BOTT TOWERS, COMPLETE INTEGRABILITY, AND THE
EXTENDED CHARACTER OF REPRESENTATIONS
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ABSTRACT. We study certain manifolds with completely integrable torus ac-
tions, which we call Bott towers. We use these to construct extended characters
for representations of compact Lie groups, in which all multiplicities are £1.
As a corollary, the dimension of [the multiplicity of a weight in] a represen-
tation is obtained as the (signed) number of lattice points inside a “twisted
cube” [intersected with an affine plane]. We obtain an explicit formula for the
extended character which implies Demazure’s character formula and which is
formally similar to formulas of Littelman and Kashiwara on the crystal basis.
The above results have symplectic counterparts which shed new light on the
polynomial nature of the Duistermaat-Heckman measure for coadjoint orbits.
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INTRODUCTION

Two themes are interwoven throughout this paper; representation theory and
symplectic geometry. These two are connected via the “orbit method” pioneered
by Kirillov, Kostant, Souriau and others. Via the Borel-Weil theorem, the repre-
sentations of a compact Lie group arise as spaces of holomorphic sections of line
bundles over (generalized) flag varieties. In the symplectic context, flag varieties
appear as coadjoint orbits. The convexity of certain projections of coadjoint orbits
[Kol] has lead to the convexity theorem in symplectic geometry [A, G-S 1]. Coad-
joint orbits have also served as a model for the Duistermaat Heckman theorem
[He, D-H| and for the study of symplectic fibrations in [Le, G-L-S].

Our main players are flag varieties, Bott-Samelson manifolds and certain toric
varieties which we call Bott towers. We exploit the connections between these
spaces in order to apply to representation theory certain results on Bott-towers.

Take a complex line bundle L — M with an action of a torus 7. From this we
get a virtual character, which is a function X : T — C (see §2.7), and a signed
measure o on the vector space t* (see §1.5). These two objects are closely related,
see §2.9.

Let M = K/T be a flag variety with a homogeneous complex structure associated
to a choice of a positive root system. If L is a positive line bundle then X coincides
with the character of an irreducible representation of K (see §1.2).

If M is a Bott-tower (see §2.1) then both X and o are described by a simple
shape C in R™ which we call a twisted cube, see figures 1, 2. The signed measure o is
equal to £ Lebesgue measure on C. The virtual character is a Laurant polynomial
in n variables in which all the coefficients are +1.

Bott-towers and flag varieties are related through Bott-Samelson manifolds. De-
mazure described a complex structure on a Bott-Samelson manifold M which relates
it to a flag variety (see §3.1). Bott found an action on M of a torus of half the
dimension of the space, which is not holomorphic. We describe a second complex
structure, for which the action is holomorphic, and which makes the Bott-Samelson
manifold into a Bott-tower (see §3.5). We then connect the two complex structures
by a one parameter family of complex structures. This enables us to express the
character X of an irreducible representation as the restriction of a virtual character
X which comes from a Bott-tower. We call X an eztended character for the repre-
sentation. It depends on the choice of a reduced expression for the longest element
of the Weyl group, and on no other choices.

The above result enables us to express the multiplicities in a representation as
the number of points inside certain polygonal regions in R* % counted with signs.
We also obtain a formula for the extended character which implies Demazure’s
character formulas and which looks similar to some formulas of Littelman and
Kashiwara regarding the Crystal basis.

Analogously, we express the Heckman measure o for a coadjoint orbit as a linear
projection of a twisted cube. The density function for o is given by the signed
volume of certain polygonal regions in R*~*; this explains the piecewise polynomial
nature of o.

All the results above continue to hold if we replace the flag varieties by Schubert
varieties. For these too we can define a virtual character X and a signed measure
o, which can again be described as projections of twisted cubes.
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In the first section we review some well-known background from representation
theory and from (pre-)symplectic geometry. The investigation of Bott-towers re-
quires no background in representation theory, thus one can read §1.4, §1.5 and
section 2 independently of the rest of the paper. In the third section we apply
the results of section 2 to obtain the results in representation theory which were
described above.

This paper has grown from the Ph.D. thesis of the first author [G]. He has
defined the virtual character X for a Bott-tower and computed it to be a twisted
cube. He used the deformation of complex structures to construct the extended
character for a representation, see §2.8 for an outline of that argument.

Our results on Bott-towers have in the meantime been generalized in [K-T] to
all smooth toric varieties. The corresponding character and measure are then given
by shapes called twisted polytopes, which are generalizations of twisted cubes. A
further generalization, to completely integrable Spin® manifolds, will be given in
[G-K].
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1. PRELIMINARIES

As general references in representation theory and in (pre-) symplectic geometry,
see [Hu], [J], [Au].

1.1. Flag varieties and Schubert varieties. Let G be a complex semisimple Lie
group. For clarity we assume G is simply connected. Choose a Cartan subgroup H
and let g = h @& )" go be the decomposition into root spaces. Denote by A C h*
the roots. Choose a set of positive roots AT, with A = AT U —AT, and denote
the simple roots by ¥ C At. Let B be the Borel subgroup whose Lie algebra is
b=b®D> ca+ 8-a- Let N be the normalizer of H in G, then the Weyl group

is W = N/H. The Bruhat decomposition is G = J,,c;y Bw B where w is a
representative of w in .
The quotient G/B is called a (generalized) flag variety. The Bruhat decomposi-

tion of G gives rise to a cell decomposition, G/B = |J,,cp BwB/B. These cells are
called Bruhat cells and the closures of these cells are called the Schubert varieties
in G/B; we denote

X, = closure(BwB/B).
This variety may be singular; it decomposes into a union of Bruhat cells.
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More generally, let J C X be a subset of simple roots and let P = P; C G be
the parabolic subgroup of G whose Lie algebra is p; = ZaeAm(span 5) 9o @ b. In
particular, if 7 = () then P = B. The quotient G/P is also called a (generalized)
flag variety.

Let W’/ = {w € W | w(a) > 0 for all @ € J}. Then we have a cell decomposition
G/P = Jycws BwP/P; see [J, 11§13.8]. The Schubert varieties in G/P are the
closures of the cells.

1.2. Line bundles and multiplicities. We now describe how the choice of an
integral weight determines a holomorphic line bundle over a flag variety.

Let K C G be a maximal compact subgroup, then we have a K-equivariant
diffeomorphism K/T — G/B where T is the maximal torus in K. Similarly,
if P C G is a parabolic subgroup then we have an equivariant diffeomorphism
K/L — G/P for a subgroup L C K.

Pick A in the integral weight lattice in it*. Since G is simply connected, we have
a homomorphism e* : T — S'. Let Cy be a one dimensional complex vector space
on which T acts as multiplication by e*. The associated bundle, Ey = K x7C,, is a
complex line bundle over the real manifold K /T. It can be made into a holomorphic
line bundle over the complex manifold G/B in the following way. The orthogonal
projection of Lie algebras b — b descends to a homomorphism Y : B — H ! of
complex Lie groups [J, I1,§1.8]. Let B act on C, as multiplication by e* o Y. Then
we can write Ey = G xp Cy, which is a holomorphic line bundle over G/B.

For a singular weight A let J C ¥ be the set of simple roots « such that (A\,a) =0,
where (-, -} is the Killing form on it*. Let P C G be the corresponding parabolic
subgroup. Then e* : H — C* extends to a homomorphism P — C*. Consider
the map G/B — G/ P, then E, is the pull-back of a holomorphic line bundle over
G/P. From now on we denote by E, the bundle over G/P.

The positive Weyl chamber in it* is the set of A € it* such that (A, «) > 0 for all
a € AT. An integral weight A is dominant if it lies in the closure of the positive
Weyl chamber. Such A is singular if and only if it lies on the boundary.

The group G acts holomorphically on the total space of E, by left multiplication.
This induces a representation of G on the vector space of holomorphic sections,
Thot(Ey). Denote this representation by Ry. If A is dominant then, by the Borel-
Weil theorem [Kn], R, is the irreducible representation of G with a highest weight
A; otherwise Ry = {0}. All irreducible finite dimensional representations of G arise
in this manner. _

Now, fix a Schubert variety X, — G/B and consider i*Ej; see [J, §14]. We
clarify our meaning of a holomorphic section over a (singular) Schubert variety.

