in the four pixel locations a,
b, ¢, and d. The training algorithm 402 operates on the
principle that, if the quality enhancement functions f,, f,, f..
and f, are properly optimized—i.e., if the coefficients of the
functions are properly chosen—it should be possible to
accurately derive a given high resolution pixel (e.g., pixel
804) from the values of all of the pixels in the low resolution
patch (e.g., P, illustrated in FIG. 8). The coeflicients for a
given pixel m (where m=a, b, ¢, or d) form a row vector
C,=(,.1s - - -, C,x)", wherein the values of the coeflicients
in C,, depend on which high quality pixel is being derived—
i.e., whether the pixel being derived is in location a, b, ¢, or
d. In other words, each of the four high quality pixel
locations a, b, ¢, and d has a different set of coefficients: C,
C,, C,, and C,, respectively, for functions f,, f,, f.and f .
Preferably, multiple training pairs are used, each having a
low resolution patch and four corresponding high resolution
pixels in locations a, b, ¢, and d, respectively. Using the
values—taken from all of the training pairs—that are asso-
ciated with a given pixel location m, the values of the
respective high quality pixels situated at that pixel location
m can be arranged into a vector:

(wg)m:((wgl)m> cees (WQK)m)T 3
for m=a, b, ¢, and d. For any one of these four pixel
locations—i.e., for any given m—C,, should solve the fol-
lowing matrix equation:

(WC, =W *
provided that the coefficients of C,, have been correctly
determined. Several well known linear algebra techniques
exist for finding a solution to vector C,, in matrix equations
having the form of Eq. (4). For example, if t(Wo)7t(W) is
invertible, then the training algorithm 402 can compute C,,
as follows:

C= W) W) e W) (W), ®
Eq. (5) provides the least squares solution for C,, in Eq.
(4)—i.e., provides the set of vector element values for C,,
that minimizes the sum of square differences between the
left and right sides of Eq. (4).

In this example, the outputs of the learning phase are the
four coefficient vectors C,, C,, C_, and C,,. These vectors C,
C,, C,., and C, thus contain the coefficients of the four
polynomial enhancement functions f, f,, f. and f, respec-
tively, that can operate on any given 5x5 low resolution
patch L to derive the four corresponding high resolution
pixels H,, in the middle of the neighborhood of that patch L,
where:

H =f,'(L)=t(L)C,, (6)
for m=a, b, ¢, and d. To enhance a low resolution image data
set or subset, such as image subset I illustrated in FIG. 1,
the enhancement algorithm (step 208 in FIG. 2) typically
starts by processing a first 5x5 patch L of the data set I, (e.g.,
the patch L in the upper left corner, as illustrated in FIG. 1)
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to generate the four high resolution pixels H,, H,, H_, and
H, in the center of the corresponding neighborhood of high
resolution image data set 1. The algorithm then processes
the next patch by shifting over (e.g., to the right) by one
low-resolution pixel to generate the adjacent set of four high
resolution pixels. In other words, there is preferably an
overlap area of] e.g., 4x5 pixels between the successive low
resolution patches being processed, thus ensuring full cov-
erage of the scene area in the resulting high resolution image
data set I;'. This overlap should exist in both the vertical and
horizontal directions.

It is to be noted that, although the above discussion has
emphasized the processing of data sets having different
spatial resolutions, the procedures illustrated in FIGS. 2 and
4 can also be used to process data sets having different
intensity resolutions (e.g., different numbers of gray levels
and/or bits per pixel). Referring again to FIGS. 1, 2, and 4,
if the low quality image I is an image having low intensity
resolution, and the high resolution image I, is an image
having high intensity resolution, the high resolution image
I and the first subset I of the low resolution image I, both
of which represent the same portion of the scene—are
processed by a training algorithm 402 (step 206) to deter-
mine the parameters 404 of a quality enhancement function
406. The quality enhancement function 406 has thus been
optimized and can therefore be used to enhance the resolu-
tion of the remaining subset I of the low intensity resolution
image I to derive a high intensity resolution image ;' of the
remainder of the scene (step 208). The high resolution
images I, and I ;' can then be combined (step 408) to provide
an improved image I, of the entire scene, which has higher
intensity resolution than the initially captured low quality
image I of the scene.

