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Abstract

Histograms are used to analyze and classify images.
They have been found experimentally to have low sensitivity
to certain types of image morphisms, for example, viewpoint
changes and object deformations. However, the precise ef-
fect of these image morphisms on the histogram has not been
studied. In this work we derive the complete class of local
transformations that preserve the histogram or simply scale
its magnitude. To achieve this the transformations are rep-
resented as solutions to families of vector fields acting on
the image. It is then shown that weak perspective projec-
tion and paraperspective projection belong to this class and
simply scale the histogram. The results on weak perspective
projection, together with the effect of illumination, are used
to compute the histogram of the projection of 3D polyhedral
objects. We verify the analytical results with several exam-
ples. Moreover, we present and test a system that recognizes
and approximates the poses of 3D polyhedral objects inde-
pendent of viewpoint.

1. Introduction

Histograms have been used widely in image analysis and
recognition. Swain and Ballard in [14] used them to iden-
tify 3D objects. Currently, they are an important tool for
the retrieval of images and video from databases [3] [10]
[15]. Some of the reasons for their wide applicability are
that they can be computed easily and fast, they achieve sig-
nificant data reduction, and they are robust to local image
transformations. Furthermore, color properties can be re-
lated to functionality, and must be considered for a complete
recognition.
Following the initial work in [14], several indexing sys-

tems [13] [4] [5] based on histograms were developed.
These systems are efficient, but employ several ad–hoc as-
sumptions. In particular, they assume that histograms are
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relatively insensitive to viewpoint changes and to certain ob-
ject deformations[14][4]. However, the nature and proper-
ties of these transformations are not analyzed. Moreover, the
viewpoint invariance does not hold for general 3D objects.

On the other hand, the systems in [14] [13] are very sen-
sitive to changes in illumination. Several proposals were
made to improve robustness to these changes. In [14] the use
of a supervised color constancy algorithm was suggested,
which is not always practical. Later, Funt and Finlayson in
[6] used histograms of edge images that can be very noise
sensitive. Finally, the systems in [7] [4] use histogram mo-
ments and inter-band angles, respectively, that entail a sig-
nificant loss of information.

In this work we derive analytically the complete class
of local image transformations that preserve the histogram
or simply scale its magnitude. That is, the transformations
that histogram recognition systems are insensitive to. We
achieve this by modeling the image and the histogram as
continuous. The transformations are represented as solu-
tions to vector fields acting on the image. We show that
divergence free fields preserve the histogram of any image.
Such fields in 2D are called hamiltonian [1] [2]. Moreover,
we show that fields whose divergence is constant simply
scale the histogram.

It is also proved that weak perspective projection and
paraperspective projection of planar 2D surfaces belong to
the class of transformations that scale the histogram. In
fact, the scale factor depends on the tilt of the surface. Fur-
thermore, we use the results on weak perspective projection
to model histograms of 3D polyhedral objects. More pre-
cisely, we express the object histogram as the sum of the
histograms of the projections of the individual faces. To ac-
count for the effect of illumination we assume that the faces
are lambertian and that the dynamic range of the histogram
is scaled linearly as a function of the illumination magni-
tude. We verify the analytical results with several examples.
Further, we present a system that recognizes 3D objects in-
dependent of viewpoint and approximates their poses.
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2. Modeling histograms and image transforma-
tions

We assume that the image is given by an image intensity
map whose domain is spatially continuous with a finite area.
This intensity map, for a single color channel, is Φ:D →
R1, whereD ⊂ R2 is the domain of the image. Similarly,
for a color image the map is Φ:D → R3, where R3 is
a 3D color space. We assume that area in the image can
be computed with the Lebesgue measure [11] on R2. The
Lebesgue measure is represented by dxdy, where x and y
are the two spatial dimensions of the image.
We relate the image to its histogram by a density func-

tion q. For gray–scale images the domain of q is the range
of intensities. If we assume that the histogram space is also
measurable, the density q that relates the two spaces be-
comes the Radon–Nikodym measure or derivative [11]. In
other words, the image intensity map,Φ, maps the Lebesgue
measure on its domain to a measure on its range. This range
measure µ ∈ R is the histogram and is given by

