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ABSTRACT

Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment
from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements
from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and
spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and
archiving. Research for NOAA NESDIS has been directed to finding for the characteristics of satellite atmospheric
Earth science Imager sensor data what level of Lossless compression ratio can be obtained as well as appropriate
types of mathematics and approaches that can lead to approaching this data’s entropy level. Conventional
lossless do not achieve the theoretical limits for lossless compression on imager data as estimated from the
Shannon entropy. In a previous paper, the authors introduce a lossless compression algorithm developed for
MODIS as a proxy for future NOAA-NESDIS satellite based Earth science multispectral imagers such as GOES-
R. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations
with a linear transform encoder. In decompression, the algorithm uses a statistically computed look up table to
iteratively predict each channel from a channel decompressed in the previous iteration. In this paper we present
a new approach which fundamentally differs from our prior work. In this new approach, instead of having a
single predictor for each pair of bands we introduce a piecewise spatially varying predictor which significantly
improves the compression results. Our new algorithm also now optimizes the sequence of channels we use for
prediction. Our results are evaluated by comparison with a state of the art wavelet based image compression
scheme, Jpeg2000. We present results on the 14 channel subset of the MODIS imager, which serves as a proxy
for the GOES-R imager. We will also show results of the algorithm for on NOAA AVHRR data and data from
SEVIRI. The algorithm is designed to be adapted to the wide range of multispectral imagers and should facilitate
distribution of data throughout globally. This compression research is managed by Roger Heymann, PE of OSD
NOAA NESDIS Engineering, in collaboration with the NOAA NESDIS STAR Research Office through Mitch
Goldberg, Tim Schmit, Walter Wolf.

1. INTRODUCTION

In this paper we present a new algorithm for lossless compression of multispectral imager. Multispectral imaging
data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates
resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical
tool to reduce data volume for transmission and archiving. Research for NOAA NESDIS has been directed to
finding for the characteristics of satellite atmospheric Earth science Imager sensor data what level of Lossless
compression ratio can be obtained as well as appropriate types of mathematics and approaches that can lead
to approaching this data’s entropy level. Conventional lossless do not achieve the theoretical limits for lossless
compression on imager data as estimated from the Shannon entropy. In a previous paper,’ the authors introduce
a lossless compression algorithm developed for MODIS as a proxy for future NOAA-NESDIS satellite based
Earth science multispectral imagers such as GOES-R. That algorithm uses a non-linear statistical method based
on histogram specification to remap the intensities in neighboring spectral bands in order to predict intensities
of the band that needs to be compressed. This paper present a different prediction based compression approach
that achieves a higher compression ratios on the tested data sets.

Conceptually, the data stream can be thought of as broken into segments. The first segment is compressed
by some standard compressor. If the segments can be ordered, and a predictor found such that each segment can
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predict subsequent segment well in some metric, the stream of residual differences between successive segments
is small in that metric. Ideally a perfect predictor would give a stream of segments of zero compressed size.
As a result, the lossless compression would effectively be infinite. In practice we only require the predictor be
accurate enough so that the compressed residuals are small when compared with the size of the information
needed to store the predictor. In the new algorithm we present here, our segments are single band images.
In previous work we used a single non-linear lookup table predictor which was applied to all footprints (the
collection of bands at a spatial pixels) for a given sensor. In contrast, our new algorithm shows that a simple
linear predictor can out-perform a more complex non-linear predictor, if we allow the linear predictor to vary
spatially across the image. In addition, our previous work naively used spectral order for predictive compression
while the new algorithm we present improves the compression performance by reordering the sequence of images
that we iteratively predict.