FIG. 9A illustrates an exemplary system for collecting
high and low quality data for enhancement in accordance
with the present invention. The illustrated imaging system
includes a first imager 902 having a relatively wide field of
view 908 but relatively low quality (e.g., low spatial or
intensity resolution), a second imager 904 having a narrower
field of view 910 but high quality (e.g., high spatial or
intensity resolution), and a beam splitter 906. The beam
splitter 906 directs the incoming light to both the low quality
imager 902 and the high quality imager 904, and these
imagers 902 and 904 can be used to generate the low
resolution image I and the high resolution image 1, illus-
trated in FIG. 1. Optionally, the system can also include a
processing arrangement 930—which can comprise, for
example, a computer or special-purpose processing logic—
for performing the data enhancement procedures discussed
above with respect to FIGS. 1, 2, and 4. Alternatively, or in
addition, the processing arrangement 930 can be incorpo-
rated into one or both of the imagers 902 and 904.

FIG. 9B illustrates an additional exemplary system for
generating image data for use in the training algorithm and
quality enhancement procedure discussed above. The illus-
trated system includes a camera 912 and a curved mirror 920
which provides a wide angle view of the scene. The mirror
920—which can be, for example, a parabolic mirror—
provides a low resolution field of view 914, a high resolution
field of view 918, and an intermediate resolution field of
view 916. The data collected from the high resolution field
of view 918 and/or the intermediate resolution field of view
916 can be degraded to provide low resolution training data
for use in conjunction with the originally captured high and
medium resolution data. Optionally, a processing arrange-
ment 930—as discussed above with respect to FIG.
9A—can be incorporated into the camera 912.

20

25

30

35

40

45

50

55

60

65

10

FIG. 9C illustrates an additional example of a multi-
resolution imaging system. The imaging system comprises a
camera 922 having a CCD array 924 with a low resolution
portion 928 and a high resolution portion 926. The high
resolution portion 926 captures data within a high resolution
field of view 910, whereas the low resolution portion 928
captures data from a low resolution field of view 908.
Although the imager 922 does not directly capture low
resolution data from the high resolution portion 910 of its
field of view, the high resolution data collected from that
portion 910 of the field of view can be downgraded as
described above to derive low resolution training data for
use in conjunction with the high resolution data collected by
the high resolution portion 926 of the CCD array 924.

It is to be noted that, although the foregoing examples
have emphasized the use of a training algorithm based on
polynomial regression, the technique of training on low
resolution data and high resolution data from the same scene
is not limited to such a training algorithm. In fact, any
training algorithm which uses regression to adjust the
parameters of a data quality enhancement function can be
used. Additional examples of suitable algorithms include the
following well known training algorithms which will be
familiar to those skilled in the art: Bayesian Decisions,
Maximum Likelihood, Linear Discriminants, Neutral Net-
works, Genetic Programming, and Kernel Methods such as
Support Vector Machines.

A quality enhancement procedure in accordance with the
present invention can also be used to enhance sound/audio
data, as is illustrated in FIGS. 3, 5, and 6. In the illustrated
procedure, a sound signal is detected to generate a set A of
low quality sound data (step 502). The low quality data set
Ay includes first and second portions Ag and A,—e.g., data
collected from time t; to time t,, and data collected from
time t, to time t;. A set A, of high quality sound data is
generated by sampling the same sub-portion of the sound
signal that is used to generate the first low quality data subset
A (step 504). For example, the sound signal can be sampled
at 22 kHz to derive the low quality data set A (including
subsets AS and Ay) and at 44 kHz to generate the high
quality sound data set A,. Alternatively, or in addition, the
first subset A of the low quality data set Ag can be derived
by degrading the high quality data A ,—e.g., by deleting one
of'every two samples. The quality of the sound data can also
be defined by the signal level resolution—e.g., the number
of bits per sample. For example, the low quality data can
have 8 bits per sample and the high quality data can have 16
bits per sample.

In any case, the high resolution sound data A, and the first
subset of A; of low resolution sound data are used as a
training pair for a training algorithm 602 to derive optimized
parameters 604 of a quality enhancement function 606 (step
506). For example, if the quality enhancement function 606
is a polynomial function, polynomial coefficients vectors C ,
C,, C,, etc. are derived by the training algorithm 602. In any
case, once the learned parameters 604 of the quality
enhancement function 606 have been determined, the qual-
ity enhancement function, with the learned parameters, is
used to process the second subset A, of low quality sound
data to derive high quality sound data A;' representing the
remainder of the sound signal (step 508). The high quality
sound data A;' thus derived can be combined with the high
quality, sampled sound data A, (step 608) to derive a
complete set of high quality sound data A, representing the
entire sound signal.

