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ABSTRACT

The Advanced Baseline Imager (ABI) on GOES-R will help NOAA’s objective of engaging and educating the
public on environmental issues by providing near real-time imagery of the earth-atmosphere system. True color
satellite images are beneficial to the public, as well as to scientists, who use these images as an important
“decision aid” and visualization tool. Unfortunately, ABI only has two visible bands (cyan and red) and does
not directly produce the three bands (blue, green, and red) used to create true color imagery.

We have developed an algorithm that will produce quantitative true color imagery from ABI. Our algorithm
estimates the three tristimulus values of the international standard CIE 1931 XYZ colorspace for each pixel of the
ABI image, and thus is compatible with a wide range of software packages and hardware devices. Our algorithm
is based on a non-linear statistical regression framework that incorporate both classification and local multi-
spectral regression using training data. We have used training data from the hyper-spectral imager Hyperion.
Our algorithm to produce true color images from the ABI is not specific to ABI and may be applicable to other
satellites which, like the ABI, do not have the ability to directly produce RGB imagery.
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1. INTRODUCTION

Advanced Baseline Imager (ABI) on the future GOES-R satellite will not have a channel that senses in the
green range. It has only two channels, 470nm and 640nm in the visible range.1 As a result, ABI cannot directly
produce color images despite the widespread demand for such images for use as “decision aids” by meteorologists
and for visualization by the public. NOAA’s goal of integrating earth observations requires the ability to provide
ABI data in a form that can be compared with other earth observations such as conventional color images. We
address this problem by fusing ABI data in multiple visible and near visible spectral bands to best quantitatively
estimate a true color image product.

Sources that may be used to estimate this true color product include MODIS data from the Terra and
Aqua satellites and data from other imagers on polar orbiters. In addition to these sources, accurate wide band
true color regression models can be constructed using o✏ine data sources that provide high spectral resolution
reflectance. In this paper we use empirical data from the hyper-spectral imager Hyperion, as o✏ine training and
verification data sets.

Prior work focused on estimating a spectrally narrow green band response to produce a color image. This
is a crude approximation to a perceptually accurate RGB image, so instead we have statistically reconstructed
an X, Y, and Z channel based on the standardized CIE 1931 XYZ color space defined by CIE (International
Commission on Illumination).2 Thus, our algorithm directly minimizes the true color error, not only for improving
visualization applications but also potentially allowing for accurate fusion of ABI data with RGB images taken
on the ground.
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Figure 1: Current GOES Imager vs ABI GOES-R bands. Image courtesy of the Cooperative Institute for
Meteorological Satellite Studies (CIMMS)

Because an accurate RGB image is based on broad, rather than narrow, spectral bands, simply choosing bands
“close to” R, G and B is insu�cient and more spectral parameters are needed. Because the number of entries in
look-up tables grows exponentially with the number of parameters, the straightforward use of traditional look-up
tables becomes impractical. Simple approaches will not produce satisfactory results in all situations due to the
underlying non-linearity of the data, and the relationship among the spectral reflectances of di↵erent materials.
For instance cloud footprint spectra will be radically di↵erent from that of desert or forest. Non-parametric
methods such as look-up tables, nearest neighbor regression, kernel methods, and cluster analysis can be used
to capture these complex relationships. Unfortunately non-parametric methods can require more data than is
practical. In this paper we present one approach which combines a K�means clustering with a multi-linear
regression for each cluster. This provides a compromise between the flexibility of non-parametric methods while
still limiting the need for training data. We will present an evaluation showing that this compromise provides
good performance on estimation of the XYZ true color.

2. BACKGROUND

The issue of generating a synthetic green band has been investigated by both CIMSS and CIRA using a look-up
table (LUT) method.3,4 The approach they took is to derive this LUT statistically. The LUT is designed to
take as input, values for the 470 nm cyan band, 640nm red band, and the 860 nm NIR band and to output a
550nm green band value. The LUT is built from a large set of modeled and measured data. From this data
many pixels with the coincident reflectances of the four bands, cyan, red, NIR, and green in images are collected.
Each entry in a 250⇥250⇥250 data cube array represents a bin in the cyan, red, and NIR reflectance space.
The value assigned to each bin is the average green band value for that bin as determined across the whole data
collection. The lookup table is applied to new data by finding the nearest cyan, red and NIR reflectance from
the ABI, and looking up the corresponding green values. The values from the estimated green, cyan and red
bands are then Rayleigh corrected and stretched through a log enhancement. They are then combined to form
an RGB true color value for visualization. The result shown in Figure 2 is an example from D. Hillger at CIRA
using simulated ABI data generated at CIMSS.

