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Abstract
Current projector systems assume a frontal planar dis-
play surface. In order to project onto arbitrary surfaces,
one must warp the images digitally before projection. As
a result, the image quality degrades due to image re-
sampling. In this paper, we propose catadioptric pro-
jector systems that use lenses and mirrors, to optically
warp images. The warp is specified as a map from points
in the image to points on the display surface, called the
image-to-scene map. The key problem then is to deter-
mine the mirror shape that implements this map. Pre-
vious methods for mirror design were case-specific and
required considerable designer interaction and skill. In
contrast, we present a fully automatic algorithm to deter-
mine the mirror shape for any image-to-scene map. We
use splines to model the shape of the mirror and show that
the parameters of the spline can be efficiently computed
by solving a set of linear equations. Although we focus
on the design of projection systems, our framework is di-
rectly applicable to the design of imaging systems. We
demonstrate the effectiveness of our approach by com-
puting the mirror shapes for both catadioptric imaging
and projector systems.

1 Optical Image Warping
The past few years have seen a dramatic rise in applica-
tions that use both projectors and cameras, in the realm
of ubiquitous computing and collaborative work environ-
ments. The central idea in these areas has been to seam-
lessly integrate computational interfaces into the space
around a user. To achieve this, it is necessary to be able
to use arbitrary surfaces around the user for display and
control purposes [21, 19]. Towards this end, projectors
must be able to project high quality images on any sur-
face in the scene. Also, cameras used as input or calibra-
tion devices must be able to acquire high quality images
of the display surfaces. This calls for greater flexibility
in the design of both projector and camera systems.
Consider the scenario illustrated in Fig. 1 of a “smart
room” with multiple projectors and cameras. Panoramic
displays can be constructed using multiple projectors
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Figure 1: Schematic of a “smart room” using multiple projector-
camera systems. Wide angle or panoramic projections are pos-
sible using multiple projectors (P3, P4) with overlapping fields
of view (FOV), or with a single large FOV projector (P1). In
both cases, the image needs to be warped prior to projection.
Another example which requires image warping is when the
projector P2 is moved close to the display surface to avoid oc-
clusions by the user. Typical digital warping techniques de-
grade image quality due to re-sampling issues. Furthermore, for
certain applications, the limited FOV of the projectors makes it
impossible to project onto the entire display surface as required.
In contrast, catadioptric systems can be used to enhance the
FOV as well as provide optical warping thus maintaining im-
age quality without the use of computational resources.

(P3, P4) with overlapping fields of view [7, 16, 20], or
with a single wide field of view projector, such as P1.
Similarly, occlusion effects can be removed by using
multiple projectors and cameras [24]. Instead of com-
pensating for occlusions, it is easier to avoid them al-
together by moving the projector (see P2) close to dis-
play surface. In all these cases the images need to be
digitally warped to minimize distortions in their projec-
tions. However, digital warping of images reduces their
quality by introducing unwanted artifacts due to image
re-sampling. More importantly, in such configurations,
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the limited FOV of the projectors makes it impossible to
project onto the entire display surface.
In this work, we propose to perform the image warping
optically within the projector or imaging system. Optical
warping preserves image quality without any computa-
tional overhead. In addition, we can also enhance the
FOV of most projectors in unconventional ways. The de-
signer of such an optical system need only specify a map
between pixels in the image space and their desired loca-
tions in the scene. We call this the image-to-scene map.
The optical components of the projector or imaging sys-
tem must then implement this map to project (or acquire)
images as desired.
Lenses could be crafted to perform the desired optical
warping. However, it is not always feasible to fabricate
such lenses due to their complex shapes. Furthermore,
such lenses introduce strong optical aberrations. In con-
trast, mirrors do not suffer from such aberrations and
hence are widely used for designing catadioptric (com-
bination of lenses and mirrors) systems. Most of the re-
search in catadioptrics within the last decade focussed on
developing imaging systems for photography and com-
puter vision (see [22, 28, 29, 6, 3, 18, 1, 25, 8, 13, 2, 9,
4, 17, 10, 15] for examples). In all cases, the catadioptric
system is assumed to consist of some known primary op-
tics (usually a perspective or telecentric lens) and a mir-
ror. Constraints imposed by the image-to-scene map are
used to derive partial differential equations (PDEs) that
the mirror must satisfy. Then, analytical solutions for the
PDEs are sought that determine the mirror shape. This
approach of deriving and solving PDEs for each image-
to-scene map is cumbersome and difficult to scale.
It is highly desirable to have onemethod for derivingmir-
ror shapes for arbitrary image-to-scene mappings. Hicks
was the first to pose this general problem [14] using “ge-
ometric distributions”. He also presented a novel method
to test if a mirror that implemented the desired map ex-
isted in theory. However, his framework still requires the
user to guide the process by imposing constraints (gener-
ally PDEs) and selecting case-specific tools to solve for
the mirror.
The goal of this paper is to develop a single algorithm
that can compute a mirror shape for a catadioptric sys-
tem that implements any image-to-scene mapping with
no human intervention or effort. Towards this goal our
paper makes the following key contributions:

• Linear Computation of Mirror: At the core of our
algorithm is a linear and yet highly flexible and ef-
ficient representation of the shape of the mirror that
is based on tensor product splines. This allows us to
compute the mirror shape for any given image-to-
scene mapping using an iterative linear approach.

• Handles all possible primary optics: The frame-
work allows the use of primary optical components
with arbitrary known projection geometries includ-
ing orthographic (telecentric lens), perspective, and
other generalized models [11, 26].

• Finds mirror with least image distortion: As op-
posed to previous methods, the mirror we compute
is guaranteed to minimize image or scene projec-
tion errors. This is achieved by formulating the error
metric correctly in the image (or scene) space.

• Simple method to compute the caustic: Our
method can design systems with a single point of
projection or a locus of points, called a caustic [26].
The caustic completely describes the geometry of
the catadioptric system. Our framework also in-
cludes a simple technique to compute the caustic of
any designed catadioptric system.

We demonstrate the power of our algorithm by comput-
ing the mirror shapes and caustics for previously devel-
oped catadioptric systems as well as new ones. In the
case of previously derived mirrors, we show that our de-
sign matches them perfectly. We believe that the algo-
rithm we propose is a powerful tool that is extremely
general and throws wide open the space of projector and
imaging systems’ that can be designed.

2 Image-to-scene Map using Catadioptrics
The flexibility of our framework comes from the fact that
the designer can define a map from pixels in the image to
points in the scene. We call this the image-to-scenemap.
The catadioptric system we wish to design is assumed to
consist of some known primary optics and an unknown
mirror. Given the image-to-scene map and a model for
the primary optics, we determine the mirror shape that
best implements the map. Throughout this paper we
will address the problem as one of designing catadioptric
imaging systems for convenience of notation. However,
the same analysis applies directly to projector design as
well.

2.1 Modeling the Primary Optics
The catadioptric system is assumed to consist of some
known primary optics and a mirror. For example, the
para-catadioptric camera [18] uses a telecentric lens (or-
thographic projection) along with a parabolic reflec-
tor. Our framework accommodates the use of primary
optics possessing any projection model: perspective,
(Fig. 2(a)), orthographic (Fig. 2(b)), or the generalized
model [11, 26] (Fig. 2(c)). Thus, the primary optics could
be a simple perspective lens or a complex catadioptric
system itself.
As shown in Fig. 2(c)), in the general case a pixel (u, v)
in the image possesses a viewpoint Sl(u, v) and a view-
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(a) Perspective (b) Orthographic (c) Generalized
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Figure 2: The different models of the primary optics for which our method can compute a mirror shape. (a) A perspective imaging
model found in most projectors and imaging systems. (b) Orthographic projection, typically obtained with telecentric lenses.
(c) The generalized imaging model (caustic model) [11], wherein each pixel can have its own associated viewpoint and viewing
direction. This last model is most general and allows the most flexibility in designing catadioptric systems.

ing direction Vl(u, v). For a perspective lens, the view-
points Sl(u, v) collapse to a single point (see Fig. 2(a)).