In accordance with an additional aspect of the present
invention, a quality enhancement function can be trained on
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a set of video frames having different amounts of quality—
e.g., different spatial resolutions—as is illustrated in FIGS.
11 and 14. In the illustrated procedure, a scene is imaged to
generate a first high quality image 1102 (e.g., a high quality
video frame) (step 1402). The scene is imaged again to
generate a first low quality image/video frame 1104 (step
1404). The high quality image 1102 and the first low quality
image 1104 are used as a training pair in a training algorithm
such as is discussed above to determine the parameters of a
quality enhancement function (step 1406). When one or
more additional low resolution frames (e.g., low quality
image 1106) are generated (step 1408), the quality enhance-
ment function can be used with the learned parameters to
process the additional low quality images to derive an
additional high quality images (step 1410). It is to be noted,
however, that although FIG. 14 illustrates the above-de-
scribed procedure as applying the training algorithm before
the additional low quality images are captured, the training
algorithm can just as easily be applied after all or most of the
image data has been captured.

FIGS. 10A and 10C illustrate exemplary systems for
generating image data for use in the procedure illustrated in
FIG. 14. The system illustrated in FIG. 10A includes a high
resolution video camera 1002, a low resolution video cam-
era 1004, and a beam splitter 1006 to distribute the incoming
light to the two cameras 1002 and 1004. Because the same
incoming beam is imaged by both cameras 1002 and 1004,
the system can be considered to have a single viewpoint
1014. Optionally, the high resolution camera 1002 can have
a low frame rate, and the low resolution camera 1004 can
have a high frame rate. For example, the high resolution
camera 1002 can produce video data with a spatial resolu-
tion of 1000x1000 pixels and a frame rate of 3 frames per
second, and the low resolution video camera 1004 can
produce video data with a spatial resolution of 500x500
pixels and a frame rate of 30 frames per second.

Similarly to the system illustrated in FIG. 10A, the system
illustrated in FIG. 10C includes a high resolution video
camera 1002 and a low resolution video camera 1004.
However the system illustrated in FIG. 10C does not include
abeam splitter 1006. Rather, the two cameras 1002 and 1004
illustrated in FIG. 10C have different viewpoints 1012 and
1014, respectively. Preferably, the viewpoints 1012 and
1014 of the cameras 1002 and 1004 are proximate—in
particular, the viewpoints 1012 and 1014 are preferably
sufficiently close together compared to the depth of the scene
being imaged that little or no parallax adjustment is required.
The procedure illustrated in FIG. 14 is used to process the
low resolution and high resolution images generated by the
cameras 1002 and 1004 (the images having been generated
in steps 1402 and 1404 illustrated in FIG. 14) to train the
resolution enhancement function discussed above (step
1406), whereupon further low resolution images generated
by the low resolution camera 1004 (step 1408) are enhanced
by the optimized quality enhancement function to derive
high quality images (step 1410). The viewpoint of the
enhanced resolution images is typically equal or proximate
to the viewpoint 1014 of the low resolution camera 1004
used to generate the low resolution images from which the
enhanced resolution images are derived.

FIG. 10B illustrates a CCD array 1008 suitable for
generating image data for use in the procedure illustrated in
FIG. 14. The illustrated CCD array 1008 can be used to
generate data at varying resolutions by clustering individual
elements (e.g., into groups of 4 pixels) to form “super
pixels” 1010. The 4 pixels in each super pixel 1010 can, for
example, be clustered by averaging the values of the 4
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pixels. Such clustering of pixels is advantageous because,
although the spatial resolution of the devices is reduced,
clustering allows the CCD array 1008 to sample at a higher
frame rate. The pixels need not be clustered for every frame.
The resolution of successive frames can be varied—for
example, by capturing a sequence of nine low resolution
images at a high frame rate, followed by one high resolution
image. By using the high resolution image and one or more
of the low resolution images to train a quality enhancement
function, as is discussed above with respect to FIGS. 11 and
14, the low resolution images can be enhanced to derive high
resolution images. As a result, the system is able to generate
high resolution video at a high frame rate.