While the LUT method above does provide a good statistical regression of the 550 nm green channel, it does
not take into account that human perception is not based on a narrow band red, green and blue channel responses.
The human visual system does not respond to only narrow red, green and blue bands, but has three broadband
color responses; these responses have been standardized and quantified through the CIE 1931 XYZ color space.2

The XYZ color space provides three functions which when applied to the measured spectral radiance curve, give



Figure 2: True color image created at CIRA using simulated ABI data from CIMSS.

parameters X, Y, and Z called the tristimulus values. Loosely speaking, X, Y, and Z are closely related to red,
green and blue, respectively. However, unlike a loose definition of red, green and blue, XYZ are precisely defined
quantities.

The tristimulus values are derived from broad spectral band responses applied to the spectral radiance distri-
bution for each point. This spectral radiance distribution could be based on a model or come from measured data.
If the spectral radiance distribution I(�) is given in watts/meter

2 per unit wavelength ��, then the tristimulus
values X(I), Y (I), Z(I) are linear functionals of I. They were chosen based on experimental measurements
with human subjects to establish an international standard (color) observer. If any normal observer is asked
to distinguish two patches of color, having spectral radiance I1 and I2 respectively, they will be impossible to
distinguish if and only if X(I1) = X(I2), Y (I1) = Y (I2), and Z(I1) = Z(I2). The tristimulus values are defined
by three color matching functions (densities) x, y, z so that

X =

Z 1

0
I(�)x(�)d�, Y =

Z 1

0
I(�)y(�)d�, Z =

Z 1

0
I(�)z(�)d� (1)

where the curves are shown in Figure 3. The XYZ colorspace is an international standard for perceived color that
is incorporated into most professional design tools. Calibration tools are also widespread for measuring XYZ,
as are tools that can convert XYZ to the RGB of a specific computer monitor, or the CMYK (Cyan, Magenta,
Yellow and Black) of a specific printer. Thus the determination of the XYZ color for an ABI granule, unlike
the estimation of a narrow green band, makes it possible to able to produce an accurate color representation for
any viewing device. The goal of this paper is to quantitatively estimate the XYZ values of a scene given ABI
radiances.

3. ALGORITHM

To address the problem of estimating a true color image product from the ABI, our approach is to statistically
train from a pool of representative examples. We use these examples to develop a training set consisting of many
pixels where we have coincident values for X, Y , and Z as well as values for the 6 visible and near visible bands
of ABI. We then apply a non-linear regression method which produces a predictor of the values of X, Y , and Z

from the ABI data. We then can use this predictor to produce X, Y , and Z, given new ABI data. The outline
of the approach is presented in the diagram shown in Figure 5. The training data is input into a non-linear
multi-parameter regression algorithm to estimate a set of predictor parameters. The predictor takes ABI visible



Figure 3: CIE 1931-XYZ Color Matching Functions, x,y and z. These functions when multiplied by the observed
spectral radiance distribution, and integrated, yield the broad-band X,Y, and Z tristimulus values.

Figure 4: Diagram showing the construction of training data. Both the tristimulus values, represented by the
boxes labled X,Y , and Z, and the visible and near visible ABI simulated bands (1-6) are produced from a spectral
radiance distribution at each pixel. The spectral radiance distributions were derived from from Hyperion data.

and near-IR images as input, and produces true color images as output. After training, the predictor is applied
to independent testing data to evaluate the accuracy of the predicted values. Hence the output of the final
algorithm will be a true color predictor function, which produces estimates of true color images for the ABI.

The first component is obtaining and building ground truth training and testing data sets. One way to do
this is to start with spectral radiance distributions I(�) for a set of representative scene points. These could be
obtained from physical modeling and simulation, or from measurements. In this paper we derive our spectral
radiance distributions using data from a hyper-spectral imager, the Hyperion on the Earth Observing Mission 1
satellite (EO-1). Suppose that at each footprint p associated with a pixel in the imager, the spectral distribution
is Ip. We can then obtain the values of Xp, Yp, and Zp by integrating the spectral distribution against the
matching functions, using equation 1. In a similar way we can obtain the co-incident values for the 6 visible, and
near visible bands of the ABI, Bp,1, . . . Bp,6, from the ABI specified spectral quantum e�ciency curves b1, . . . , b6
in place of the matching functions x, y and z in equation 1. Together, the spectral projections of the XY Z

values and the 6 ABI bands applied to the hyper-spectral data at each pixel, as illustrated in Figure 4, result in
a large training set.