2.2 Modeling the Mirror Shape
We now describe our model for the mirror shape. For
convenience, we express the mirror shape Sr in terms of
the model for the primary optics as:

Sr(u, v) = Sl(u, v) − D(u, v)Vl(u, v), (1)

where D(u, v) is the distance of the mirror from the
viewpoint surface. We model D using tensor product
splines in order to facilitate simple and efficient estima-
tion of the mirror shape. We defineD(u, v) to be:

D(u, v) =
Kf∑

i=1

Kg∑

j=1

ci,jfi(u)gj(v), (2)

where fi(u) and gj(v) are 1-D spline basis functions, ci,j

are the coefficients of the spline model, and Kf · Kg are
the number of spline coefficients.
We now have a simple linear model for the mirror sur-
face, which is locally smooth and yet flexible enough to
model arbitrary mirror shapes.

2.3 The Image-To-Scene Map
Fig. 3 shows a catadioptric system used to image some
known scene. The primary optics can be perspective, or-
thographic or the generalized projection model.
The user provides a mapM from points (u, v) in the im-
age I to pointsM(u, v) in the scene. The mirror surface
Sr(u, v) implements the mappingM by reflecting each
scene point M(u, v) along the scene ray Vr(u, v) into
the primary optics, where:

Vr(u, v) =
Sr(u, v) −M(u, v)
|Sr(u, v) −M(u, v)| . (3)

This constrains the surface normal of the mirrorNr as:

Nr(u, v) =
Vl(u, v) − Vr(u, v)
|Vl(u, v) − Vr(u, v)| . (4)

We have now presented all the basic ingredients of our
framework for designing general catadioptric systems.
These constitute the model for primary optics, the spline-
based model for the mirror, and the image-to-scenemap.

3 Computing the Mirror Shape
We now present our algorithm to compute the mirror
shape for a general catadioptric imaging or projection
system. We begin by assuming that the surface normals
of the mirror are known. Later, we relax this constraint
to present an iterative linear solution for the mirror shape
in the general case, where the normals depend on the rel-
ative location of the mirror and the scene.

3.1 Normals Known: A Linear Solution
Many catadioptric systems are designed assuming the
scene to be very distant (theoretically at infinity) from the
mirror. In such cases, the image-to-scene map essentially
maps a point in the image (u, v) to the reflected ray direc-

Scene 

Mirror 

M (u,v)

V (u,v)l

V (u,v) r

S  (u,v)r

N  (u,v)r 

Primary Optics

(u,v)I

Figure 3: A catadioptric imaging system consisting of some
known primary optics and a mirror. In general, a pixel (u, v) in
the image maps to the scene point M(u, v) after reflecting at
Sr(u, v) on the mirror. This forces constraints on the surface
normalsNr(u, v) of the mirror.
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tion Vr(u, v). Since the primary optics are also known,
we can derive the required mirror surface normals using
Eq.(4) (see Fig.3). This is often used to design imaging
systems (see [6, 13, 23], for examples).
The tangent vectors on the mirror surface must be or-
thogonal to the normal in Eq.(4). This provides two con-
straints on the mirror shape:

∂Sr(u,v)
∂u ·Nr(u, v) = 0,

∂Sr(u,v)
∂v ·Nr(u, v) = 0.

(5)

Rearranging the terms and substituting Eq.(1) into
Eq.(5), we get:

(∂D
∂u Vl + D ∂Vl

∂u ) · Nr = ∂Sl
∂u · Nr ,

(∂D
∂v Vl + D ∂Vl

∂v ) · Nr = ∂Sl
∂v · Nr.