In accordance with the present invention, the spectral
resolution of image data can also be enhanced. FIG. 12
illustrates a system for generating image data having por-
tions with high spectral resolution and portions with low
spectral resolution. The system includes a video camera
1202, a beam splitter 1204, a slit 1206, a first lens 1208, a
prism 1210, a second lens 1212, and a CCD array 1214. The
beam splitter 1204 passes some of the incoming light
through to the video camera 1202 and redirects the remain-
ing light toward the slit 1206, from which a narrow beam
1216 of light passes through the first lens 1208 and into the
prism 1210. The prism 1210 directs the various spectral
components of the beam in different directions. The com-
ponents pass through the second lens 1212 and are received
and detected by the CCD array 1214. The resulting output of
the CCD array 1214 is a high spectral resolution measure-
ment of the wavelengths present in the narrow beam of light
1216 passing through the slit 1206. Even if the video camera
1202 is a color video camera, such a camera typically
provides only coarse red, green, and blue (RGB) informa-
tion. In contrast, because the light received by the CCD array
1214 has passed through a slit 1206 and a prism 1210, the
various wavelengths present in the light have been spread
horizontally across the entire CCD array 1214. The resulting
spectral information includes measurements of as many
spectral components as the number of pixels across the
horizontal dimension of the CCD array 1214. FIG. 13
illustrates exemplary video data generated by the system
illustrated in FIG. 12. In each frame of the video data, there
is a low quality (in this case, low spectral resolution) image
Is which has been generated by the camera 1202 and which
includes a first data subset I, and a second data subset L.
Also included is a high quality (in this case, high spectral
resolution) data set I, which has been generated by the CCD
array 1214 and which represents the same portion of the
scene as the first subset I of the low resolution data set 1.
Similarly to the image data I and 1, illustrated in FIG. 1, the
image data Ig and I, illustrated in FIG. 13 can be pro-
cessed—e.g., by processing arrangement 930 illustrated in
FIG. 12—according to the training and quality enhancement
procedure illustrated in FIGS. 2 and 4 to derive an image
representing the entire scene, but having a far greater
amount of spectral information than is present in the low
quality image I.. Optionally, a video sequence of 1302—
with each frame of the sequence 1302 including low spectral
resolution data I and high spectral resolution data [ ,—can
be captured and enhanced to derive a video sequence
representing the entire scene with high spectral resolution.

It will be appreciated by those skilled in the art that the
methods and systems illustrated in FIGS. 1-14 can be
implemented on various standard processing arrangements
operating under the control of suitable software defined by
FIGS. 1-8, 11, 13, and 14. FIG. 15 is a functional block
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diagram illustrating exemplary processing hardware 930
suitable for performing the methods of the present invention.
Such a processing arrangement 930 can optionally be incor-
porated into one or more of the above-described imagers
used to generate image data—as is illustrated in FIGS. 9B
and 9C—or can be a separate device—as is illustrated in
FIGS. 9A and 12. The illustrated arrangement 930 generally
includes a processing unit 1510, control logic 1520, and a
memory unit 1550. Preferably, the processing arrangement
also includes a timer 1530 and input/output ports 1540. The
arrangement can also include a co-processor 1560, depend-
ing on the microprocessor used in the processing unit 1510.
Control logic 1520 provides, in conjunction with processing
unit 1510, the control necessary to handle communications
between memory unit 1550 and input/output ports 1540.
Timer 1530 provides a timing reference signal for process-
ing unit 1510 and control logic 1520. Co-processor 1560
provides an enhanced ability to perform complex computa-
tions in real time, such as those required by cryptographic
algorithms.

Memory unit 1550 can include different types of memory,
such as volatile and non-volatile memory and read-only and
programmable memory. For example, as is illustrated in
FIG. 15, memory unit 1550 can include read-only memory
(ROM) 1552, electrically erasable programmable read-only
memory (EEPROM) 1554, and random-access memory
(RAM) 1556. Different processors, memory configurations,
data structures and the like can be used to practice the
present invention, and the invention is not limited to a
specific platform.

Software defined by FIGS. 1-8, 11, 13, and 14 can be
written in a wide variety of programming languages, as will
be appreciated by those skilled in the art. For example,
software algorithms in accordance with the present inven-
tion have been written in the programming language of the
well known MATLAB® mathematics tool. The source code
for exemplary algorithms written in the MATLAB® lan-
guage is provided in Appendices A,B, and C attached hereto.

It is to be noted that although the foregoing descriptions
of image enhancement have emphasized the imaging of
scenes as viewed within the visible light spectrum, the
disclosed techniques are applicable to imaging of any form
of radiation, including, but not limited to, ultraviolet, infra-
red, X-ray, radar, ultrasound, etc.

Although the present invention has been described in
connection with specific exemplary embodiments, it should
be understood that various changes, substitutions, and alter-
ations can be made to the disclosed embodiments without
departing from the spirit and scope of the invention as set
forth in the appended claims.