The second component of the algorithm, illustrated in Figure 5, is the development of an e↵ective parameter-
ized predictor, along with an e�cient method of estimating the predictor parameters. One simple approach is the



Figure 5: Diagram showing algorithm.

construction of a look-up table (LUT). For each quantized set of inputs in the input bands, B1, . . . , B6 we would
need a large number of examples in the training data data. The average values of X, Y and Z, respectively, for
that input are the expected values for XY Z and would be used as the estimates. This is essentially the method
used by Miller et al.4 The LUT method has the advantage of being non-linear and purely data driven. One
problem is that unlike in Miller et al4 which used 3 input bands for estimation, we are using 6 input bands. The
lookup table grows exponentially in the number of input bands, as does the need for training data. In the case of
6 bands, even in the best (and unrealistic) case where input all the pixel values were uniformly distributed this
would require the equivalent of hundreds of millions of granules for training. Without this much data, a lookup
table risks over-fitting. In other words, there are not enough examples to smooth the natural (uninformative)
variation in the data. As a result the lookup table would just summarize past data and generalize poorly on
future data.

Another very simple method of estimating a predictor, is to estimate the values as a multi-linear function of
the inputs. That is if w = [X,Y, Z] is thought of as a 3 ⇥ 1 column vector and If v = [B1, . . . , B6] is a 6 ⇥ 1
column vector of ABI inputs then a XY Z multi-linear predictor is a 3x6 matrix A (6 dim input 3 dim output)
so that

Av = w (2)

with w = [X,Y, Z] the predicted values of X, Y , and Z. There are several numerically stable methods of finding
a least-squares solution to equation 2, minimizing the square error. The square error is given by

ErrorS(A) =
X

p2S

||Avp � wp||2 (3)

over all the p in the training set S. Unlike a lookup table, this approach requires much less data, and is not
subject to over fitting problems since we only need to estimate the 18 coe�cients of A.

Unfortunately, the multi-linear model is too simplistic to provide satisfactory results. What is required is a
compromise between the simple multi-linear model, and a LUT that allows us to add as much non-linear flexibility
as we can, given the training data, while not overfitting. On further analysis, the multi-linear model does not
fit the data well because for di↵erent materials and atmospheric constituents there are di↵erent relationships
between the bands. Instead of trying to fit a single multi-linear relationship for all the data, if we can partition
the input data space into related data clusters, we can provide a separate model for each cluster. Rather than
arbitrarily partition the data we use a simple clustering method, K�means to break the data up into clusters.5

The number of clusters is a free parameter K. For a fixed value, the K-means clustering algorithm is applied to
the training data to break it up into K clusters S1, . . . SK which are represented by their K means, m1, . . . ,mK .
For each cluster Si we separately fit a multi-linear model Ai. For each new set of input values v the first step is
to find the nearest mean mi out of the means m1, . . .mK . Then the predicted values for w = [X,Y, Z] are given
by w = Aiv.

Clustering breaks the data into separate data clusters. Since this means we fit a separate multi-linear model
per cluster, which is a subset of the data, the fitting (training) error will at worst be the same, and typically will
degrease. The fitting error will continue to decrease with an increasing number of clusters. Potential over-fitting
can be evaluated by testing the model on test data produced in the same way as for the training data, but not
used for fitting. This error of the fit on this test approximates the generalization error, ie, the error of the model



Figure 6: Root mean square error on testing data (not used to fit the model) plotted against an increasing
number of clusters.

on new data. What we expect is that as we increase the number of clusters K the generalization error will, in
general, drop for a while, and then as we begin over-fitting, the generalization error will not improve or even
climb.

Figure 6 shows the root mean square error for XY Z color estimation on testing data using the method
of K-means clustering, followed by K models. Because K-means is a random seeded iterative algorithm, the
clustering followed by fitting was run on training data many (100) times, and the best result was used. This
should be seen as part of the optimization. The Root Mean Square Error (RMSE) shown in the figure was
taken from training data. Too little data was available for the result of Figure 6 to be considered statistically
representative. The local increases and decreases in the RMSE have to do with the peculiarities of the data set
and the interaction of the local models with the changes in the clustering. In general, as expected, there is a
decrease in RMSE with increasing number of clusters. It can be seen, however, that after 10 clusters little or no
improvement is seen. This suggests using more than 10 clusters would result in over-fitting.