We present the performance of this new algorithm on data from NOAA’s AVHRR, EUMETSAT’s SEVIRI,
and a 14 channel subset of NASA’s MODIS imager that provides a proxy for GOES-R.2 In particular the following
table 1 shows the correspondence between the GOES-R specification and the subset of 12 bit MODIS channels
used as a proxy:

Table 1. MODIS - GOES ABI

ABI | Center | MODIS | Center | ABI ABI

Band | Waveln | Band | Waveln | Res | Bitdepth
No | (pm) No (pm) | (km)
01 0.47 3 0.47 1 10
02 0.64 1 0.659 0.5 12
03 0.865 2 0.865 1 10
04 1.378 5 1.240 2 10

05%* 1.61 6 1.640 1 10
06 2.25 7 2.130 2 10
07 3.9 22 3.96 2 14
08* 6.19 NA NA 2 11
09 6.95 27 6.78 2 11
10 7.34 28 7.34 2 12
11 8.5 29 8.55 2 12
12 9.61 30 9.72 2 11
13* 10.35 NA NA 2 12
14 11.2 31 11.0 2 12
15 12.3 32 12.0 2 12
16 13.3 33 13.4 2 11

2. BACKGROUND

Prediction based compression algorithms are common. A simple example is to take successive differences of
samples in a data stream. Runs in the data of constant values result in the difference stream having runs of
repeated zeros. Simply recording the length of these runs, called run length encoding can result in significant
lossless compression. For example for synthetic images such as logos or rasterized computer generated drawings
this simple algorithm can exploit the fact that many adjacent pixels have the same value. Images coming from
natural scenes, such as remotely sensed images, are much more complex and require more sophisticated prediction
to capture dependencies. Researchers at JPL presented a compression algorithm based on multi-linear prediction
of each successive sample of a multi-spectral image.® In their algorithm, the multi-spectral image is traversed
along a 1-dimensional path of samples (in raster order). At a fixed set of relative locations with respect to the
next pixel in the path, the algorithm uses a set of values at pixels already traversed. A multi-linear predictor is
then applied to these values to obtain a prediction for the next pixel. The difference between the prediction and
the actual value is stored, and the multi-linear predictor is then updated to minimize the error for the actual value
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at the next pixel. This approach would work well on smooth data, and it has a number of advantages. It only
requires the storage of a minimal number of parameters, beyond the residuals themselves. It is relatively simple
to implement, fast and adaptive. A disadvantage is that it implicitly assumes that the primary dependencies of
the data are its smoothness, and the limited size of the prediction window and its inherent asymmetry limit its
performance.

Simple linear prediction in the spatial direction is not competitive with the wavelet based Jpeg2000 al-
gorithm®® which are designed for representing both smooth and piecewise discontinuous elements present in
natural images. The dependencies in the spectral dimension are based on different statistics as those found in
the spatial dimensions. Spectral dependencies are driven by physical relationships between reflectance of different
constituents in the atmosphere and on the earths surface, as well as the properties of solar illumination, thermal
emission and radiative transfer. When a group of bands and a group of pixels have brightness effectively gener-
ated by a single constitute, such as a cloud, or the ocean surface, it is reasonable to expect that the brightness
should be correlated and a prediction based approach effective in that region. This is the motivation for the algo-
rithm we present, and we will show that the intuition is born out by better performance in terms of compression
ratios, than other methods. In all of the considered test cases the new algorithm is able to significantly improve
the lossless compression of when compared with the current stated-of-the-art lossless compression algorithms.

Table 2. Compression ratios, 14 channels of MODIS. CCSDS,® J - Jpeg2000 (Jasper’), P07 - our predictor algorithm
presented at SPIE07,! P - new predictor algorithm presented in this paper.

Name of the Granule PNG | TIFF | Zip | Gzip | Bzip2 | 7zip | CCSDS J Po7 P
MODO01.A2006
174.1005.005.2006214124917 | 1.45 1.79 | 1.72 | 1.72 1.72 | 2.35 2.59 299 | 3.24 | 3.47
175.0915.005.2006214125006 | 1.33 | 1.65 | 1.67 | 1.67 | 1.67 | 2.19 2.42 2.69 | 2.80 | 2.98
176.0955.005.2006214124831 | 1.38 | 1.68 | 1.63 | 1.63 | 1.63 | 2.18 2.47 2.77 | 3.07 | 3.24
177.0900.005.2006215131020 | 1.32 1.63 1.6 1.6 1.6 2.12 2.42 2.7 1295 | 3.14
179.0850.005.2006214124349 | 1.19 1.5 1.5 1.5 1.5 1.95 2.27 2.46 | 2.64 | 2.82
180.0930.005.2006214124332 | 1.37 1.68 | 1.64 | 1.64 1.64 | 2.19 2.47 277 | 3.07 | 3.25
181.1010.005.2006214124336 | 1.37 1.73 1.7 1.7 1.7 2.29 2.52 2.88 | 3.01 | 3.29