Appendix A

MATLAB® Source Code of Exemplary Algorithm
for Computing Vector t of Degree-2 Monomials

% In this version the “t” function is computed

% but terms such as z1*z2 are ignored, only terms
% such as z1 A2, 22A2, are considered. This

% improves efficiency although gives

% a less accurate approximation

function fsVect = nbhdToFS(a,nbhd,degree)

% No-cross terms

nV = nbhd(:);
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-continued

nLen = prod(size(nV));

fsVect = zeros(nLen*degree,1);

fsVect(1:nLen) = nV;

for deg = 2:degree

fsVect((((deg-1)*nLen)+1):(deg*nLen)) = . . .

nbhd(:).* . . .
fsVect((((deg-2)*nLen)+1):((deg-1)*nLen));

end

Appendix B

MATLAB® Source Code of Exemplary
Learning/Training Algorithm

% This is matlab source code for learning
% the coefficients for enhancement
% polyLearnedModel constructor
function a = polyLearnedModel(fctr,nbhdSize,degree,1rSeq,hr,Seq)
anull =";
if 0 == nargin
%Create a dummy model
afetr = 0;
a.nbhdSize = [1,1];
a.degree = -1;
a.params = [ |;
b = enhancementModel(‘polyLearnedModel’,[1,1]");
a = class(a,‘polyLeamedModel’,b);
elseif 1 == nargin
if isa(fetr, polyLearnedModel’);
a = fetr;
else
errstr = [num2str(fetr), . . .
‘Not polyLearnedModel object’];
error(errstr);
end
elseif 5 == nargin
afetr = fotr;
anbhdSize = nbhdSize;
a.degree = degree;
a.params = [ |;
dummy = polyLeamedModel;
params = interpKernel(fetr,nbhdSize,degree,1rSeq,hrSeq,dummy);
b = enhancementModel(‘polyLearnedModel’,params);
a.params = params;
a = class(a,‘polyLearnedModel’,b);
else
error(* Argument wrong type’)
end
return
function kern Vals = . . .
interpKernel(fctr,nSize,degree, 1 rSeq,hrSeq,modl)
% A variable to allow for normalization and subtraction of the DC
component
%DCSUB = 0;
epsilon = 2A(—26);
%epsilon = 0
1rSeqSize = size(1rSeq);
hrSeqSize = size(hrSeq);
if prod((fetr*1rSeqSize) == hrSeqSize) & (2 == length(1rSeqSize))
; % Ok
elseifprod((fetr*1rSeqSize(1:2)) == hrSeqSize(1:2)) & . . .
(length(1rSeqSize) <=3 )
; % Ok
else
error(‘Images sequences improper sizes with respect to fetr’)
end
% ‘in polyLearnedModel Constructor fvSize’
fvSize = size(nbhdToFS(modl,zeros(nSize),degree));
featVectLen = prod(fvSize);
fvMat = zeros([featVectLen,featVectLen));
outMat = zeros([featVectLen,fctrAZ]);
inRows = 1:(1rSeqSize(1)-(nSize(1)+1))
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-continued

end

inCols = 1:(1rSeqgsize(2)-(nSize(2)+1));
nRad = floor((1/2)*nSize);
hrOffset = (fetr*(nRad—(~mod(nSize,2)))) + . . .
(~mod(nSize,2)).*[fetr/2 fetr/2]+1;
if (length(1rSeqSize) <3)
numlms = 1;
elseif (3==length(1rSeqSize) )
numlms = 1rSeqSize(3);
else
error(‘Images sequences improper sizes’)
end
for imInd = 1:numIms
if (length(1rSeqSize) <3)
1rIm = 1rSeq;
hrIm = hrSeq;
elseif (3==length(1rSeqSize))
1rIm = 1rSeq(:,:,imInd);
hrlm = hrSeq(:,:,imInd);
end
for inR = inRows
for inC = inCols
inN = getNbhd(inR,inC,1rIm,nSize);
featVect =nbhdToFS(modl,inN,degree);
fvMat = fvMat + featVect * featVect';

out = fetr * [(inR-1),(inC-1)] + hrOffset;

20

outN = getNbhd(out(1),out(2),hrIm,[fetr,fetr]);

outMat = outMat + featVect*outN(:)';
end
end

‘cond’

cond(fvMat)

‘rank’

rank(fvMat)

‘size’

size(fvMat)

if (abs(max(fvMat(:))) > epsilon) I . . .

else

end

(abs(min(fvMat(:))) > epsilon)
% Solving Using SVD
[U,S,V] = svd(fvMat);
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% We have to kill the eigenvalues that are really close to zero

nz = (abs(S)>epsilon);
invS = (ones(size(nz)).//(~nz)+S)).*nz;
kernVals = V*invS*U*outMat;

% Very singular fvMat .
kemVals = zeros(featVectLen,fctr 2);

return

% [

"num2str( )]

function inNbhd = getNbhd(iR,iC,im,inNbhdSize)

indsR = (iR-1)+(1:inNbhdSize(1));
indsC = (iC-1)+(1:inNbhdSize(2));
inNbhd = im(indsR,indsC);

return
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50

MATLAB® Source Code of Exemplary Algorithm
for Enhancing Image Resolution Using Learned