Since the Bruhat cell BwB/B is dense in X, and is locally closed in G/B, we can

think of the holomorphic sections of ¢* E\ as being the restrictions to BwB/B of the
sections of E). Again we have a left action, of B, which induces a representation
of B on Fhol(i*E)\).

Fix a dominant integral weight A in ¢t* and consider the representation Ry of G
with highest weight A. Its character X7 = X7 () is the complex valued function on
T defined by a — trace(Ry(a)). We omit A when there is no possibility of confusion.

17 is the Greek letter Upsilon
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We can write Xr(a) = 3, myue”(a) where the summation is over the integral
weight lattice ¢* C it* and where mult(a) = m, is the multiplicity of e* in the
restricted representation Ry |r.

Similarly, if we fix a Bruhat variety X,, < G/ B then the torus T' C B acts on
the space of holomorphic sections of i*FE\ and again we get a character, this time
arising from the restriction to 7" of a representation of B.

1.3. Symplectic structure. Now let A be any regular element in it*. The Killing
metric gives an embedding j : t* — £ where £ = Lie(R). Let \ = (2mi)~!\
and j(\') be its image in £*. The group K acts on £* by the coadjoint action. The
stabilizer of j(\') in K is exactly T'; this is the meaning of being regular. Therefore,
the map a +— a - j(\') identifies K/T with a coadjoint orbit in £*. Composing with
the inverse of the map K/T — G/B, we get a K-equivariant diffeomorphism
between the flag manifold G/B and the coadjoint orbit of j(\') in €*.

More generally, if A € it* is singular then let J = {a € £ | (A\,a) =0} as in §1.2.
Then the coadjoint orbit through j()’) is isomorphic to the flag variety G/P; as
smooth manifolds with left K-actions.

Any coadjoint orbit has a natural K-invariant symplectic form, i.e., a closed
nondegenerate differential 2-form, due to Kirillov, Kostant and Souriau. By the
diffeomorphisms described above, the choice of A induces an invariant symplectic
form on a flag manifold. If A is integral then this symplectic form coincides with the
curvature of the natural connection on the bundle E) which was defined in §1.2.

Even if X is not integral, the symplectic structure on X is compatible with
the complex structure. Consequently, every complex submanifold of X is also a
symplectic submanifold. In particular, the Bruhat cells are symplectic.

1.4. Moment maps. Let (M,w) be a symplectic manifold and T a torus which
acts on M and preserves w. A moment map is defined to be a map ® : M — t*
such that

(dd,&) = —1(fy)w forall £ et (1.1)

where £j7 is the vector field on M which generates the action of the one parameter
subgroup {exp(t{) , t € R}. A presymplectic form is just a fancy name for a closed
2-form. The above definition also makes sense when w is presymplectic.

Note that (1.1) determines ® up to a translation by an element of t*, and that
¢ always exists if M is simply connected. Also note that (1.1) implies that & is
T-invariant and that the pullback of w to an orbit is zero; see [Au].

If M is a coadjoint orbit for K and T is the maximal torus, acting by the
coadjoint action, then the moment map ® is the inclusion M — &* followed by
the projection ¥ — t*. The Bruhat cells in M are T-invariant and symplectic,
and the restriction of ® to a Bruhat cell is a corresponding moment map. In fact
since the restriction makes p o ® a well defined map, on all of the Schubert variety
X,, we define it to be the moment map. Moreover we will treat (X,,,T,w, ®), as a
symplectic manifold, though w is well defined on a dense open set, the associated
Bruhat cell, ® is defined by restriction, and satisfies 1.1 on the Bruhat cell.

Here is one particularly important situation in which moment maps arise. Take
a manifold M with an action of a torus T'. Take a principal S'-bundle 7: P — M
and a lifting of the action to P. Let © be an invariant connection and w its
curvature. Then O is a 1-form on P and w is a 2-form on M, they take values



BOTT TOWERS 7

in Lie (S!) and are related by 7*w = d©. We identify Lie(S') with R such that
the exponential map is # — €27, This allows us to view © and w as real valued
differential forms. Although w might not be symplectic, it is always closed and
invariant. Define ® : M — t* by

(Pom, &) =(0,6p)y forall et (1.2)

where {p is the vector field on P determined by . Then ® is a moment map for
(M, T,w).

1.5. Duistermaat-Heckman measure. Let M be an oriented, compact manifold
of real dimension 2n. Let T be a torus which acts on M, let w be a T-invariant
closed 2-form, and let ® : M — t* be a moment map.

Consider the Liouville measure on M; the measure of an open subset A C M is
defined to be fA w™/n!. This is a signed measure on M. Its push-forward, ®,w"/n!,
is called the Duistermaat-Heckman (D-H) measure. It is a signed measure on t*
which is determined by (M,T,w) up to a translation in t*.

Theorem 1 (Guillemin and Sternberg). ®.w™ only depends on the cohomology class
of w in H*(M,R).

Proof. This was proven by Guillemin and Sternberg in [G-S 3]. Since their paper is
not published, we sketch their proof here. Suppose that w; and ws are cohomologous
and let ®;, &, be corresponding moment maps. It is sufficient to show that the
Fourier transforms of the push-forward measures coincide, i.e., that

/ P16 :/ P20, forall £ € t. (1.3)
M M

Further, it is sufficient to prove (1.3) for £ which generates a circle S* C T, because
the set of such ¢’s is dense. Define ¢; = (®;, &) for j = 1,2. We have we = wy +df
and by averaging over T we can assume that 3 is an invariant 1-form. Then
©1 + t(Ep)B is a moment map for we, so it differs from ¢o by a constant, and we
assume that it is equal to 5.

Now consider the graded ring A%, @ Clu] where A%, denotes the S'-invariant
differential forms on M and Clu] is the ring of polynomials in the variable u, with
degree(u) = 2. Define a differential d by d(a®p(u)) = da @ p(u) + 1(Ear)o @ up(u).
One can explicitly check the following facts.

o« d>=0.

Denote Hé, (M) = ker(d)/image (d).
o The ring structure on A%, ® Clu] descends to HE, (M).
e Integration over M defines a map [, : A% ® Clu] — Clu] which descends
to a map Hj, (M) — Clu]. If rank(ar) # n then we define [,, o = 0.

o U :=w,; ® 14 p; @u are d-closed for j = 1,2; and &y = &y +d(3 © 1)
These facts imply that [,, @F = [,, ©F for all n. Define e* =1+ &+ &?/2!+ ...,
then [, e“* = [, e*>. Restricting to the components of e/ whose form-parts have

degree n, we get
/ e“rwl/n! = / e wl In!
M M

as an equality between power series in u. Setting u = i gives (1.3). O
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The measure ®,w™ is absolutely continuous with respect to Lebesgue measure on
the smallest affine space which contains image (®) (which is all of t* if the action is
effective). The density function p(«) is piecewise polynomial by the Duistermaat-
Heckman theorem [D-H]. In section 3 we will show that this remains true for
Schubert varieties which are not smooth manifolds.

Remark 1.4. Let (M,T,w,®) be as above. Take a homomorphism A : 7" — T
where T” is a torus. Consider the action of 7" on M given by the composition of A
with the action of T. We have dA : ' — t, and dually, L = dA* : t* — t'*. Then
¢' = Lo ® is a moment map for (M, T’ ,w) and the corresponding D-H measure in
t'" is equal to the push-forward by L of the D-H measure ®,.w™ in t*.