3. COMPRESSION APPROACH

Given a sequence of bands our algorithm relies on Jpeg2000 compression to capture the spatial relationships
within the first band. The next, and each successive band is predicted from the previous one using a spatially
varying linear predictor. The parameters of the predictor are computed for successive bands in the sequence.
Once the parameters are computed, the predictor is used to predict the next band, and the residual difference
between the predicted and the actual bands are stored along with the predictor parameters for that pair of bands.
The residual images and the coefficients are then compressed using Jpeg2000. The process continues through
the sequence until the final band has been predicted. We used the jasper implementation of Jpeg2000.”

In previous work we had used a single non-linear predictor for all spatial pixels (footprints). The relationships
between the bands, however, is too complex to be captured by a single function for all spatial pixels. As we
consider different spatial pixels the constituents of the atmosphere and the earth’s surface vary. This results in
changes in spectral dependencies. To account for these changes our predictor must vary along spatial dimensions.

In the spectral dimension, dependencies are often discontinuous due to spectral absorption. Hence, we should
not assume that bands which are closest spectrally, will predict each other well. Hence, to improve predictive
compression, we should optimize over the prediction order. The algorithm we developed for this is described
in detail in.® The algorithm as applied in this work consists of passing our spatially varying predictor to the
sequence optimization algorithm, on a given data set, and using the optimal sequence it returns to do the
predictive compression.
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3.1 Spatially Varying Linear Prediction

In this section we will describe the spatially varying predictor we have developed to successfully predict related
imager bands. We considered three factors when choosing our predictor: compressed size of the residual image
(prediction accuracy), compressed size of the predictor parameters, and speed of the algorithm. At one extreme,
independently determining a different predictor for each pixel gives an exact prediction. In that case the residual
images vanish and they take up essentially no size when compressed. Unfortunately, the predictor parameters are
as large as the original data and no compression is achieved. At the other extreme we can create one predictor for
all the pixels. This results in a greatly reduced predictor size. This idea is the basis of our previous algorithm.’
As already noted, that algorithm does not take into account the spatial variations in the relationships between
the bands.

What is required then is a compromise of a local predictor which uses a local groups of pixels to determine a
predictor which is constrained to have a small number of parameters. One approach to building a local predictor
would be to use a radial gaussian weighting kernel at each pixel in order to build the predictor. Because the
predictor must be constrained to cope both with the need for a compact form, and limited data in the local
region, we can use a locally varying spline. That is we can consider a polynomial predictor which varies spatially.

0 500 1000 1500 2000 2500 3000 3500

Figure 1. SEVIRI Band 2, Full Disk

One of our considerations is speed. The degree of the local spline predictor will effect the speed. It will also
impact the number of compression parameters. For this reason we have picked a very simple linear predictor of
the form y = mx 4+ b where m and b are the parameters of our predictor, z represents the a value in the band we
are trying to predict, and y represents our prediction in the next band in the prediction sequence. To explain
the algorithm, we will use bands 2 and 3 from a granule of EUMETSAT’s SEVIRI imager. The full disk band
2 image is shown in Fig. 1. The black rectangle in the image, includes part of Tunisia and Italy, is a 300x300
region of interest, chosen simply to illustrate the algorithm. The region of interest in band 2 shown enlarged in
Fig. 2. The values from band 3 for the same region of interest set of are shown in Fig. 3.