Coeflicients

55

function newlm = improvelmage(modl,im)

nSize = modl.nbhdSize;

imSize = size(im);

fetr = modl.fetr;

if (nSize(1) > imSize(1)) | (nSize(2) > imSize(2))
error('Neighborhood larger than image.")

end

nbhdRad = floor((1/2)*nSize);

elmSize = fetr * (imSize — nSize+ones(size(nSize)));

newlm = zeros(elmSize);
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nbhdsRow = 1:(imSize(1) — nSize(1)+1);
nbhdsCol = 1:(imSize(2) - nsize(2)+1);
nbhdRlnds = 0:(nSize(1)-1);
nbhdClnds = 0:(nSize(2)-1);
for nR = nbhdsRow
for nC = nbhdsCol
nbhd=im(nR+nbhdRInds,nC+nbhdCInds)
newValues = nbhdFunc(nbhd,mod1);
newBlock = reshape(newValues,[fctr,fetr]);
newIm(fetr*(nR-1)+(1:fetr), . . .
fetr*(nC-1)+(1:fetr)) = newBlock;
end
end
return;
function newVals = nbhdFunc(nbhd,modl)
%DCSUB = 0;
nSize = size(nbhd);
degree = get(modl,'degree’);
fsVect = nbhdToFS(modl,nbhd,degree);
newVals = ((fsVect)*(modl.params))’;
return

We claim:
1. A method for enhancing data quality using a first data
set, a second data set, and a quality enhancement function
having at least one parameter, the first data set representing
at least one of a scene and a signal, the second data set
representing a first sub-portion of the at least one of the
scene and the signal, the first data set having a first amount
of quality, the second data set having a second amount of
quality, the second amount of quality being greater than the
first amount of quality, the first data set including first and
second data subsets, the first data subset representing the
first sub-portion of the at least one of the scene and the
signal, the second data subset representing a second sub-
portion of the at least one of the scene and the signal, each
of the first and second data subsets having the first amount
of quality, the method comprising:
processing the first data subset and the second data set by
a training algorithm to determine a respective learned
value of each one of the at least one parameter, wherein
the quality enhancement function is operable to derive,
based on the first data subset and using the respective
learned value of each one of the at least one parameter,
a data set approximating the second data set; and

processing the second data subset by the quality enhance-
ment function using the respective learned value of
each one of the at least one parameter to derive a third
data set, the third data set representing the second
sub-portion of the at least one of the scene and the
signal, the third data set having a third amount of
quality, the third amount of quality being greater than
the first amount of quality.

2. A method according to claim 1, wherein the first
amount of quality comprises a first resolution, the second
amount of quality comprising a second resolution, the third
amount of quality comprising a third resolution.

3. A method according to claim 2, wherein the at least one
of the scene and the signal comprises the scene, the first
resolution comprising at least one of a first spatial resolution,
a first intensity resolution, a first spectral resolution, and a
first polarization resolution, the second resolution compris-
ing at least one of a second spatial resolution, a second
intensity resolution, a second spectral resolution, and a
second polarization resolution, the third resolution compris-
ing at least one of a third spatial resolution, a third intensity
resolution, a third spectral resolution, and a third polariza-
tion resolution.
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4. A method according to claim 2, wherein the first
resolution comprises a first temporal resolution, the second
resolution comprising a second temporal resolution, the
third resolution comprising a third temporal resolution.

5. A method according to claim 2, wherein the at least one
of the scene and the signal comprises the signal, the first
resolution comprising at least one of a first signal level
resolution and a first temporal resolution, the second reso-
Iution comprising at least one of a second signal level
resolution and a second temporal resolution, the third reso-
Iution comprising at least one of a third signal level reso-
Iution and a third temporal resolution.

6. A method according to claim 1, wherein the first
amount of quality comprises a first signal-to-noise ratio, the
second amount of quality comprising a second signal-to-
noise ratio, the third amount of quality comprising a third
signal-to-noise ratio.

7. A method according to claim 1, wherein the first
amount of quality comprises a first accuracy, the second
amount of quality comprising a second accuracy, the third
amount of quality comprising a third accuracy.

8. A method according the claim 1, wherein the quality
enhancement function comprises a polynomial function, the
at least one parameter comprising one or more coefficients
of the polynomial function.

9. A method according to claim 8, wherein the training
algorithm comprises determining a respective value of each
of the one or more coefficients which minimizes a sum of
square differences between the second data set and the data
set approximating the second data set.