µ(u) ≡
∫

u
qΦdr ≡

∫

Φ−1(u)
dxdy (1)

where r is a variable of intensities in the domain of density
function q, u ⊂ R1 is a set of values of r, and Φ−1(u) is
the part of the image that has intensities within the range
u. That is, Φ−1(u) = {(x, y)|(x, y) ∈ R2 s.t. Φ(x, y) ∈
u}. In other words, u is a set of intensity ranges and the
measure gives a real number µ(u) equal to the area of the
image domain that has intensities in u. The definition of the
histogram in equation (1) can be extended trivially to 3D
color spaces.
The domain of an image Φ can be morphed. An interest-

ing class of deformations are the differentiable vector fields.
It is possible to express such fields in terms of flow equa-
tions whose solutions [12] give rise to families of trans-
formations. A family or path of transformations Ψt is ex-
pressed as Ψt(x⃗) : D → R2, where x⃗ = (x, y) ∈ D is a
point in the image, and t ∈ R is the parameter of the trans-
formation. Transformations that arise in this manner satisfy
several properties. Clearly, they are differentiable and give
back the flow relations d

dtΨt = X . Further, they include the
identity transformation,Ψ0 = Id, and are invertible. In this
work we will only study transformations that satisfy these
properties, for example rotations, scalings and other more
exotic transformations we describe below. To study the ef-
fect of Ψt on the histogram we only need to study the effect
of vector fields X [12].

3. Transformations that preserve the histogram

We would like to find the class of transformations that
preserve the histogram of any image Φ. To simplify the

analysis we break up the image into differential regions
dxdy. If each differential region preserves its size under
a transformation, then the histogram of the entire image is
preserved and vice versa. More formally:
Proposition 1 TransformationsΨt(x⃗) are locally area pre-
serving if and only if they preserve the histograms of every
image Φ.
Proof: The histogram of image Φ transformed by Ψt is
given by:

µ′(u) =
∫

Φ−1(u)
det

∂Ψt(x⃗)
∂x⃗

dxdy (2)

where u is some intensity range, and det∂Ψt(x⃗)
∂x⃗ is the de-

terminant of the jacobian of the transformation. For locally
area preserving transformations the determinant is unity[2].
Therefore, the histogram of the transformed image becomes
∫

Φ−1(u) dxdy, which is the same as that of the original im-
age. Hence, the histogram is preserved. Conversely, if the
transformed and original images have the same histograms,
then the integral in (2) must be equal to the integral in (1).
Since this must be the case for any image Φ, the two inte-
grals must have the same integrands. That is, the determi-
nant of the jacobian of the transformation in equation (2)
must be equal to one. This implies that the transformations
are locally area preserving.
In general, a transformation, or vector field X , changes

the area and the histogram of an image. Again, consider dif-
ferential regions dxdy. As they flow along the streamlines
of a field their sizes change. For example, if there is a “point
area sink” in the image, then the areas of the differential re-
gions decrease as they flow towards it, and area is destroyed
at the “sink point”. That is, the rate of change of area per
unit area, called divergence, is negative. On the other hand,
if there is no “point area sink” or “point area source” in the
image, the area is neither created nor destroyed. The dif-
ferential regions that flow simply deform without changing
their sizes. Therefore, the divergence of the field must be
zero everywhere and for all t, and vice versa. Such fields
are curly. More formally:
Proposition 2 Transformations Ψt with d

dtΨt = X are lo-
cally area preserving if and only if divX = 0.
Proof: The proof of this theorem is given by the proof of
Liouville’s theorem in [2].
It is possible to generate all vector fields that satisfy

proposition 2. To see this, take a function H : D → R.
The gradient of H is normal to its iso–height curves. If we
rotate the gradient field by 90◦ we obtain a new field which
is tangent to the iso–height curves ofH . This field has zero
divergence. Such fields are called hamiltonian and the flow
along them is called phase flow. In 2D they are given by:

ΥH =
∂H

∂y
i − ∂H

∂x
j = J (∇H) (3)
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where i and j are the unit vectors along the x and y axes re-
spectively, ∇ is the gradient, J is the antisymmetric matrix
[

0 1
−1 0

]

, and H is called the hamiltonian or energy func-

tion of the field. Moreover, the reverse also holds. That is,
if a field preserves the histogram of an image, then the field
acting on the image is hamiltonian. More formally:

Proposition 3 A vector field X(twice differentiable) is di-
vergence free if and only if it is hamiltonian.

Proof: The equality of mixed partial derivatives implies
that the hamiltonian field of H has zero divergence, that
is div(ΥH) = 0. Conversely, if a field X = w1i + w2j
has zero divergence, then ∂w1

∂x = −∂w2
∂y and the field X has

a hamiltonian function H(x, y). The hamiltonian function
can be obtained by integrating either w1 or w2. If we take
w1, we haveH(x, y) =

∫ y
0 w1(x, y′)dy′. Both sides of this

equation can be differentiated. In the result we can substi-
tute the condition ∂w1

∂x = −∂w2
∂y to obtain w2 = −∂H

∂x . This
is the value of w2 expected by the hamiltonian field defined
by equation (3). Hence, the proposition holds.
We have shown that histogram preserving transforma-

tions arise as solutions to a particular family of vector fields
called hamiltonian. More precisely:

Theorem 1 A family of transformations Ψt which arise as
the solutions to a family of vector fields X preserve the his-
tograms of all images if and only if these vector fields are
hamiltonian.