3.1 Results

We implemented the algorithm using the Python programming language, the SciPy and Numpy libraries, as
well as the Matplotlib library for visualization.6–8 We used Hyperion sample granules from the EO-1 obtained
from the USGS website. To evaluate the algorithm we used one large continuous region of the Hyperion granule
for training and a separate, non-overlapping region for testing. In Figure 7(a) we measure the scaled histogram
(probability) in root mean square errors (RMSE) in radiance between the true vp = [Xp, Yp, Zp], and the predicted
v

0
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p, Y
0
p , Z

0
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�
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Note that the XYZ are broadband responses, thus that radiance levels, and consequently the errors, are
much larger than radiance levels for a narrow band responses. The errors shown in Figure 7(a) are for a single
multi-linear predictor (1 cluster.) If we just consider the Y response the absolute di↵erence errors histogram are
very similar, as shown in Figure 7(b). Both the XYZ error and the absolute errors on just the prediction of Y
gradually improve when a second cluster is considered, as shown in Figures 7(c,d). We can see in Figure 7(e,f),
that the distribution of errors improve much more when 10 clusters are used.



(a) XYZ (1 cluster) (b) Y (1 cluster)

(c) XYZ (2 clusters) (d) Y (2 clusters)

(e) XYZ (10 clusters) (f) Y (10 clusters)

Figure 7: Histogram of RMSE



Figure 8: Size of per pixel XYZ-RMSE overlaid on a chromaticity diagram.

To get a better understanding of what colors are most problematic it is instructive to move the errors to the
2-dimensional chromaticity. This space normalizes by the luminance or more informally the “grey component”.
This is done by projecting the XY Z into two variables x, and y where

x =
X

X + Y + Z

, y =
Y

X + Y + Z

. (5)

The plot of color pixels into this color space is called the chromaticity diagram, as shown in figure 8. The curve
bounding the color region shows the limits of color perception. The bounding curve represents pure spectral
curves where the center fades to a “white point” where the colors are desaturated. Overlaid on the chromaticity
diagram are the x, and y values computed from the actual XYZ values of our data. The dots are colored by
the RMSE of the predicted XYZ values. As we can see in figure 8, the large errors are concentrated in the
desaturated red/purple region with some deep green pixels also being challenging. Still the majority of the color
have small error.

In Figure 9 we see each component of X (top row), Y (middle row), and Z (top row) in the original image
(left column) and predicted (right column). To produce the predicted images, 10 clusters were identified with K-
means, one run was used rather than the 100 runs used to produce each clustering of Figure 6. The images were
histogram-equalized so that the contrast between the predicted and original images would be more pronounced.
The algorithm predicts the bands well although, in the middle row, we can see that the region within the
circle marked A in the original image, shown in Figure 9(c) is noticeably lighter than in the predicted image
Figure 9(d). Since the Y roughly corresponds to the green channel and the X and Z in this same region are
nearly unchanged, once converted to RGB, this region is somewhat greener in the original image than in the
predicted image. Nevertheless, in other regions it is nearly identical even for the Y value.

Since the quantity Y contains more sensitivity in the region where data is missing, that of green, than X

and Z, the errors there are most relevant. To show how performance in Y is a↵ected by increasing numbers of
clusters, Figure 10 shows the improvement in the image with increasing numbers of clusters. In Figure 10(a) the
original image is shown with two regions marked A and B for reference. Note that in Figure 10(b), prediction
of Y with a single cluster the water region A is somewhat lighter than it is in Figure 10(a), while region B
is somewhat darker. As we increase the number of clusters from 2 to 10, shown in the Figures 10(c,d), the
intensities more nearly match regions A and B in the original image Figures 10(a).



(a) Original X (b) Predicted X

(c) Original Y (d) Predicted Y

(e) Original Z (f) Predicted Z

Figure 9: histogram-equalized XYZ images for 10 clusters.



(a) Original (b) 1 Cluster (predicted)

(c) 2 Clusters (predicted) (d) 10 Clusters (predicted)

Figure 10: Original Y shown with predicted Y for three di↵erent numbers of clusters. Region A and B are
marked for easier comparison across the image.