10. A method according to claim 1, wherein the training
algorithm comprises determining a respective value of each
one of the at least one parameter which minimizes a sum of
square differences between the second data set and the data
set approximating the second data set.

11. A method for enhancing data quality using a high
quality image data set representing a scene, a first low
quality image data set representing the scene, a second low
quality image data set representing the scene, and a quality
enhancement function having at least one parameter, an
image corresponding to the high quality image data set
having a first amount of quality, images corresponding to the
first and second low quality image data sets having a second
amount of quality, the first amount of quality being greater
than the second amount of quality, the method comprising:

processing the high quality image data set and the first low

quality image data set by a training algorithm to
determine a respective learned value of each one of the
at least one parameter, wherein the quality enhance-
ment function is operable to derive, based on the first
low quality image data set and using the respective
learned value of each one of the at least one parameter,
an image data set approximating the high quality image
data set; and

processing the second low quality image data set by the

quality enhancement function using the respective
learned value of each one of the at least one parameter
to derive a data set corresponding to an image having
a third amount of quality, the third amount of quality
being greater than the second amount of quality.

12. A method according to claim 11, wherein the first
amount of quality comprises a first resolution, the second
amount of quality comprising a second resolution, the third
amount of quality comprising a third resolution.

13. A method according to claim 12, wherein the first
resolution comprises at least one of a first spatial resolution,
a first intensity resolution, a first spectral resolution, and a
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first polarization resolution, the second resolution compris-
ing at least one of a second spatial resolution, a second
intensity resolution, a second spectral resolution, and a
second polarization resolution, the third resolution compris-
ing at least one of a third spatial resolution, a third intensity
resolution, a third spectral resolution, and a third polariza-
tion resolution.

14. A method according to claim 11, wherein the first
amount of quality comprises a first signal-to-noise ratio, the
second amount of quality comprising a second signal-to-
noise ratio, the third amount of quality comprising a third
signal-to-noise ratio.

15. A method according to claim 11, wherein the first
amount of quality comprises a first accuracy, the second
amount of quality comprising a second accuracy, the third
amount of quality comprising a third accuracy.

16. A method according the claim 11, wherein the quality
enhancement function comprises a polynomial function, the
at least one parameter comprising one or more coefficients
of the polynomial function.

17. A method according to claim 16, wherein the training
algorithm comprises determining a respective value of each
of the one or more coefficients which minimizes a sum of
square differences between the high quality image data set
and the image data set approximating the high quality image
data set.

18. A method according to claim 11, wherein the training
algorithm comprises determining a respective value of each
one of the at least one parameter which minimizes a sum of
square differences between the high quality image data set
and the image data set approximating the high quality image
data set.

19. A method according the claim 11, wherein the high
quality image data set represents the scene as viewed from
a first viewpoint, the first low quality image data set repre-
senting the scene as viewed from a second viewpoint, the
second low quality image data set representing the scene as
viewed from a third viewpoint, the second and third view-
points being proximate to the first viewpoint.

20. A system for enhancing data quality using a first data
set, a second data set, and a quality enhancement function
having at least one parameter, the first data set representing
at least one of a scene and a signal, the second data set
representing a first sub-portion of the at least one of the
scene and the signal, the first data set having a first amount
of quality, the second data set having a second amount of
quality, the second amount of quality being greater than the
first amount of quality, the first data set including first and
second data subsets, the first data subset representing the
first sub-portion of the at least one of the scene and the
signal, the second data subset representing a second sub-
portion of the at least one of the scene and the signal, each
of the first and second data subsets having the first amount
of quality, the system comprising a processing arrangement
configured to perform the steps of:

processing the first data subset and the second data set by

a training algorithm to determine a respective learned
value of each one of the at least one parameter, wherein
the quality enhancement function is operable to derive,
based on the first data subset and using the respective
learned value of each one of the at least one parameter,
a data set approximating the second data set; and
processing the second data subset by the quality enhance-
ment function using the respective learned value of
each one of the at least one parameter to derive a third
data set, the third data set representing the second
sub-portion of the at least one of the scene and the
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signal, the third data set having a third amount of
quality, the third amount of quality being greater than
the first amount of quality.

21. A system according to claim 20, wherein the first
amount of quality comprises a first resolution, the second
amount of quality comprising a second resolution, the third
amount of quality comprising a third resolution.