1.6. Relation between multiplicities and the Heckman measure. Recall
that the choice of a dominant weight \ € it* gives rise to a flag manifold X = G/P
and to two objects. The first is the character X of the irreducible representation
Ry with a highest weight A. It is determined by its multiplicity function, mult :
(* — 7,, which sends p — m(u, \) = the multiplicity with which u occurs in Ry |r.
The second object is a measure on t* which is determined by its density function,
p:tt — R
For every k£ € N we have

mkp, k) = K p(i=" ) + O(k™™") (L5)

where r = dim G — 2dim T'; [He], [G-S 2]. Thus we can think of p as a continuous
approximation to mult. Note that although p is naturally a function on t* and
weights naturally live in it* we identify t* 22 it* = Rdim T,

The statement (1.5) remains true even when applied to a Schubert variety X,
and not to the whole coadjoint orbit X. If X,, is smooth then this would follow
from [G-S 2], theorems 6.2 and 6.5, and remark 1, where their O is our {A}. In

section 3 we shall obtain another proof, which also applies when X, is singular.

2. BOTT TOWERS

The complex manifolds discussed in this section were shown to the first author
by R. Bott and are in the same spirit as the manifolds used in the splitting principle
[B-T, §21]. The underlying smooth manifolds arise in a construction of R. Bott and
H. Samelson [B-S].

2.1. What is a Bott tower? We now construct a family of compact complex
manifolds. They will have extra structure in that they will be iterated fibrations
and the fiber maps will have certain distinguished sections. Take a holomorphic
line bundle L; over M; = CP!. Take its direct sum with the trivial bundle, and
projectivize each fiber. This produces a manifold My = P(1® L;) which is a bundle
over M; with a fiber CP'; this is a Hirzebruch surface. We can repeat this process
n times, so that each M; is a CP'-bundle over M;_;:
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P(1aL,) = M,
L
Mn—l
P(1aLy) = M
} ™
CP! = M,

Im
{a point} = M,

We think of CP' as a sphere with a South pole [1,0] and a North pole [0, 1].
The zero section of L; gives rise to a holomorphic section, the South pole section;

S . . .
o; My — M;.

Similarly, we obtain the North pole section ojv : M;_1 — M, by letting the first
coordinate in P(1 @ L;) to vanish.

A Bott tower is by definition a collection {}Mj, Wj,UéV,O'S =1 which can be re-
alized by the above process. It is thus a complex manifold M, together with the
additional fibration and section structure.

Ezample 2.1. CP* x --- x CP! (n times) is a Bott tower.

2.2. Construction of Bott towers. A one-step Bott tower can be written as a
quotient; M; = CP! = (C? < 0)/C*, where C* acts diagonally. We construct a
line bundle over M; by Ly = (C2 N\ 0) xcx C, where C* acts on C by a : v — a™ v
for some integer ¢. In Ly we have [z, w,v] = [za, wa,av] for all a € C*. The 2-step
tower My = P(1 Lz) can be written as My = (C? N\ 0)?/G where G = (C*)? acts
on the right by (z1,ws, 22, w2) - (a,b) = (210, w1 a, 220, a®wyb).

We can continue to construct higher Bott towers in a similar way. At each step
we have L1 = (C2 N 0} xg C for G = (C*)7, where the action of G on C is
encoded by j integers. In this way we get an n-step tower M,, from any collection
of n(n — 1)/2 integers {c;; }1<icj<n:

M, =(C* <\ 0)*/G (2.2)
where G = (C*)™, and its ith factor acts on the right by
(21,01, « ooy ZnyWn) - @ = (21, W1, « ooy 205 W34, ..y 25,057 W5, .. ).
(2.3)
It is easy to see that M, is thus isomorphic to P(1$L,,). We denote by [z1,... ,w,]
the corresponding point in M,, and we think of z1,... ,w, as generalized homoge-
neous coordinates on M,,.
We can construct a line bundle over M,, from the integers (I1,...,1,) by
L=(C’\0)"xgC, (2.4)

where the ith factor of G = (C*)™ acts by
(21, ywn),v) - a; = ((21,- - yw,) - a;,akv), (2.5)

the right action of a; on (z1,...,w,) being given in (2.3).
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It will also be useful to construct Bott towers from certain compact manifolds,
although this construction only yields the underlying smooth manifolds and not
their complex structures. We now describe this construction.

Start with M; = CP! as a quotient S3/S! where S = {(z,w) € C* : |z +
|w|?> = 1} and where S* = {a € C : |a| = 1} acts diagonally on (z,w). Continue in
a similar way as before to yield M,, = (S%)"/K where K = (S*)™ acts as in (2.3).

Given integers [1,... ,[,, construct a principal S'-bundle P — M, by P =
(S3)" xx S' where K = (S')" acts as in (2.5). The associated line bundle is
L = P x4 C, where S! acts on C by A : v — Av. It is isomorphic to the line bundle
constructed in (2.5).

2.3. All Bott towers arise in this way.

Definition 2.6. An isomorphism between two Bott towers is a collection of holo-
morphic diffeomorphisms F; : M; — M]’ which commute with the maps 7;, ajv, UJS
Nr St

. g~

i
and 7;", 05", 07"

The constructions in §2.2 give a map
7" =1/2 _, {Tsomorphism classes of n-step Bott towers} (2.7)
and — given an M,, in the image of (2.7) — a map

7" — {Isomorphism classes of holomorphic line bundles over M, }.
(2.8)
In this section we will show that these two maps are bijections.

For every 1 < k < n we have a CP' — M,,, which we think of as the kth step
of the tower. We define it in the following way. Given a subset Q@ C M;_; we
construct subsets Cr(Q),Cs(Q) C M; by Cr(Q) = 7; (Q) and C5(Q) = o7 (Q).
Let the sequence [Ay, ..., A,], where A; € {S, F'}, denote the subset of M,, which
is given by C4, -+-Ca,Ca,(Mp). In particular, define S}gn) = [A44,...,A,] where
A; =S foralli # k and A, = F. This is a CP' embedded in A,,.

Define a map H?(M,,7Z) — Z" by

a—a(S™M),. . a(s). (2.9)

Remark 2.10. The definition of the map (2.9) involves the choice of an orientation
of the S ](-n). Each of these is naturally isomorphic to CP'. We choose the orientation
as follows. Restrict to the open dense set {[1,w]} C CP' and write w = = + iy,
then {a—ay, 8_81-} is an oriented basis. We choose this convention so that the integral of
the curvature of the tautological line bundle equals to —1. Similarly, on a complex
manifold with local coordinates wy, ... ,w, we take {8%1, 8%1, ey 02 , 0%} to be
an oriented basis.

Lemma 2.11. The map (2.9) gives an isomorphism
H?*(M,,7.)= 7"
Proof. We use induction. Assume that H*(M, 1,Z) = H3*(M, 1,Z) = {0} and
that the map
ae oS, a(stTY) (2.12)

induces an isomorphism H?(M, _1,7) = 7"~!. Consider the Leray-Serre spectral
sequence that corresponds to the fibration M, — M,,_1. Its Es term is
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7Z]10]Z™1t]0
11010 0 0
olz]olz 1|0
01 2 3

Thus we have H*(M,,Z)= 0, H3*(M,,Z) = 0, and an exact sequence
0— 2" ' — H*(M,,7) = 7. — 0.

The map 7 is given by integration over the fiber, which is the set S,(ln). We can
write

H*(M,,Z)= 7" '3 Z (2.13)

where the Z™~! term is given by restriction to the South pole section, o2 (M, _1),
which is identified with M,, 1, and where we identify H?(M, 1) = Z" ! by (2.12).
Since US(S,(Cn_l)) = S,(Cn), the isomorphism (2.13) is given by the map (2.9). O
Lemma 2.14. Let L — M,, be a holomorphic line bundle. Then up to isomor-
phism, L is determined by its Chern class.

Proof. Let O be the sheaf of holomorphic functions on M,, and let O* be the sheaf
of non-vanishing holomorphic functions. Then we have a long exact sequence

. — HY(M,,,0) — H'(M,,,0*) 2 H*(M,,7) — ... .

The group H*(M,,0*) is the Picard group of holomorphic line bundles over M,
and the map ¢; is the Chern class. Tt is thus sufficient to show that H*(M,, Q) =
{0}. We show this by induction on n.

For n = 1, an easy computation shows that H°(CP!, 0) = C and H(CP',0) =
0 for all ¢ > 1. (For instance, this is a special case of a computation done in §2.7).