Given the band 2 and band 3 data shown in Fig. 2 and Fig. 3 we need to determine a compact predictor
which can predict band 3 from band 2. We break the spatial image pixels into N non-overlapping windows
Wi, ... Wy rectangular spatial blocks, each r x ¢ pixels. For illustration we will assume r x ¢ = 10x10. For each
of the pixel windows W, we determine two parameters: m; and b; by performing a linear regression minimizing
the least square error

Bi= Y |lma;+b—yl (1)
JEW;
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where x; is a pixel value in the W;’th block of band 2 and y; is the same pixel in band 3. The figures Fig. 5,
and Fig. 4 the 30x30 image M of scale factors m; and the 30x30 image B of offsets b; obtained by independent
linear regression of each block using the data in the region of interest from band 2 and 3 shown in Fig. 2 and

Fig. 3.

Figure 2. The image shown here is 300 x 300 pixel cropped
section of a SEVIRI Band 2 digital counts. Our algorithm
actually operates on the whole image but to illustrate, we
will assume that this cropped portion is the part of the data
on which we will predict the a corresponding band 3 portion
on. This band is compressed using conventional Jpeg2000
compression.

Figure 4. A 30 x 30 image of prediction offsets as determined
by solving a least square linear regression on 10 x 10 pixel
blocks to best predict the values of SEVIRI Band 3 digital
counts shown in the previous image from the corresponding
Band 2 counts. This offset is computed from the given Band
2 and 3 digital counts during the encoding phase. The off-
set for each block corresponds to the b in a per block linear
predictor y = mx + b, with « and y being digital counts in
band 2 and 3 respectively.

Figure 3. The image shown here is a 300 x 300 pixel cropped
section of SEVIRI Band 3 digital counts corresponding to
the band 2 section shown in the previous image. The ap-
proach of the compression algorithm is to use a predict this
image from the previous band 2 image.

Figure 5. A 30x 30 image of prediction scale factors as deter-
mined by solving the least square linear regression as in the
previous figure. The scale factor, like the offset, is computed
during the encoding phase. The scale factor corresponds to
the m in the per block linear predictor y=mx+b.
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Figure 6. This shows the result of predicting SEVIRI band
3 by multiplying band 2 by the image in Fig. 5 after in-
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Figure 7. The result of subtracting the predicted image in
Fig. 6 from the actual digital counts in Fig. 3.

After having determined the coefficients to predict band 3 from band 2 the next step is to build the predictor.
Our block independent regression is an approximation of a smoothly spatially varying linear predictor. To
accomplish this we use bilinear interpolation to interpolate prediction coefficients B and M to images B and

M which are the same size as C. We then apply B and M (which are the same size as C' and P) to the
normalized P’ to obtain an approximation of the normalized C’ given by M x P’ + B where x is pixel wise
multiplication. We rescale M x P' 4+ B and quantize to match band 3 so that the resulting predicted image C
shown in Fig. 6, matches C as closely as possible. Note that C has minimal if any block artifacts. To accomplish
lossless compression, we subtract the prediction from the actual band 3 image to obtain an image of residuals

R =C - C, shown in Fig. 7.

The performance of the compression depends on the residules, R, being significantly easier to compress than
band 3, C, itself. As discussed above, even if the predictor is not perfect because information in band 3 that
cannot be predicted from band 2, much of the residual image is close to zero and compresses well. The false color
image shows small values as green. The predominance of green shows that the predictor performs well. This
is one important factor in making the compressed size of the image compact. It is also important to note that
the despite using regular tiles there are no blocking artifacts. The is very important because any introduction
of sharp artifices will adversely effect the Jpeg2000 post-processor.