22. A system according to claim 21, wherein the at least
one of the scene and the signal comprises the scene, the first
resolution comprising at least one of a first spatial resolution,
a first intensity resolution, a first spectral resolution, and a
first polarization resolution, the second resolution compris-
ing at least one of a second spatial resolution, a second
intensity resolution, a second spectral resolution, and a
second polarization resolution, the third resolution compris-
ing at least one of a third spatial resolution, a third intensity
resolution, a third spectral resolution, and a third polariza-
tion resolution.

23. A system according to claim 21, wherein the first
resolution comprises a first temporal resolution, the second
resolution comprising a second temporal resolution, the
third resolution comprising a third temporal resolution.

24. A system according to claim 21, wherein the at least
one of the scene and the signal comprises the signal, the first
resolution comprising at least one of a first signal level
resolution and a first temporal resolution, the second reso-
Iution comprising at least one of a second signal level
resolution and a second temporal resolution, the third reso-
Iution comprising at least one of a third signal level reso-
Iution and a third temporal resolution.

25. A system according to claim 20, wherein the first
amount of quality comprises a first signal-to-noise ratio, the
second amount of quality comprising a second signal-to-
noise ratio, the third amount of quality comprising a third
signal-to-noise ratio.

26. A system according to claim 20, wherein the first
amount of quality comprises a first accuracy, the second
amount of quality comprising a second accuracy, the third
amount of quality comprising a third accuracy.

27. A system according the claim 20, wherein the quality
enhancement function comprises a polynomial function, the
at least one parameter comprising one or more coefficients
of the polynomial function.

28. A system according to claim 27, wherein the training
algorithm comprises determining a respective value of each
of the one or more coefficients which minimizes a sum of
square differences between the second data set and the data
set approximating the second data set.

29. A system according to claim 20, wherein the training
algorithm comprises determining a respective value of each
one of the at least one parameter which minimizes a sum of
square differences between the second data set and the data
set approximating the second data set.

30. A system for enhancing data quality using a high
quality image data set representing a scene, a first low
quality image data set representing the scene, a second low
quality image data set representing the scene, and a quality
enhancement function having at least one parameter, an
image corresponding to the high quality image data set
having a first amount of quality, images corresponding to the
first and second low quality image data sets having a second
amount of quality, the first amount of quality being greater
than the second amount of quality, the system comprising a
processing arrangement configured to perform the steps of:
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processing the high quality image data set and the first low
quality image data set by a training algorithm to
determine a respective learned value of each one of the
at least one parameter, wherein the quality enhance-
ment function is operable to derive, based on the first
low quality image data set and using the respective
learned value of each one of the at least one parameter,
an image data set approximating the high quality image
data set; and

processing the second low quality image data set by the

quality enhancement function using the respective
learned value of each one of the at least one parameter
to derive a data set corresponding to an image having
a third amount of quality, the third amount of quality
being greater than the second amount of quality.

31. A system according to claim 30, wherein the first
amount of quality comprises a first resolution, the second
amount of quality comprising a second resolution, the third
amount of quality comprising a third resolution.

32. A system according to claim 31, wherein the first
resolution comprises at least one of a first spatial resolution,
a first intensity resolution, a first spectral resolution, and a
first polarization resolution, the second resolution compris-
ing at least one of a second spatial resolution, a second
intensity resolution, a second spectral resolution, and a
second polarization resolution, the third resolution compris-
ing at least one of a third spatial resolution, a third intensity
resolution, a third spectral resolution, and a third polariza-
tion resolution.

33. A system according to claim 30, wherein the first
amount of quality comprises a first signal-to-noise ratio, the
second amount of quality comprising a second signal-to-
noise ratio, the third amount of quality comprising a third
signal-to-noise ratio.

34. A system according to claim 30, wherein the first
amount of quality comprises a first accuracy, the second
amount of quality comprising a second accuracy, the third
amount of quality comprising a third accuracy.

35. A system according the claim 30, wherein the quality
enhancement function comprises a polynomial function, the
at least one parameter comprising one or more coefficients
of the polynomial function.

36. A system according to claim 35, wherein the training
algorithm comprises determining a respective value of each
of the one or more coefficients which minimizes a sum of
square differences between the high quality image data set
and the image data set approximating the high quality image
data set.

37. A system according to claim 30, wherein the training
algorithm comprises determining a respective value of each
one of the at least one parameter which minimizes a sum of
square differences between the high quality image data set
and the image data set approximating the high quality image
data set.

38. A system according the claim 30, wherein the high
quality image data set represents the scene as viewed from
a first viewpoint, the first low quality image data set repre-
senting the scene as viewed from a second viewpoint, the
second low quality image data set representing the scene as
viewed from a third viewpoint, the second and third view-
points being proximate to the first viewpoint.