(6)

Now, substituting Eq.(2) into Eq.(6), we get two new
constraints:
⎛

⎝Vl

∑

i,j

ci,jf
′
i(u)gj(v) +

∂Vl

∂u

∑

i,j

ci,jfi(u)gj(v)

⎞

⎠ Nr ,

=
∂Sl

∂u
Nr

⎛

⎝Vl

∑

i,j

ci,jfi(u)g′j(v) +
∂Vl

∂v

∑

i,j

ci,jfi(u)gj(v)

⎞

⎠Nr

=
∂Sl

∂v
Nr.

where, f ′
i(u) and g′

j(v) denote the partial derivatives of
fi(u) and gj(v), respectively. The above constraints are
linear in the spline coefficients ci,j and therefore can be
re-written in the form:

A · c = b, (7)

where, c represents the set of unknown coefficients ci,j of
the spline. Every point (u, v) in the image provides two
constraints. Thus, we need at least Kf Kg

2 mirror points
at which the normals are known. Typically, we solve for
the mirror surface at the resolution of the image itself.
Eq.(7) measures the algebraic residue of the dot product
between the tangent and surface normal. When a mirror
shape exists for the prescribed map, the shape obtained
by minimizing the above constraint also minimizes im-
age projection errors. However, if no mirror shape exists,
then the computed mirror shape need not correspond to
minimum image (or scene) projection error.
Ideally, we should compute the mirror shape that min-
imizes image (or scene) projection error. Generally
speaking, minimizing this metric makes the problem

M
Scene

Mirror 1

Mirror 2S r
(2)

S r
(1)

Vl

Vr
(2)

(1)Vr(1)Nr

(2)Nr

Primary Optics

(u,v)I

Figure 4: The direction along which a prescribed scene point
M(u, v) is viewed by the sensor depends on the position of the
point of reflection on the mirror. As shown here, changing the
location from S(0) to S(1) alters the reflection direction, thus
changing the surface normal.

non-linear and unwieldy. However, we circumvent this
problem by weighting (withw) the linear constraints (see
[27] for details). We finally compute the mirror shape by
solving the set of linear weighted constraints for the mir-
ror shape parameters c:

(wA)T (wA) · c = (wA)T wb, (8)

where the weights w are related to the image (or scene)
projection errors.

3.2 The General Iterative Algorithm
In the previous section, we derived linear constraints to
compute the mirror shape given a set of surface normals.
When the scene is at infinity, this is all we need to com-
pute the mirror shape. We now extend this method for
the general case of arbitrary scenes and image-to-scene
maps.
In general, the mirror can lie anywhere within the field
of view of the primary optics. Fig. 4 shows the mirror
at two possible locations, Sr

(1) and Sr
(2), reflecting the

scene point M(u, v) into the primary optics. The di-
rection Vr(u, v) along which the scene point M(u, v)
is viewed clearly depends on the mirror location. This
in turn influences the surface normals on the mirror and
hence its shape.
We resolve this cyclical dependency using an iterative
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Figure 5: Convergence of the mirror shape designed for the
skewed plane projection in Fig. 7(row 3). (a) Initial planar
guess for the mirror with facets having different surface nor-
mals. (b) After the first iteration, the mirror shape is already
close to the final solution. (c) After five iterations, the mirrors
changes a negligible amount showing fast convergence. (d) The
final mirror shape obtained after 10 iterations.

algorithm. We first approximate the mirror by a set of
facets on a plane (say, one for each pixel), whose dis-
tance from the primary optics is chosen by the designer.
We then estimate the initial set of surface normals using
Eqs.(3,4). These normals are used to linearly solve for
the mirror shape using Eq.(8). We now iterate as shown
in Fig. 6, by using the computed mirror shape in each it-
eration to obtain a better estimate of the surface normals
for the next iteration, until the mirror shape stops chang-
ing. Typically, the shape converges within 10 iterations.
An example of how the mirror shape evolves from the
initial planar guess to its final shape is shown in Fig. 5.
In most cases, the mirror shape after the first iteration is
already close to its final shape.

4 Caustics of Catadioptric Systems
The catadioptric systems our framework can design are
not constrained to have a single point of projection. That
is, all the light rays entering or leaving the system need
not pass through a single point. In general, a locus of
points called a caustic [11, 26] is formed.
Caustics are important as they completely describe the
geometry of the catadioptric system. With respect to
imaging systems they describe the effective viewpoint lo-
cus. For projector systems caustics describe the effective
projection model of the catadioptric projector (see Fig.2).
In the Appendix, we present a simple method to compute
caustics of catadioptric systems using our framework.