The block diagram of Fig. 8 summarizes the one encoding step of our algorithm. We assume that we are
given two images in our compression sequence, a parent image P, for instance band 2 of SEVIRI in our previous
example, and a child image C, which corresponds to SEVIRI band 3. We assume that P has already been
compressed and saved. First values in the images are all rescaled to go from 0 to 1. The rescaled images are
broken into blocks and passed to a processor and linear regression is applied to find the prediction parameter
images M and B for each block. The values of the predictors are interpolated using bilinear interpolation to
the full size of C. After interpolation, the linear prediction based on M and B is applied to P and the result is
rescaled and then requantized to the original range to obtain C. The predicted child image is subtracted from
the actual child image to obtain an image R = C — C of residuals. The images M ,B and R are then compressed
using Jpeg2000 and they are appended to the compressed data. When the compression sequence is finished, all
the data except for the first image, has been covered to Jpeg2000 compressed versions of M,B and R, and the
first image is simply compressed using Jpeg2000.
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The decoding processes starts by extracting the sequence information (metadata) from the file. Then the first
image P in the sequence is extracted using Jpeg2000. Following that M and B are decompressed interpolated
and applied to the parent image P, followed by rescaling and quatization to obtain the predicted image C. The
residuals are added back to obtain the lossless reconstruct C' = R + C. One feature of our prediction is because
we use blocks and a very simple prediction algorithm, this algorithm is easy to parallelize and uses a few simple
arithmetic operations. As a result it should be possible to make it extremely fast.
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Figure 8. Diagram outlining the compression encoding. The basis of the algorithm is to build from two bands denoted P
for parent, and C, for child. After normalizing these images, C’ from P’ on their stated range, to go from 0 to 1, the parent
and child are broken into sets of non-overlapping blocks {P; ;}, and {C; ;} respectively. The predictor parameters are the
output of a per-block linear regression fit: a set of scale factors M and offsets B. The per-block regression parameters are
then scaled up by bilinear interpolation to M and B giving a per pixel predictor. If we apply this predictor at every pixel
to a P’ (reconstruction), then rescale and requantize to obtain an approximation of C called C. To losslessly reconstruct
C we store the image of residuals R = C — C along with the predictor parameters M, and B which are compressed using
Jpeg2000. The compression occurs because the compressed size of M, B and R combined, is smaller than that of C
because information already contained in P has been removed.

Proc. of SPIE Vol. 7084 70840D-7



Compressed

File R C
Lossless
> E—
. 2-d o
Compressed ® | decoder
Residuals
C
Lossless
Compressed > 2d Interpolation >
Offsets decoder ~
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, M M Rescale
> &
Quantization
Compressed
Scale Factors p| Lossless : Reconstruction
7777777777777777777777777777777 2-d Interpolation — ™
decoder B B
— Normalization S
P P'

Figure 9. Diagram outlining the decompression decoding. The stored residuals, offsets and scale factors are losslessly
decompressed to yield R,M, and B respectively. We assume we have already reconstructed the parent image P from a
previous step. The linear prediction specified by M and B is applied to P in followed by quantization and rescaling to
create the predicted image C. The residules are added back to the prediction R + C = C to recover the child image
losslessly.

3.2 Algorithm Parameters

The performance algorithm depends on a number of parameters. We have used the wavelet based jpeg2000
compressor to capture spatial redundancy in the parameter and residual images. It is also important to note
that at the start of the prediction sequence there is no initial prediction and the entire image is compressed using
jpeg2000. We could replace this step with any spatial image compressor, if we find that the performance is not
negatively impacted or if we have access to a better wavelet or non-wavelet based image compressor.

Another important parameter of prediction is the window size. Each row in the figure 10 shows the prediction
model offset image, scale factor, and the predicted image computed for the same SEVIRI data shown in previous
images. Both of the two images used for the prediction model are scaled to the original image size 300x300 using
bilinear interpolation. The predicted band 3 image shown at the far right of the top row clearly shows the need
for a spatially varying predictor. The prediction at this course resolution does poorly when compared with the
actual band 3 image of Fig. 3 in the lower left of the image (Tunisia) although its performance is reasonable in
other parts of the image clearly as we decrease the window size the predicted image becomes closer and closer
to the actual band 3 image. As the window size decreases the accuracy of the prediction increases and hence the
compressed size of the residual image (e.g. Fig. 7). The improved compression of the residual comes a the cost
of having to store more complex offset and model scale factor images.
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Figure 10. Each row shows the prediction model offset image, scale factor, and the predicted image computed for the
same SEVIRI data shown in previous images. The window sizes used in the prediction are 150 x 150, 100 x 100, 50 x 50,
30 x 30, 20 x 20, and 10 x 10, from top to bottom row.
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3.3 Sequence Optimization

A key point we noticed in our previous work is that the order of a compression sequence can be very important
to the compression performance. One approach to find the optimal sequence of predictions for compression is to
try every possible sequence during the encoding stage and use the sequence with the best results. The number
of such triles is K factorial where K is the number of band. This number is superexponential and makes this
approach impossible for anything but a very small number of bands. The situation is actually somewhat worse
since we really should test whether or not we want to use prediction at all or simply compress without prediction.
For example for a channel with a large amount of noise, or strong artifacts, prediction may not be beneficial.
What we are really searching for is a graph which is the union of directed trees (a forest) in which the edges
represent one image predicting another, and the vertices are the bands.