For a general n, consider the fibration M, — M,,_;. The cohomology of the
total space M,, can be computed by Leray’s spectral sequence.

Thus the E5 term in the spectral sequence has just one row;

1 0 0 0

H°(M,,—1,0) | H'(M,,—1,0) | H*(M,,—1,O)
0 T 2

from which we see that H*(M,,, 0) = H*(M,_1,O). By induction, this cohomology
is trivial. |

Lemma 2.15. The map (2.8) is a bijection.

Proof. Let M, be a Bott tower of the form (2.2). By Lemma 2.14, an inverse map
to (2.8) is given by the Chern class

{line bundles} ~ H?(M,,7)

o

followed by the isomorphism H?(M,,,7Z) — Z™ given in Lemma 2.11. O

Lemma 2.16. The map (2.7) is a bijection.
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Proof. We first show that (2.7) is onto. Let M, be a Bott tower, then M, =
P(1® Ly,) where L, is a holomorphic line bundle over an (n — 1)-step Bott tower,
M,,—1. By induction, we assume that M,_; is of the form (2.2). By Lemma 2.15,
L,, is isomorphic to a line bundle as constructed in (2.4), (2.5). Thus M,, is of the
form (2.2), (2.3) with c1, =l1, ..., Coz1,n = ln_1.

We now show that (2.7) is one to one. For this, it is sufficient to reconstruct
the line bundle L; from the data =; : M; — M;_; and cré\’,crf Moy — M;.
For p € M;_4, let Q, be the tautological bundle over 7rj_1(p). The @, fit together
to form a line bundle @ — M;. Let Ly = (¢))*Q and Lg = (07)*Q, then
Lj =Ly ® L’é O

2.4. Torus actions. A torus action on a Bott tower {M;}”_, is a holomorphic
action of a torus 7' on each M; such that the maps 7;,0, 0% are equivariant.

A complete torus action on the tower {M;}7_, is a torus action with dim 7" = n
for which the action on M, is infinitesimally effective, i.e., {a € T | ap=1p Vp €
M,} is a discrete subgroup of T".

Ezample 2.17. Let k € Z,let S* act on CP! on the left by \-[z,w] = [z, \Fw]. Note
that CP! is a 2-sphere and the action of S' rotates it k times. This is a complete
torus action if k£ # 0; all complete torus actions on CP! arise in this way.

The standard torus action on M, is the action of T™ = S! x ... x S! given by

Ay oo M) - [z, w1, ooy 2oy W] = (21, MW, 0y 20, Anp]
(2.18)

in the notation of §2.2. We get other torus actions by composing this with any
homomorphism 7" — T™.

Lemma 2.19. All torus actions are obtained in this way.

Proof. 1t is sufficient to show that the elements of (C*)™ acting by (2.18) exhaust
all the automorphisms of M,,. For n = 1, the complex automorphisms of CP!
which fix the north and south poles are given by the action of C* as in Example
2.17. Thus if F : {M;}}_; — {M;}’_, is an automorphism which is trivial on
M,,—1 then on the fiber over p € M,,_; it acts as in Example 2.17 with A = A(p).
The function A : M,,_; — C is holomorphic, therefore it is constant. The rest
follows by induction. O

Fix a holomorphic line bundle 7y, : L — M,,. A torus action on L is a holo-
morphic action of a torus T on L and on each M; such that the maps 7;, o, 0¥
and 7y, are equivariant. A complete torus action on L is an action of 7" which is
infinitesimally effective on L and where dim T' = n 4+ 1. The extra S! in this action
is added for technical reasons. This will make an embedding in § 3.6 more natural.

The standard torus action on L is the action of 7"t = T™ x S! given by

Ay eeo s A, Ang1) - [21y oo s Way V] = [21, MW, .+ oy 20y ApWny Apy1 0]
(2.20)

in the notation of §2.2. Every torus action on L is given by a homomorphism
T — T™*! composed with the action (2.20).

Suppose that we have a principal S'-bundle P — M,, as described in §2.2.
Then we define torus actions, complete torus actions and the standard torus action
on P in the same way as above.
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2.5. Twisted cubes. Take an affine space V' with a lattice ¢\,. A twisted cube
C in V consists of a subset of V', called the support of C, and a density function
p : V. — R which takes the values 1 and —1 on the support. This data will

determine a signed measure m¢ in V.
A twisted cube in V = R? can look like:

1:
T2
L !
T

FIGURE 1. n = 2, Twisted cube

, (0,0

Combinatorially it resembles a cube, but its faces may have various angles and
the intersection of faces may not be a face.

To a collection of integers {c¢;; }1<i<j<n and real numbers l1,. .. , [, we associate
a standard twisted cube Cp in the following way. We set V = R™ and ¢y = Z". The
support of Cy is defined to be the set of all (z1,...,2,) € R” which satisfy

1, <z2,<0 or O0<a,<-I,
_(ln—l + Cn—17nxn) S Tn—1 S 0 or 0< Tp—1 < _(ln—l + Cn—17nxn)

1 (2.21)

—(ll +012$2+...) <z1 <0 or O0<ua1 < —(ll+012x2+...)
Define sign™ (z) = 1 for # > 0 and sign™ (z) = —1 for x < 0. The density
function is then defined to be po(z) = (—1)"sign™ (x1)---sign™ (z,) on this set
and 0 elsewhere. Note that in the above picture we had ly,l> > 0 and ¢15 > 0.

The signed measure me, is defined to be the function po(x) times Lebesgue
measure. The reason that some inequalities in (2.21) are strict and others are not
will be made clear in §2.7.

Definition 2.22. A twisted cube C in (V,{y) is constructed from a standard
twisted cube Cp in R™ and from an affine isomorphism A : R* — V which sends
Z™ onto fy. We then define p(Ax) = po(z) and me = p(a)|dal where |da| is
Lebesgue measure on V', normalized so that V/¢y has volume 1.

2.6. The Duistermaat-Heckman measure.

Theorem 2. Let M,, be a Bott-tower, let T act on it by a complete torus action
and let w be a closed T -invariant 2-form. Let ® : M,, — t* be a moment map.
Then the corresponding D-H measure coincides with the measure mo for o twisted
cube in t*.

Proof. of Theorem 2. Let (ly,...,l,) be the image of w under the isomorphism
H?(M,,R) 2 R" which comes from Lemma 2.11. By Lemma 2.16 we can assume
that M, is given by our standard construction of §2.2. Let (¢;;)i<i<j<n be the
corresponding integers, as in (2.7).

By Lemma 2.19, Remark 1.4 and Definition 2.22 it is sufficient to prove the
theorem for the standard action of 77 = S' x ... x §'. Note that if T acts
effectively then the lattice £y C it* =2 t* is the integral weight lattice. Otherwise it
is an appropriate sublattice.
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By Theorem 1, it is sufficient to prove the theorem for any 2-form «’ in the
same cohomology class as w. Let Cy be the standard twisted cube in R™ which is
determined by {c;;} and {l;}. We will find an ' for which we can compute the
D-H measure explicitly and it will turn out to be the measure mc,.

Recall that M,, = (53)"/K, where the ith factor of K = (S!)" acts by

Ci
(21,... 7wn) sy = (2’17... s Wi—1, Z2:Qq, Wi,y - - . 7zj7a,i”wj, )

(2.23)

If we write z; = |z;|e?™* and w; = |w;|e***%i, then the action (2.23) is generated
by the vector fields

0 0 - 0
M=o Faz t D Cijns
Oai 0B, S 93
The standard torus action is generated by the vector fields

6= 55
Define

hi = |w1|2
We think of h; : M,, — [0,1] as the height function on the CP! in the ith step of
the tower. The common level sets of (hy,...,h,) : M, — [0,1]™ are exactly the
T-orbits in M,; this identifies M,,/T™ with a hypercube.