START

Compute :
Set of  "desired" 
surface-normals.

Compute :
Estimate of mirror shape.

S(2)

Input:
Scene-Image map, Inverse scene-image map, 

Caustic map, Partials of caustic map, 
Initial mirror depths (default planar)S(1)=

Compute :
Change in mirror shape

S(1) - S(2)ε=

ε< Threshold

Yes

Output:
Mirror shape, spline parameters.

Error in image pixels, Error in scene points.

STOP

Assign :
S(2)S(1)

No

Figure 6: Flow-chart for the spline-based method to compute
mirror shapes for general catadioptric imaging systems. The
user specifies a map between pixels in the image and corre-
sponding scene points as well as the geometry of the primary
optics (shown in Figs. 2(a,b,c)). Using these as inputs, our al-
gorithm computes the required mirror shape automatically.

5 Example Mirror Designs
We now use our algorithm to compute the mirror shapes
for four catadioptric systems. These include the single
viewpoint para-catadioptric camera [18], the cylindrical
panoramic system [12, 23], and two novel projector and
imaging system designs. We also present the caustic sur-
faces for each of the systems we design.

5.1 Single Viewpoint Sensors
We begin by designing a single viewpoint catadioptric
imaging system. Such systems can acquire panoramic
images from a single virtual viewpoint. In general, only
a few mirror shapes and lens combinations yield single
viewpoint systems [1]. Therefore, these systems hold a
special place within the realm of catadioptric imaging.
We computed the mirror for a para-catadioptric [18]
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Figure 7: Results of applying our general mirror design method to a wide range of systems. From top to bottom, para-catadioptric
imaging system [18], panoramic imaging/projection system [12, 23], skewed-plane projection system and the conference table
unwarping system. For all the above systems we present the 3D shapes of the mirrors, the image/scene projection errors and the
associated caustic surfaces. The caustic is important as it completely describes the geometry of the system.

imaging system using a telecentric lens for the primary
optics (orthographic projection). The theoretical mirror
shape for this system is known to be parabolic. The mir-
ror was designed by specifying an image-to-scene map
such that all the imaged rays pass through a virtual view-
point located 1cm below the apex of the reflector. As
seen in Fig. 7(a – d), the profile of the computed mir-
ror using our method matches precisely with the analytic
parabolic profile. The mirror shape is also shown in 3D

for visualization. The error in viewing direction at each
point in the image is zero. Finally, the caustic surface for
this system was computed and found to be a very com-
pact cluster of points (essentially a single viewpoint).

5.2 Panoramic Unwarping Sensor
The para-catadioptric camera designed above acquires
an omnidirectional image but needs computational re-
sources to unwarp it into a panorama. Hicks and Srini-
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vasan [12, 23] independently presented a design of a
catadioptric camera that acquires an optically unwarped
panoramic image. Such catadioptric systems are also
suitable for projecting directly onto panoramic display
surfaces.
In Fig. 7(e – h) we show the setup used to design this sys-
tem, the computed mirror shape 1, the projection errors,
and the associated caustic surface. We again assumed or-
thographic projection for the primary optics. Every pixel
(u, v) is mapped directly to the the required viewing di-
rectionVr(u, v) of a panorama assuming the scene to be
at infinity. Therefore, we can compute the mirror shape
in one iteration of our algorithm.

5.3 Skewed Plane Mapping
We now present a catadioptric projector design geared to-
wards avoiding occlusions. We accomplish this by mov-
ing the projector close to the display surface. To project
an undistorted image on the display surface the desired
system must optically warp the image.
Referring to Fig. 7 (i), we note that the display surface
lies 1’ below and away from the projector and spans a
10× 10’ square region. The projector’s image plane was
assumed to be parallel to the XY -plane. The computed
mirror shape, its associated scene projection errors and
caustic are shown in Fig. 7 (i – l). As expected from the
setup, the mirror is symmetric about a single plane. Note
that, in spite of the projector being only a foot away from
a large screen, the errors in projection are negligible.