We will show that there is a graph algorithm that solves this problem optimally from a similarity matrix
where the edges are weighted by the compression performance. Fig. 11 shows the optimal compression tree
computed for one SEVIRI granule. Edges are directed from top to bottom. Vertices are labeled with the band
of the imager. The first vertex labeled “0” is a virtual vertex to make the forest a tree. It also indicates that
any band directly connected to “0” is just Jpeg2000 compressed.

The technique of computing this tree per granule results in the smallest files size but is very computationally
expensive and thus slow. Another approach is to use an entropy based statistical estimation using entropy to
determine if there is a single tree which can be used for all granules, or groups of granules. This approach is
discussed in another paper in this conference.®

We compared results of compression for both day and night with and without the optimal tree sequence.
In all cases there was a significant benefit using an optimal tree when compared with simply using the band
sequence.

7 10
SN
2 8 11 6
/\ l
1 4 £ 5
Figure 11. Optimal Tree. Figure 12. ABI Swathpattern.® *°

4. RESULTS

One of the main goals for this work is develop a compression algorithm for future GOES-R type data. Because
SEVIRI represents a recent imager on a geosynchronous platform, it is an important reference in estimating
future compression results for the future GOES-R mission. One word of caution is that because SEVIRI images
represent full disk images some pixels view space. These pixels appear to be precisely zero. Hence if we look at
the bits per sample achieved by Jpeg2000 and our algorithm shown in the first two columns of Fig. 3, the lossless
bit rate seems remarkable low when computed on the whole image. GOES-R will use a swath pattern as shown
in Fig 12. Hence it may be more sensible to consider the bit rates in the first two columns multiplied by 4/pi.
This number represents the ratio of the area of a unit square to a unit disk. The first two columns are multiplied
by this number to obtain the last two columns. They represent the bit rate only considering the samples within
the disk. In any case, the results show the an improvement over Jpeg2000.
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Table 3. Bits per sample, SEVIRI. J — Jpeg2000 (Jasper’), P — new predictor algorithm presented in this paper.

Name of the File Day/ J P J P
MSG2-SEVI-MSG15-0100-NA | Night inside disk | inside disk

20080717115740 Day | 3.31 | 2.42 4.21 3.08
20080719125741 Day | 3.33 | 2.75 4.24 3.5
20080717131241 Day 3.33 | 2.61 4.24 3.32
20080715214240 Night || 2.46 | 2.08 3.13 2.65
20080718225740 Night || 2.39 | 2.05 3.04 2.61
20080719031240 Night || 2.42 | 2.07 3.08 2.64

Table 4. Compression ratios, 14 channels of MODIS.

Name of the Granule 250m | 250m || 500m | 500m || 1km | 1km || Total | Total
MODO01.A2006 J P J P J P J P

174.1005.005.2006214124917 || 3.05 3.48 2.66 3.15 3.36 | 3.96 3.00 3.47
175.0915.005.2006214125006 2.67 2.85 2.45 2.84 3.17 | 3.88 2.67 2.98
176.0955.005.2006214124831 2.75 3.21 2.48 2.94 3.33 | 3.93 2.77 3.24
177.0900.005.2006215131020 || 2.68 3.09 2.44 2.88 3.23 | 3.86 2.70 3.14
179.0850.005.2006214124349 2.45 2.75 2.23 2.58 2.88 | 3.57 2.46 2.82
180.0930.005.2006214124332 2.74 3.20 2.49 2.96 3.41 | 3.99 2.77 3.25
181.1010.005.2006214124336 2.93 3.28 2.55 3.00 3.24 | 3.87 2.88 3.29

Table 5. Bits per sample, 14 channels of MODIS.