Proof: The proof is a direct consequence of the bicondi-
tional propositions (1)–(3).
Some simple examples of hamiltonian transformations

are rotation, translation, shear, and stretch. An image mor-
phed with a hamiltonian field can be transformed to give
back the original one. Assume that the morphing transfor-
mation is given by Ψt, and the transformation that gives
back the original is given byΨs. The composition of the two
transformations has no effect, therefore Ψs ◦ Ψt = Ψs+t =
Ψ0 = Id. In turn, this implies that s + t = 0 and that Ψs,
which is the inverse of Ψt, is given by Ψ−t. Further, the
field whose solution gives rise to Ψ−t is given by −X , that
is d

dtΨ−t = −X .
There are transformations which preserve the histogram

without being hamiltonian. Some examples are reflections,
permutation of different areas of the image, and permuta-
tions of individual pixels[9]. However, such transformations
are either not local or are discontinuous and cannot arise as
solutions of flow equations.
Similarly to proposition 2, transformations locally scale

the area by a constant factor if and only if their divergence
is also a constant. That is, we can generalize theorem 1 to
get:

Theorem 2 A family of transformations Ψt which arise as
the solutions to a family of vector fields X scale the his-
tograms of all images if and only if these vector fields have
constant divergence for all t. The scale factors are the de-
terminants of the jacobians of the transformations.

Proof: The proof of Liouville’s theorem[2] can be applied
to images to show that the rate of change of image area as a
result of vector field X is given by the integral of the diver-
gence of the field over the domain of the image Φ. There-
fore, when the divergence is a constant for all t, the change
of image area is also a constant and vice–versa. We can see
from equation( 1) that the histogram is linearly proportional
to image area. Hence, the histogram is also simply scaled.
When the divergence is a constant for all t, then the determi-
nant of the jacobian of the transformation is also a constant
[2] and can be taken out of equation( 2) to give the factor by
which the histogram is scaled. Conversely, if the histogram
is scaled by a constant factor for all images, then any local
area in the image is scaled in size by the same factor. In turn,
this implies that the rate of change of area per unit area, the
divergence, is also a constant.
A simple family of transformations that satisfies theorem

2 are the spatial image scalings.

3.1. Examples of hamiltonian morphisms

We show several examples of hamiltonian morphisms in
figure 1. Each one is derived from a different energy func-
tionH . The expression gives a vector field that is applied to
the image. In figure 1 (a) we show the original image and in
figures 1 (b)–(g) we show six morphisms together with the
energy functions they correspond to. Note that the size of
the images was scaled for display purposes. As we can see
the transformed images are severely deformed. However,
their histograms are the same as those of the original one.
Such transformations can arise in specific applications. For
example figure 1 (c) may model a whirlpool, and fig. 1 (e)
may model sinusoidal ripples along a matte surface.
We also implemented some gradient morphisms of the

test image shown in figure 1 (a). Two examples are shown in
figures 1 (h)–(i). We compared the hamiltonianwith the gra-
dient field of the same function. The second column of table
1 shows the distance between the histogram of the original
image and the histogram after the hamiltonian morphism.
The third column shows the distance between the histogram
of the original image and the histogram after the gradient
morphism. We used the R, G, and B histograms. The dis-
tance between two histograms is the L1 norm of their differ-
ence divided by the number of histogram bins. Clearly, the
distance due to the gradient morphism is much larger than
that due to the hamiltonian one. The small errors for the
case of hamiltonian morphisms are due to the spatial quan-
tization. Note that function H was multiplied by different
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(a) Original image (b) Hamiltonian: x3 (c) Hamiltonian: (x2 + y2)0.7

(d) Hamiltonian: (x2 + y2)1.5 (e) Hamiltonian: sin (x+y)π
10 (f) Hamiltonian: sin (x+y)π