We will now show there is a closed invariant two form w’, such that [w'] = [w]

and whose pull-back to (S3)" is

o= —dbf

where 6 is an invariant 1-form given by
0= f; ((1—h;)da, + h;dB;)
7j=1

for some functions f;. For & to descend to M,,, we require ¢+(7;)® to vanish for all
1. Note that

U)o = de(n)0 = d(fi + Y cijfihy)
j=i+1
assuming the invariance of §. This leads to an inductive definition of the functions
fi. We set f, =1, and, given {f; ; j > i}, we set
fi=1li— Z cij fih;- (2.24)
j=i+1
With this choice, & descends to a closed, invariant 2-form w’ on M,,. We now show
that w’ has the same cohomology class as w.

Fix j and consider the map of [0, 1] x [0,1] to M, given by sending (p;, ¢;) to
the point [z1,... ,w,] with (zj,w;) = (1,/p;e*™%) and (z;,w;) = (1,0) for all
other i. The image is the sphere S\ defined in §2.3 and h;, §; form cylindrical
coordinates on this sphere. The pull-back of # is [;h;d3;, the pull-back of w' is
1;dB3; A dhj. Its integral is [; (using the convention in Remark 2.10). Thus we see
that [oow' =1; = [4 w for all j, i.e., that ' and w are cohomologous.
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One can easily verify that
§>]~ = —L(fj)e = —f]‘h]‘ for j = ]., R [ (225)

define a moment map ® = (®4,...,®,): M, — R".

Once we fix the values of hiy1,...,hy, and thus the value of f; by (2.24), the
image of ®; is by (2.25) either {—f; < z; <0} or {0 < z; < —f;}, according to the
sign of f;. Substituting (2.24) and z; = &; = —f;h;, we get that the image of ® is
the closure of the twisted cube (2.21).

We now compute Liouville measure and its push-forward. The set {a; = 0
for all i} C S® maps surjectively onto M. On this set we have da; = 0, and the
functions (hs, B;) are local coordinates. Thus 8 = ) fih;d8; = — > ®,dB3;, so
w'=>"d®; Adp; and

W nl = d®y AdBy A ... AdB, AdB,. (2.26)

Pushing forwards amounts to integrating over the [3; variables. This gives +1
because the j3;’s range over the interval [0,1]. Since |d®; A ... A d®,,| is Lebesgue
measure on t*, we have ®,w"/n! = +(Lebesgue measure on image (®)), where the
sign depends on whether or not w™ is compatible with the orientation on M. This
orientation comes from the complex structure on M as in Remark 2.10. We restrict

to the set w; # 0, a; =0, ¢ = 1,... ,n and take w;, ¢ = 1,... ,n as complex
coordinates on this set. The corresponding orientation is given by the volume form
dpy Adhy A ... dBy A dhy,. (2.27)

By (2.25) and (2.24) we have d(I)Z = —fzdhZ — hld(lz — Ej>i Cijfjhj) = —fldhZ
+ h; Zj>i e;jdh; for some constants e;;. Therefore we have d®; A ... A d®, =
(=1)™f1 -+ fu dhi A ... A dh,. This implies that w™ (2.26) is compatible with the
orientation (2.27) if and only if f; - - - f,, > 0. Finally, since sign (f1 --- fn) = (=1)"
sign (@ --- ®,,) by (2.25) and setting z; = ®;, we get that ®,.w"/n! = (—1)"sign (z;
- &) - (Lebesgue measure on image (®)), which is exactly me, by §2.5. O

2.7. The virtual character. Let 7 : L — M be a holomorphic line bundle over
a complex manifold with an action of a torus T'. Let Oy, be the sheaf of holomorphic
sections. The equivariant index is the formal sum of representations of T

index(M,0) = > (~1)'H'(M,Oy,).

The virtual character is the function X : T — C which is given by X = >_(—1)*X"
where X'(a) = trace{a : H'(M,Or) — H'(M,0Oy)} for a € T. Every p in the
integral weight lattice (* C it* defines a homomorphism e* : T — S'. We can
write Xy, 7 = Zuee* myet. The coeflicients are given by a function mult : (* —
Z, sending p — my,, called the multiplicity function for the index.

Remark 2.28. Let T' act on L by a homomorphism A : 7" — T composed with
the action of T'. Denote L = (dA)* : it* — it'"*. Then the multiplicity func-
tions which correspond to the actions of T and T’ are related by mult'(a’) =
Yacenr-1(ar) Mult(a). (Compare with Remark 1.4).

We will now show that if M = M, is a Bott tower then the multiplicity function
is given by the density of a twisted cube. In particular, all the weights occur with
a multiplicity —1, 0 or 1.
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Theorem 3. Fiz integers (¢ij)i<i<j<n ond (Ij)1<j<n. Let L — M, be the corre-
sponding line bundle over a Bott tower as in §2.2. Let Cy be the twisted cube which is
determined by these integers (see §2.5), and let pg : R* — {—1,0,1} be its density
function. Consider the standard complete torus action of T = T™ x S' as in (2.20).
Then the multiplicity function for (* = 7" x 7 is given by mult(a,1) = po(i~'a)
for all a € 0* and mult(a, k) =0 for all k # 1.

For the other complete torus actions, we have:

Corollary 2.29. Take a line bundle over a Bott tower with a complete torus action,
as in §2.4. Let mult : it* — Z be the corresponding multiplicity function. Then
there is a hyperplane V' in t* with a lattice ¢y C i¢*NV, and a twisted cube C' in V
with a density function p : i='V — {—1,0,1}, such that for all a € ¢*, if a ¢ (y
then m(a) = 0 and if a € fy then m(a) = p(i~ta).

Proof. of Corollary. This follows from Theorem 3 by §2.3, Remark 2.28, and
Definition 2.22. O

Proof. of Theorem 8. We first compute the cohomology of C2 \. 0 with coefficients
in the sheaf O of holomorphic functions; see [G-H, §0.2]. Take the covering il =
{U1,Us} where Uy = C x C* and Uy = C* x C. This covering is good, i.e.,
HY(Uy) = HY(Uy) = HY(U; N Usz) = 0 for ¢ > 0. The holomorphic functions are

Chot(Ur) = { Z ai;z'w’},  Tho(Us) = { Z a;;z'w’}
4,JEZ, i>0 i,jET, §>0
and Thot(Uh NU2) =4 Z aij2'w}.
i,jEL

Consider the map T'ho1(U1) ®Thot(Us) N Thot(U1 NU2) given by (f,9) — glu,nu, —
flu,av,- Recall that HO(U, O) = ker§ and H'(U,O) = coker$. The torus T? =
(S1)? acts on the holomorphic functions by ((a,b) - f)(z,w) = f(a"tz,b~tw). This
action descends to the cohomology. The corresponding weight-spaces for the weight
(i,§) € Z* are

0/ 2 _ span(z—‘w7) if i <Oandj<0
H(C ~ 0)(i,j) - {0 otherwise

12 _ span(z—‘w7) if i >0andj>0
H(C 0)(i,j) - {0 otherwise.

Thus the multiplicity function is mult(a) = 1 for « in the closed negative quadrant,
mult(a) = —1 for a in the open positive quadrant, and mult(a) = 0 otherwise.

We now compute H*(M,,,Or,). As in §2.2 we write L = (C? ~ 0)® xg C where
G = (C*)™ and its ith factor acts by (2.5);

_ Cij l;
(215, Wiy 0) - G = (21, 0y Wi1, ZiQi Wiliy <o 5 25,0, W), ooy QD).