Name of the Granule 250m | 250m || 500m | 500m || 1km | 1km || Total | Total
MODO01.A2006 J P J P J P J P

174.1005.005.2006214124917 5.24 4.59 6.03 5.08 4.76 | 4.04 5.34 4.61
175.0915.005.2006214125006 || 5.99 5.62 6.53 5.62 5.04 | 4.12 5.95 5.36
176.0955.005.2006214124831 5.81 4.99 4.80 5.44 || 6.44 | 4.07 || 5.78 4.93
177.0900.005.2006215131020 || 5.97 5.18 4.96 5.55 6.55 | 4.15 5.93 5.09
179.0850.005.2006214124349 6.54 5.80 5.55 6.21 717 | 4.48 6.51 5.67
180.0930.005.2006214124332 5.84 5.00 4.69 5.41 6.42 | 4.01 5.78 4.93
181.1010.005.2006214124336 5.45 4.88 4.94 5.34 6.27 | 4.13 5.55 4.86

Table 6. AVHRR

Name of the File J P J P

NSS.GHRR.NN CR | CR || BpS | BpS
D07005.51424.£1610.B0839293.GC.nc || 3.48 | 4.30 || 4.59 | 3.72
D07005.50745.E£0940.B0838889.GC.nc || 3.76 | 4.63 || 4.26 | 3.45
D07006.51719.E1906.B0840709.Wl.nc || 3.47 | 4.19 | 4.62 | 3.81
D07006.51554.E1725.B0840708.Wl.nc || 3.58 | 4.32 || 4.47 | 3.70
D07005.50604.E0750.B0838788.Wl.nc || 3.58 | 4.36 || 4.47 | 3.67

We also evaluated our algorithm on 14 channels (cf. 1) of MODIS selected as a proxy for the upcoming GOES-
R mission. In our actual implementation for MODIS we made a small modification to increase performance of
the algorithm. Like many imagers, MODIS exhibits striping due to variations between sensors. To account for
this we first separated the data into per-sensor images, and compress these independently using our algorithm.

As data in the tables 3-6 show, the improved performance of our prediction based method over Jpeg2000 grows
as the number of channels increases. One important thing to note is that even when there are only two channels
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in the MODIS 250m bands, where there is least cross spectral dependency, our prediction based compression
still beats jpeg2000 by a significant amount. This is important because this data dominates the granule due to
its overwhelming size. The performance on this granule alone is usually the performance for the total granule.
Another important thing to note is that the algorithm performs very well on the night channels. This is significant
because our previous entropy analysis showed this part of the data should allow good compression. Despite that
our prior work showed that more naive methods were unable to exploit the dependencies present and achieve
good compression, as we are able to now.

Finally, data from AVHRR shows once again, our prediction based method is able to exploit the band
dependencies well to achieve good compression.

5. CONCLUSION

We have presented a novel but elegantly simple algorithm for imager compression. To account for different
constituents of the atmosphere the earths surface, it uses a spatially varying linear regression across the bands.
Despite making allowing for the spatial variation the algorithm remains simple. It can be easily adapted to
distributed computation making it potentially very fast. We also have shown that by incorporating our optimal
compression tree algorithm we can efficiently search the space of compression sequences to determine the best
sequence for compression. Even though this is still expensive on a per granule basis our preliminary investiga-
tions seem to confirm that a single or small number of trees could be fixed for an imager and yield near optimal
performance without the cost of a per granule search during encoding. Moreover though we have used a Jpeg2000
compressor here to capture the spatial correlations, this algorithm may be replaced with any number of alterna-
tives, for example a more basic discrete cosine transform, or more finely tuned wavelet scheme, depending on the
need for performance or speed. The evaluations performed on all data from the 14 channel MODIS proxy, SE-
VIRI and AVHRR all show benefits to using our prediction based method to exploit redundancy across spectral
bands. The relative benefits are probably more significant than absolute numbers (bits per sample/compression
ratios) because each data set has peculiarities that make it difficult to compare, especially compression ratios,
from one imager to another.
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