20 sin (x−y)π
20

(g) Hamiltonian: (sin (x+y)π
20 )2 (h) Gradient of: sin (x+y)π

20 sin (x−y)π
20 (i) Gradient of: (x2 + y2)1.5

Figure 1. In (a) we show the original test image. In (b)–(g) we show six hamiltonian morphisms of this image together with the
energy functions they correspond to. All hamiltonian morphisms have the same histogram as that of the original image, up to spatial
quantization error. In (h)–(i) we show two gradient morphisms of the original image shown in (a). The gradient morphisms have
a different histogram both from the histogram of the original image and those of the hamiltonian morphisms. The actual distances
between the histograms of these morphed images and the original image in (a) are shown in table 1. Note that the origin of the
coordinate frame is the geometrical center of the original image, the x axis is horizontal, and the y axis is vertical.
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Function Hamiltonian Gradient
x3 0.488 16.763
(x2 + y2)0.7 1.870 121.000
(x2 + y2) 1.302 265.641
(x2 + y2)1.5 2.820 42.609
sin (x+y)π

10 1.003 12.182
(sin (x+y)π

20 )2 1.083 11.188
sin (x+y)π

20 sin (x−y)π
20 3.901 34.049

Table 1. Effects of the hamiltonian and gradient mor-
phisms on the histogram. The second column shows the
distance of the histogram of the hamiltonian morphism from
the histogram of the original image shown in figure 1 (a).
The third column shows the distance of the histogram of the
gradient morphism from the histogram of the same original
image. The distance is the L1 norm of the difference his-
togram divided by the number of histogram bins.

constant factors for each morphism in order to restrict the
size of the transformed images.

4. Applications of hamiltonian fields

We study the effect of some projection models on the
histogram. Clearly, perspective projection does not preserve
the histogram. However, we will use the two theorems pre-
sented previously to show that weak perspective projection
and paraperspective projection simply scale the histogram.
Finally, this result will be used to justify a recognition sys-
tem that can identify and approximate the pose of 3D poly-
hedral objects.

4.1. Histograms under weak perspective projection

Consider a planar patch, with some texture on it, in a
space equipped with an x̂ŷẑ coordinate frame. The weak
perspective projection of this patch is shown in figure 2 (a).
The first stage of this projection is the orthographic projec-
tion which can be done either frontally or under some ar-
bitrary tilt φ. The effect of a tilt is to both shear and scale
the frontal orthographic projection. The shearing is a hamil-
tonian transformation. According to theorem 1 it does not
affect the histogram of the image. However, the scaling does
alter the histogram. In particular, according to theorem 2, it
scales it by the determinant of the jacobian of the transfor-
mation, which is cosφ.
The image is then mapped from the projection plane to

the image plane. This mapping is a uniform scaling and the
determinant of its jacobian is f2

z2 , where f is the focal length
and z is the distance of the object from the origin of the

coordinate system. According to theorem 2 this is also the
scale factor of the histogram.
The weak perspective projection consists of the concate-

nation of the orthographic projection and the mapping on
the image plane. The product of the scaling factors of the
two stages is given by

f2 cosφ

z2
, (4)

which is the overall scaling factor of the histogram in weak
perspective projection.

4.2. Histogram under paraperspective projection

The paraperspective projection of a planar patch is shown
in figure 2 (b). It first undergoes parallel projection with a
skew angle α. Similarly to weak perspective projection, the
determinant of the jacobian of the projection transformation
is proportional to the cosine of the tilt of the object. How-
ever, in parallel projection the projection axis is skewed.
Therefore, the relative tilt of the object is (φ − α). More-
over, the size of the projected image increases as a result of
the skew angle by a factor inversely proportional to cosα.
That is, the determinant of the jacobian of the parallel pro-
jection transformation is cos(φ−α)

cos α . According to theorem 2
the histogram is scaled by this factor.
To complete the projection we map from the projection

plane to the image plane. Similarly to weak perspective pro-
jection, this mapping scales the histogram by f2

z2 . The over-
all scaling of the histogram is equal to the product of the
two scale factors and is given by f2

z2
1

cos αcos(φ − α). Note
that paraperspective projection reduces to weak perspective
projection when the angle with the optical axis, α, is zero.
In practice, the histogram of a projection is also affected

by illumination. In our work we assume that the spectral
composition of illumination is always the same and that only
the intensity changes. We also assume that its effect is to
linearly scale the dynamic range of the histogram.