(2.30)

Consider the good covering I of (C2 . 0)™ given by the 2" sets U;, x --- x U, for
i1,...,in € {1,2}, where U; = C x C* and U; = C* x C as before. This descends
to a good covering i of M,,; every set in i is isomorphic to C*, with coordinates
zjJw; or w;/z;, and every intersection of sets in 4l is isomorphic to a product of

C's and C*’s.
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The natural pull-back H*(4,0n) — H*(81,0) is an injection onto the G-
invariant part of H* (5:1, O). This follows from the fact that holomorphic sections of
OL are given by holomorphic sections of O which are G-invariant with respect to
the action (2.30); see [K-T, §8]. Since i and {1 are good coverings, it follows that
H*(M,,Oy,) is isomorphic to the G-invariant part of H* ((((C2 ~ 0), (’))n)

We now compute H*((C? \ 0)®,0). Consider the natural action of T?". The
weights are multi-indices (I,J) € Z" x Z™, we write I = (iy,... ,i,) and J =
(J1,--+ ,Jn). Recall that we defined sign™ (j) = 1if 7 > 0and = -1 if j < 0.
From the cohomology of C?> \ 0 that we have computed and from the Kiinneth
formula it follows that H*(C? \ 0)(1,g) is either zero or that it is one dimensional
and spanned by the monomial z w7t - .- z 7% ~J», The latter occurs if for all ¢
we have sign™ (i) = sign™ (j¢) =, say, €s; and ¢, = 1 for exactly k indices among
1,...,n. In particular, (—1)* = (=1)"sign™ (j1) - - - sign™ (jin)-

The action of G = (C*)™ on (C? \ 0)™ x C induces an action on functions by

—Cke

(arf) (21, ,wn) :ai“f(zl,... S Wh—1, zka,:17wka,:1, cey 2z a Mg, ).

The monomial z =% w 7t --. z 7w ™I is then a G weight vector with a weight in
7™ whose kth coordinate is Iy + i 4 jr + Yy Ckeje. Thus the G-invariant part
of H*((C? . 0)®,0) consists of those monomials z~ 1w 71 - -+ z~%nw~J» for which

i+ +j1+ceja+tezjs+ ... +cinjn = 0
lo+is+jJo+casjs+...+congn = 0
(2.31)

The action (2.20) induces a T" action on the functions given by

(Ao Ay Ang1) - (21,0 wp) = )‘n+1f(217)‘1_1w17"' 2y Aty

The weight of the monomial z~"w ™7t - - 27w ™J» with respect to this T action is
(J1y--+ ,Jn,1). Thus the index of (M,,Oy,) is given by the set of (z1,... ,2,,1) =
(J1y-- -, Jn, 1) for which there exist (i,... ,%,) such that (2.31) is satisfied and such
that sign™ (i,) = sign™ (j¢) for all £. This is exactly the set (2.21). The multiplicity

is (~1)"sign™ (j1) ---sign™ (jn) = (~1)"sign" (21)- - -sign" () = po(2). O

In the following two propositions we give formulas for the virtual character X :
T — C, for a line bundle over a Bott-tower. Recall that for every integral weight
p € ¢* we have a homomorphism e* : T — S'. Denote by Z[T] the integral
combinations of these e#’s. Then X € Z[T] is given by X = > mye* where
m,, = mult(u) was computed in Theorem 3.

In particular, for the standard torus T77*!' = S' x ... x S we have a natural
identification i(t"*1)* = R*** with Z"*! being the integral weight lattice, so that

et raalt-aln it

HEL*

n+1l *

Proposition 2.32. Consider the standard torus action of T"t' on L — M,,.
Denote the standard basis in R by fi,..., far1. Then the equivariant index is
given by the following element of Z[T™"Y;

X=D; - Dn(efnJrl)
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when the operators D; : Z[T™" Y] — Z[T™Y] are defined using c;j,1; in the follow-
ing way.
et +eB=1) 4 4 eln—kifi) if ki>0
Di(e*) =<0 if ki=-1
—ewtl) | ew=(kit ) gf f < -2

and the functions k; are defined as follows; if p = > x;f; then ki(p) = l; +
> i Cij Ty
And for the other torus actions:

Proposition 2.33. Take a complete torus action of T on L — M,, which is given
by a homomorphism A : T — T™ followed by the standard action as in §2.4.
Let 3; = A*f; for all i where {f;} are the standard basis elements in R+, Then
the virtual character is given by

X = Dy Dy(eP)
where the operators D; : Z[T| — Z[T] are defined by

et ferFip et RiBi if k>0
Di(e*) =40 if ki=—1
—eMtBi _  _ op—(ki+1)B Zf k<=2

and where k; are defined as follows; if p = > x;0; then k;(p) =1; + E?:i-i—l CijTj.
Proof. Both propositions follow immediately from Theorem 3 and Remark 2.28. [

2.8. Another view of the index. Whereas Theorem 3 was stated and proved
using sheaf cohomology, we could have used Dolbeault cohomology. For this we
must choose a connection Vy, on the line bundle, a Hermitian structure on L and
a metric on M,,, which are all equivariant. We then take the equivariant index of
the twisted Dolbeault operator; Dy, := (8+9 ) ©1+1® V}, where V}. denotes the
anti-holomorphic part of Vy,. The index will not depend on the choice of connection
or metric. We now outline an alternative proof for Theorem 3.

Consider a complete torus action of 7" on M,, and a lifting of this action to the
line bundle L. Let F = CP! be a fiber of M,, — M,_;. We can split the torus
into T =T"1 x S', where S! fixes M,,_; and rotates the fibers. We can restrict
the Dolbeault operator to the fibers and take the family index; this is the virtual
bundle over M,,_; denoted index(Dy|F).

The index over a fiber can be computed using any number of methods. For
instance, we can explicitly compute the sheaf cohomology, which is equal to the
Dolbeault cohomology by the generalized De Rham theorem; see [K-T, Example
9.1]. Or we could use the generalized Lefschetz formula of Atiyah and Bott, or we
could compute the Dolbeault cohomology using Serre duality. This computation
for CP" tells us that H*(F,,L|r,) must vanish for either k = 0 or k¥ = 1. Thus
in K-theory, index(Dy|F) is either an honest vector bundle or the negative of an
honest bundle. Moreover, this bundle splits into one dimensional pieces under the
Sl-action.

Now we use the fact that the index of an equivariant elliptic operator is functorial
with respect to pushing forward (families index). This functoriality gives

indea:T(DL) = indexTn,—1X51 (Dindezgl(DL|F))
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which establishes the result by induction.

This was the proof originally given in the first author’s thesis [G]. It has the
advantage that it only requires an almost complex structure to form Dr,.

Our computation of the index in §2.7 is due to Susan Tolman. It has the advan-
tage of being more elementary and yielding the sharper result, that each individual
H*(M, _1,0pr) is multiplicity free. This approach was generalized in [K-T] to a
computation of the equivariant index of a line bundle over any toric variety. The
multiplicities form shapes in it* which we call twisted polytopes.

2.9. Relation between multiplicities and the D-H measure. Take a com-
plete action of T = T™*! on a line bundle L over a Bott tower M,. It determines
an exact sequence

0—S' T —T—0 (2.34)

where St acts trivially on M, and rotates the fibers of L, and T acts on M,, by a
complete torus action.

The multiplicity function for the equivariant index is then given by a twisted
cube C in an affine hyperplane V in ¢t*, by Theorem 3 and Corollary 2.29.

Choose any splitting T — T of (2.34), i.e., a lifting of the T-action to L.
This determines an affine isomorphism of V with it*. We can write L = P x g1 C
where P is a principal S'-bundle on which 7" acts. Let w be the curvature of any
invariant connection and let ® : M,, — t* be the corresponding moment map,
as constructed in §1.4. Then the corresponding D-H measure is the measure mg
which corresponds to the same twisted cube C' in V 22 it*.

In particular, the multiplicity function for the index is then equal on the nose to
the density function for the D-H measure.

More generally, let M be a compact complex manifold of complex dimension n.
Let L — M be a holomorphic line bundle with a connection whose curvature w
is Kéahler. Let T be a k-dimensional torus that acts on M holomorphically, lifts to
L and preserves the connection. On one hand we can form the equivariant index
S (=1)'H'(M,0r) and we can consider its multiplicity function mult : (* — Z.
On the other hand, we can take the moment map as in (1.2) and let p : t* — R be
the density function for the D-H measure. By the Duistermaat-Heckman theorem,
p is piecewise polynomial and the degrees of the polynomials are at most n — k.

The function p can then be viewed as a continuous approximation to mult. This
was shown by Heckman [He] when M is a flag variety, as we described in §1.6. In
that setting, HC is the representation Ry and H® = 0 for i > 1. The relation (1.5)
was generalized to arbitrary Kahler manifolds by Guillemin and Sternberg [G-S 2].