To render a highly accurate color satellite image to a computer display or to a printer, device specific profiles
must used to implement the transformation from XYZ to RGB. Since we intended to equalize the images anyhow,
to emphasize the contrast between original and predicted, we converted XYZ to RGB using a generic profile.
Figure 11 shows three original-predicted image pairs using this profile followed by histogram equalization of
each band (independently) to maximize the visual di↵erences. As can be seen in the pairs Figure 11(a,b) and
Figure 11(c,d) the agreement for RGB is excellent although the irrelevant equalization process does introduce
some unnatural colors (purple haze). The image pair in Figure 11(e,f) shows a failure case. While in most parts
of the image the predicted image is quite close, the region which is brown in the middle right of the image in
Figure 11(e) is yellow in the image in Figure 11(f). One problem is that because the K-means is performed
independent of the multi-linear prediction, pixels requiring di↵erent predictors are sometimes grouped together.

4. CONCLUSION

In this work we have shown that despite the fact that the future ABI on GOES-R will not have a 550nm green
band, it is possible to obtain a good approximation to the CIE 1931 XYZ color space using all of the visible
and Near IR bands. We achieved this by combining a multi-linear regression, with K�means clustering to
achieve selectable level of flexibility. This provided a compromise between the robust multi-linear regression
whose performance is limited due to its inability to adapt to di↵erent kinds of scenes, with a multi-dimensional
lookup table which can provide arbitrary flexibility but whose data requirements explode with the number of
input variables. We note that this same method could be used to approximate a virtual sensor with any desired
spectral response. In future work we hope to evaluate the method using more data including other hyper-spectral
imaging data sets, as well as those derived from model simulations. Would would like to determine how to address
the color regions where our current XYZ fails. We would also like to evaluate our XYZ method, for matching
to ground based conventional broadband photography to which it is more similar than the narrow band RGB
methods. There is nothing fundamentally specific to our algorithm to ABI. It could be applied to other satellites
which, like ABI, do not directly produce RGB images.

ACKNOWLEDGMENTS

The authors would like to thank Tim Schmit of NOAA/STAR for his input as well as Alfred Powell and Ingrid
Guch of NOAA/STAR for their support. This study was partly supported and monitored by National Oceanic
and Atmospheric Administration (NOAA) under ISET Grant # NA06OAR4810187

REFERENCES

[1] Schmit, T. J., Gunshor, M. M., Menzel, W. P., Li, J., Bachmeier, S., and Gurka, J. J., “Introducing the Next-
generation Advanced Baseline Imager (ABI) on GOES-R,” Bull. Amer. Meteor. Soc. 8, 1079–1096 (August
2005).

[2] Broadbent, A. D., “A critical review of the development of the cie1931 rgb color-matching functions,” Color
Research Application 29(4), 267–272 (2004).

[3] Hillger, D., Grasso, L., Miller, S., Brummer, R., and DeMaria, R., “Synthetic advanced baseline imager
(ABI) true-color imagery,” Accepted for publication by to J. Applied Remote Sensing (2011).

[4] Miller, S., Schmidt, C., Schmit, T., and Hillger, D., “A Case for Natural Colour Imagery from Geostationary
Satellites, and an Approximation for the GOES-R ABI,” Submitted to to International Journal of Remote
Sensing (2011).

[5] Duda, R. O., Hart, P. E., and Stork, D. G., [Pattern Classification, S.E ], Wiley Interscience (2000).
[6] van Rossum, G. and Drake, F. L., [PYTHON 2.6 Reference Manual ], CreateSpace, Paramount, CA (2009).
[7] Jones, E., Oliphant, T., Peterson, P., et al., “SciPy: Open source scientific tools for Python,” (2001–).
[8] Hunter, J. D., “Matplotlib: A 2d graphics environment,” Computing In Science & Engineering 9, 90–95

(May-Jun 2007).
[9] Grasso, L. D., Sengupta, M., Dostalek, J. F., Brummer, R., , and DeMaria, M., “Synthetic satellite imagery

for current and future environmental satellites,” Int. J. of Remote Sensing 29(15), 4373–4384 (2008).



(a) Original (b) Predicted

(c) Original (d) Predicted

(e) Original (f) Predicted

Figure 11: Original and predicted XYZ images converted to RGB then color equalized to increase contrast. The
pairs (a)-(b) and (c)-(d) show excellent aggrement while the pair (e)-(f) was a challenging case.