5.4 Conference Table Rectification
As our last example we present a new application for
imaging systems. Consider the scenario of imaging peo-
ple seated at an elliptic conference table. We would
like to display the acquired image directly, such that the
curved edge of the table appears straight. Thus, all the
people would appear as if seated along a desk. In general,
we might wish to acquire images or video with some pre-
determined warp, so as to project them directly without
the use of any computational resources.
We call the sensor used in the conference table scenario,
as the conference table rectifying sensor. The setup of the
mirror and table for the “rectifying system” are shown in
Fig. 7(m – p). The table consists of a semi-circle section
of radius 30′′ with two extended straight sides, each 30′′

long. The camera is assumed to lie roughly 30′′ behind
this table facing away from the scene into a mirror. The
computed mirror shape, the image projection errors and
the associate caustic surface are also shown in Fig. 7(row
4). As can be seen the mirror is symmetric about two
orthogonal planes. It should also be pointed out that no

1Note that the mirror shape for this image-to-scene map does not
always exist. In particular, the correct aspect ratio for the image needs
to be selected in order to estimate the right mirror shape.

mirror shape exists that provides the required image-to-
scene map. The computed mirror approximates such a
map by minimizing image projection errors. It was im-
portant to use a weighting scheme discussed in Section 3
to minimize image projection errors.
A point to note is that the same algorithm was used to
estimate all the mirror shapes. We could compute single
viewpoint as well as non-single viewpoint systems just
as easily. Thus, making our method truly flexible and
applicable to a large space of mirror design problems.

6 Conclusions
In this paper we presented a framework to design general
catadioptric imaging and projector systems. Such sys-
tems consist of some known primary optics and a mir-
ror. The advantage of such systems is that one has im-
mense flexibility in designing novel projection and imag-
ing systems. The user specifies the map between image
points and scene points which we called the image-to-
scenemap. Our method then automatically computes the
best mirror shape that implements the desired image-to-
scene map. By best we mean that mirror shape we com-
pute is guaranteed to produce the least distorted image or
scene projection.
A major advantage of our method is that it is flexible
enough to be used with all possible projection models for
the primary optics, including perspective, orthographic
and generalized [11]. Furthermore, the same method can
be used to design a very large class of mirror shapes, in-
cluding rotationally symmetric and asymmetric systems.
We finally presented results by designing many projec-
tion and imaging systems. For each designed system we
also computed its caustic. Caustics are important as they
completely define the geometry of the catadioptric sys-
tem. For imaging systems they define the viewpoint lo-
cus. For projection systems, they represent the effective
projection model for the system.
We believe that the algorithm we proposed is a powerful
tool that is general and throws wide open the space of
projector and imaging systems that can be designed.
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Appendix: Computing the Caustics
We now present a simple method to compute the caus-
tics of catadioptric systems designed using the proposed
spline based method. The use of splines to model the
mirror shape also simplifies the estimation of its caustic
surface. We begin by deriving the caustic surface for the
general imaging system, and then describe ways to com-
pute it numerically.
The caustic can be defined in terms of the reflector sur-
face Sr(u, v) and the set of incoming light-raysVr(u, v)
as it lies along Vr(u, v) at some distance rv from the
point of reflection Sr(u, v) given by:

L(u, v, rv) = Sr(u, v) + rv · Vr(u, v). (9)

In order to determine rv we employ the Jacobian
method [5] by constraining the determinant of the Jaco-
bian of Eq.(9) to vanish. This gives a quadratic equation
in rv , the solution to which gives us the caustic.
Note that, we do not know the analytic forms for Sr(u, v)
and Vr(u, v). To compute their partial derivatives, we
first fit splines to Sr(u, v) andVr(u, v). Then, we com-
pute the required partial derivatives numerically (see [27]
for details). Thus, using the framwork of spline, we can
easily determine the caustic of any general projector or
imaging system.
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