This asymptotic relation between mult and p remains true if w is not Kahler.
This follows from the fixed point formulas of Atiyah and Bott on one hand and of
Guillemin, Lerman and Sternberg on the other hand. This relation holds in an even
greater generality; for almost complex structures and for Spin® structures on M; see
[G-K]. Moreover, the localization formulas imply that mult and p are independent
of the respective choices of a holomorphic structure and of a connection; we only
need to know the orientation of M and the Chern class of L. (Also see Theorem
1).

In the special case that dim7T = %dim M, the functions mult and p are equal
on the nose. As a corollary, one can express the equivariant index in terms of the
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topological degrees for a map from M /T to t* which is induced from the moment
map [G-K].

3. CONNECTION WITH BOTT-SAMELSON MANIFOLDS

3.1. Bott-Samelson manifolds. Let ¥ = {ay,...,a,} be an ordering of the
simple roots. Let I = {iy,... ,i,} € {1,...,r}" be a sequence of natural numbers.
Let P; be the parabolic subgroup associated with «;; its Lie algebra is g, ® b.
Define

P]:]Di1 X -+ X P;

n *

Define a right action of B™ on P; as follows;

(P1y- - yPn) - b = (p1b1,by ' paba, ... bt paby) for b= (by,...0,).
(3.1)

The Bott-Samelson manifold is defined to be the quotient, M; = P;/B".
The multiplication map (p1,... ,Pn) — p1 - pn descends to a well defined map

n:M;— G/B.

Let P;, act on P by left multiplication on the first factor, this descends to an
action on My. The map 7 is equivariant with respect to the left actions of P;, on
M; and on G/B.

3.2. Line bundles over Bott-Samelson manifolds. Let ¢*',... e be a se-
quence of weights of the Cartan subgroup H. As in §1.2, we can extend these to
homomorphisms e : B —s C*. Define a representation of B™ on C by

b-a=e (b)) e (by)a.
Denote this B®-module by C,, ... »,. From this we can build a line bundle over M
by
Lixg,..on, =PrxpnCy, .,
on which F;, acts on the left.
As in §1.2, given a weight e we have a line bundle Ey = G x5 Cy over G/B.

Denote Lyy,... 0,, = L5, then we have a commutative diagram of P; -equivariant
maps;

i
L;n, — E,

! ! (32)
M; L G/B.

3.3. Connection with Schubert varieties. The Weyl group W is generated by
the simple reflections s; which correspond to the simple roots a;. Thus any w € W
has an expression w = s;, - -+ s; of minimal length n. We call such an expression
reduced. Let us fix w and fix this expression and consider I = (i1,...,i,) and
the associated Bott-Samelson variety, M. The image of the multiplication map 7

turns out to be the Schubert variety X,, = closure(BwB/B), so we have
n:M; — Xo. (3.3)

One can show that 7 is an isomorphism between open dense subsets of M7 and X,,,
[J, §13.5]. If w has maximal length in W then the image is X, = G/B.
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Now consider the parabolic P = P; which is associated to a subset of the simple
roots J C ¥ as described in section 1. Let w € W7 asin §1.1 and let w = s;, -+ - 5;,
be a reduced expression, then the composition

M; — G/B — G/P

maps M onto a Schubert variety in G/P.
The initial importance of (3.3) is that M; provides a smooth model for the
Schubert cell X, in the following sense; the map (3.2) induces a natural injection

N Thot(Xw, t"Ey) — Thot(M7, Ly y).

The maps 7,7 are equivariant with respect to the left actions of B on M (by
restriction from P;, ) and on X,,. Therefore, n* implements a monomorphism of B-
modules. In fact, n* turns out to be an isomorphism. Much more is true; Demazure
first announced that for all ¢

H'(X,,i"Ey\) & H' (M7, Lz ) (3.4)

as B-modules. His proof had a serious error which was not found for many years.
This was later proved in papers by Mehta, Ramanathan, Seshadri, Ramanan and
Andersen. For references see [J, §14, p.395].

We remark that if X is dominant then H* =0 for all i > 1. Let p = Y. oo+ 50
For A not dominant, the Borel-Weil-Bott theorem similarly gives a vanishing of all
the cohomologies except for one i depending on the chamber which contains A + p

[BI[J]-

3.4. A family of complex structures. Recall that b = h @ > _\+ g—a. The
projection b — h induces a homomorphism of Lie groups ¥ =Y, : B — H as in
§1.2. This extends to a whole family of homomorphisms as follows. For h € H we
define Y, : B — B by Y1, (b) = hbh~. We now choose once and for all an h € it*
such that a(h) > 0 for all @ € A*. We define T; := Yexpin)-

Proposition 3.5. T, =lim;_,,, Y;.

Proof. Consider the derivatives of these maps at the identity, dY; : b — b, for
t < oo. It is sufficient to show that dY. = limdY;. We evaluate these at v € b.
If v € b then, since H is commutative, dY;(v) = v for t < co. If v € g_,
then dY,(v) = e ™y, By assumption, a(h) > 0, so lim; o dY:(v) = 0 =
dY o (v).

O

We use the homomorphisms Y; : B — B to construct a family of almost
complex structures on the Bott-Samelson variety, M; = P;/B™. For t < oo, we
define a right action R; of B™ on P; by

(pla e 7pn) : (bh e 7bn) = (P1bl, Tt(bl)_1p2b2a cee 7Tt(bn71)_1pnbn)
(3.6)

where as before (p1,... ,pn) € Prand (by,... ,b,) € B™. Then Ry coincides with
the right action (3.1). Again we quotient P; by the right action R; to get a family
of manifolds M}. We denote

M}' :Pil XB; -+ XB; Pin/B'

The bundles Ly ;... », defined in §3.2 are defined and holomorphic over each
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Proposition 3.7. Fiz a sequence I = {iy,... ,in} and weights A1,... ,A,. Then
the manifolds M are all diffeomorphic, and the bundles Ly , = are smoothly
isomorphic, for t < oo.

Proof. Let K; be the maximal compact subgroup of P;. Recall that K; N B =T.
Define a right action of 7™ :=T x T'x --- x T on Ky := K;, x ... x K;, by

(kiy... kn) - (a1,...  an) = (krar,ay  keas, . .., at  knay). (3.8)
The inclusion map
K]:K’il X ... XKin ‘—)P[:Pil X .. XPZ‘”

is equivariant with respect to the actions (3.8) and (3.6) and the inclusion 7" —
B™, because Yi(a;) = a; for all a; € T. Therefore we get a map KI/T(”) — M;.
This map is a diffeomorphism; this follows from the fact that for all ¢, the inclusion
K; — P; induces a diffeomorphism K,;/T = P,;/B.

Similarly, the bundles LtI,Al,... ., are equivalent to the bundle K X)) Cyy ..o 5,
where T(™ acts on Cy, ...\, asin §3.2. O

Thus ¢ represents a parameter of complex structures on the smooth manifold
M. Moreover for t < oo these structures are equivalent, because the map

(p17 s 7pn) = (p17 exp(_th)p27 s 7exp(—tﬁ)pn)

descends to a biholomorphism M9 — M?.

Remark 3.9. Our family of complex structures is part of a larger family, indexed by
all h € b, which is constructed in the same way from the homomorphisms Teyp(n)-
In a subsequent paper, the first author exploits these families of deformations to
obtain systems of filtrations of the space of holomorphic sections over the Bott-
Samelson varieties with the ordinary complex structure. This gives more refined
information than the index. In fact, results have been obtained which are formally
similar to the Kashiwara/Lustig construction of the crystal base/canonical basis,
see [G-Z].