4.3. Histograms of polyhedral objects under weak
perspective projection

We compute the histogram of matte polyhedral objects
in terms of the histograms of their faces. We actually con-
sider the frontal histograms, Bi for each face i, under a
normalized illumination scaling factor. To account for the
orientation of the faces we use a coordinate frame cen-
tered on the object. In this frame take the polar angle of
the normal to the ith face to be φi and the azimuth angle
to be θi. Similarly, the polar angle of the unit vector to-
wards the camera is taken to be φc, and the azimuth an-
gle is taken to be θc. The dot product between the camera
unit vector and the normal to the ith face gives cos ηi =

1063-6919/00 $10.00 ! 2000 IEEE 



Figure 3. Arbitrary poses of the four objects on which the recognition system was tested.
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Figure 2. The figure in (a) is the geometry of weak per-
spective projection. A planar patch is projected under a tilt
angle φ. The figure in (b) is the geometry of paraperspective
projection. The skew angle of the parallel projection is α,
and the tilt of the object is φ.

sinφi sinφc cos(θi + θc) + cosφi cosφc, where ηi is the
tilt of face i with respect to the camera viewpoint.

We assume that the projections of the individual faces
follow the weak perspective model. Therefore, the magni-
tude of the histogram of each visible face i is scaled by the
multiplicative factor f2 cos ηi

z2 that is given by equation (4).
In addition, the tilt of each face alters the illumination con-
ditions and scales the dynamic range of the histogram by a
factor li. Therefore the histogram of the object is given by:

Bobj(j) =
f2

z2

n
∑

i=1

max(cos ηi, 0)Bi(jli) (5)

where j is the histogram bin, i is the face number, and n the
total number of faces. Note that when cos ηi < 0 the ith

face is not visible and its histogram does not contribute to
the object histogram.

4.4. Recognition of polyhedral objects

We implemented a system that uses the R, G, and B his-
tograms to recognize matte rectangular parallelepipeds. It
assumes that the histogram is given by equation (5), and
computes in advance the frontal histograms, Bi’s, of the
faces of all objects. Furthermore, it stores the polar and az-
imuth angle of all faces with respect to coordinate frames
centered on the objects.
The input to the system is the histogram of the test ob-

ject. To compute it the object is segmented manually from
the background. The system estimates the histogram of each
database object sequentially and computes its match error
compared to the input histogram. The test object is iden-
tified as the database object that has the minimum match
error. As can be seen from equation (5) the histogram of an
object depends on 6 parameters; namely the angles φc and
θc, the global parameter g = f2

z2 , and the illumination scal-
ing li for each of the visible faces, i = 1, 2, 3. The range
of the scale parameter g was 50%− 200%, and the range of
all illumination scale factors li was 60%− 135%. Note that
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Object Tests Rank=1 Rank=2
1 10 10 0
2 14 12 2
3 9 9 0
4 7 7 0

Total 40 38 2

Table 2. Recognition results for 4 objects in the hori-
zontal order shown in figure 3. In the second column we
show the number of test poses per object. In the third col-
umn we show the number of these object instances that are
correctly recognized, and in the last column the number of
object instances ranked second.

φc and θc are essentially the pose of the object. The match
error of an object is given by the L1 norm of the difference
between the input histogram and the histogram of the object.
More precisely, the match error is given by:

ME = g
3

∑

c=1

256
∑

j=1

|Bc
in(j) −

n
∑

i=1

max(cos ηi, 0)Bc
i (jli)|

(6)
whereBin is the histogram of the input object, c is the color
channel and 256 is the number of color histogram bins. This
functionwas minimizedwith the direct search complex opti-
mization algorithm of the IMSL [8] library. We used several
different initial conditions to avoid local minima.
The system can recognize objects under arbitrary poses,

even if different poses and faces have completely different
histograms. We tested the algorithm with a total of 40 poses
of 4 objects. The poses were selected arbitrarily. Eight of
these poses are shown in figure 3. In table 2 we show the
recognition results. In the second column of the table we
show the number of test poses per object. In the third col-
umn we show the number of object poses correctly found to
be the first match to the test case, and in the last column the
number of poses found to be the second match. In the two
erroneous classifications the object shown second horizon-
tally in figure 3 is identified as the first object of the same
figure. This is because both objects have faces with very
similar colors. The performance of the algorithm improves
when the different faces have “dissimilar”, or orthogonal,
histograms. In this case the pose estimation of the object
becomes more precise. Such an example is the first object
in the second row of figure 3 where pose is estimated within
7◦.

4.5. Summary

In this work we derived the complete class of local im-
age transformations that preserve or scale the histogram. In
other words, the transformations that histogram recognition

systems are insensitive to. To achieve this, we first assumed
that the image is spatially continuous and defined a density
measure over it that gave the histogram. We then showed
that weak perspective projection and paraperspective pro-
jection scale the histogram. Finally, a system was presented
that identified 3D orthogonal parallelepipeds. We plan to
generalize our results to model some types of elastic defor-
mations.
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