3.5. Connections with Bott Towers. Let I = {i1,... ,i,} and let I' = {iy,...,
in—1}; then there is a natural map, P; — P/, given by projection onto the first
n — 1 factors. This map is equivariant with respect to the R, actions (3.6) on P
and on Py, therefore it descends to a map m : M} — M}, for all t. The fiber of
this map is P;, /B = CP', thus M} is a CP'-bundle over M}, By induction, M}
is a successive fibration of CP' bundles, i.e., it is a CP' over a CP!, etc. This is
very close to M} being a Bott tower; in fact,

Proposition 3.10. M{° is a Bott tower.

Proof. If n =1 then M?° = P;/B where o = a; is a simple root. This is isomorphic
to CP! in the following way.

Let h, € b be the co-root which corresponds to «, via the Killing form, and let
aV =2h, /{a,a). We can choose X, € g, and X_, € g_, such that [X,, X_,] =
aV. We get a Lie algebra homomorphism si(2, C) — p,, by sending ( o ) — Xa,

( o 0 ) — X _,,and ( oo ) — aV. This descends to a map v : SL(2,C) — P,

1 0 1
and further to a holomorphic diffeomorphism

SL(2,C)/Bsr2,0) = P,/B (3.11)
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where Bgr(s,c) denotes the lower triangular matrices. Moreover, the map ( e b )
— [d, b] descends to a holomorphic diffeomorphism

SL(2,C)/Bsp(2,c) — CP* (3.12)

in which the identity coset is sent to the South pole [1,0] in CP'. The composition
of (3.12) with the inverse of (3.11) gives the desired diffeomorphism P,/B = CP*.

We proceed by induction. Let I = {iy,... ,i,} and let I' = {iy,... ,in,—1}. We
need to find a holomorphic line bundle L,, over M$° such that M = P(1 4 Ly).
Recall that Mg° = Pp/B"! with respect to the action Ra., and

M = (P, xB, ... xB, Pi,_,) xB,, (P, /B).

Let L, = Py xgn-1 Cy,  where only the last B factor acts on the B-module C,, .
Then

]P(]. D Ln) = (Pi1 XB, -+ XB., Pin—l) XB., ]P((C D (Cain )
Therefore, it is sufficient to find a left B-equivariant map ¢ : P, /B — P(C &

Cas, )-

We take the map 1/3 which was constructed for the case n = 1, with a = a,,.
The unipotent part of B acts trivially on both P; /B and P(C & C,,, ) by the
definitions of those actions. Therefore it is enough check equivariance with respect
to the actions of H.

The map (3.12) is equivariant with respect to the following actions of the Cartan
Hgspo,0)- It acts on SL(2,C)/Bgsr(2,c) by left multiplication. Its action on CP! is
induced from a linear action on C? with weights (—~,~) where v(Z) = 1 for Z =

1 0

0 -1 °
( Then,)the map (3.11) is equivariant with respect to the left actions of Hgp(2,c)
and of H, where we map Hgy(2,c) — H by sending Z to aV. Dually, the root «
of P, pulls-back to the root 2v of SL(2,C).

Combining these actions, we get that H acts on C & C with weights (—1a, 1a),
and CP' =P(C_,, ® Ci,) =P(C® Cy) as we wanted. O

Note that the South pole section is then o2 : [p1,...,pn_1] — [P1,--- ,Pn_1,€].

3.6. The torus actions. Recall that the maximal compact torus 7" C G acts on
M = P, xp---xpP;, /B by theinclusion T — P,,, followed by left multiplication.
This action is holomorphic on M} for all t. The multiplication map (3.3) n : My —
X, is T-equivariant and is holomorphic with respect to the complex structure at
t=0.

We define an action of T =T x T x ... x T on M by

a-[p] = [up,aitaeps,. .. a5l a0pn]
= [mprait, ... anpna, .
This is well defined and holomorphic on M7°. If we embed T — T by the
diagonal map then this induces the same T-action on M7° as before.
Let T, = exp(kera), then the subgroup T7 := T,, x ... X Ty, < T™ acts
trivially on M7° and we get an action of the quotient T /Tr. We will show that

this is a complete torus action as defined in §2.4. Thus at t = oo, the left T-
action extends to a complete torus action on a Bott tower. Note that the action of
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T(n)/T[ is defined on every M} by Proposition 3.7, and at ¢ = oo we know that it
is holomorphic.

Now, consider the line bundle L;y = P;, xp--- xp P;, xp Cy over My as in
§3.2. An action of T7("+*1) = T x ... x T (n + 1 factors) on Ly, is given by

a-[p,v] = [aip1, a7 aspa, ... a;t anpn, ay a1 (3.13)

for a € T+ and [p,v] € L. Again this is defined and is holomorphic for
t = 00, and is defined for ¢t < oo via Proposition 3.7. Again, the map # in (3.2)
is T-equivariant when we embed T — T(*+1) diagonally. Again, the subgroup
Tra = Toﬁ1 X ... x Ty, xTy acts trivially. We will assume that A # 0; the
other case can be treated with some careful bookkeeping but the details are not
illuminating. Consider the quotient T = T(n“)/TLA.

Proposition 3.14. The action of T on L7\ — M}® is a complete torus action
on a Bott tower as defined in §2.4.

Proof. First, the action (3.13) is holomorphic on P; and commutes with the action
R, thus it descends to a holomorphic action on L7%. Next, it preserves the
north and south pole maps because at each stage of the tower, the fiber can be
identified with K;, /T = CP! as in §3.5 and the left T-action preserves its north
and south poles. Next, T is an (n + 1)-torus because it can be written as T/Ty,;, x

... X T[Ty, xT/Ty. Finally, T acts infinitesimally effectively as one can check by
induction on n. |

3.7. Computation of the Bott-tower integers. We will now compute the in-
tegers {c;;} and {l;} corresponding to the Bott tower M°, as well as the map
T — T which gives the torus action as in §2.4. We start with n = 1; sup-
pose I = {i} and o = a;. We want to compute the Chern number [; of the line
bundle Ly = P; xg Cy. We reduce to the case of SL(2,C) by considering the
map v : SL(2,C) — P, which was constructed in §3.5. Remember, the roots of
SL(2,C) were £2v with (y,Z) =1 for Z = ( oo ) We have that (¢*\, Z) =
ANV Z)y = (A aY) = (A, aY)y, Z), thus ¥*A = (\,a")y, so the weight e* on H
pulls back to the weight e’ op Hgra,0)- Thus Ly = SL(2,C) xp,, Cix avyy,

ie.,in Ly we have [( A N Gt )71)] = [( a b ),x<’\7o‘v>v] . This is equiv-

d v c d
alent to the bundle over CP' given by [dz~' bz~ v] = [d,b, 2} )] as in §2.2.
Its Chern number is [; = (A, aV).
A similar computation works for the line bundle Ly y, .. A,
over M7°. We form the map

’(/J]SL(z,(C) — Pi1><~'~><Pij><~~~><Pi
p s (67"'7e7¢(p)7e7"'7e)

=Prxpn Cy

n

n

where 1) is the same as before, with a = a;;. The map ¢; is equivariant via the
map

Bsii2, ) — Bx...xB
—  (e,...,e,0(b),¥(h),... ,¥(h))

when h = Yoo (b) € Hgr(2,0) as in §3.4, where Bgp(2,c) acts on SL(2,C) by right
multiplication, and where B X ... x B acts on Pr by the action Ro, (3.6). Thus 9,

(3.15)
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descends to 1/;]- : SI(2,C)/Bsg(2,c) — M7° whose image is the sphere S](-n) defined
in §2.3.

By the map (3.15), the weight (A1,...,\,) pulls back to (A\; +... + )\n,aivj)'y.
Thus Ly y, ..., pulls back to a line bundle with Chern class I; = (\;+...4+\,, aivj ).

As for the integers cj, recall from §3.5 that the (th step of the tower was con-
structed from the line bundle Ly, . 0,05, OVer the (¢ — 1)-step tower. Thus by the
above computation for line bundles, ¢j; = (a;,,a}).

The complete action of ’

T =T/Ta, x...xT/Ta, xT/Tx (3.16)

on Ly can be described by a map A : T — T™+! = §' x ... x S* followed by
the standard action of T"t1; see §2.4. Let fi,..., fny1 be the standard basis in
iLie (T™+1)* = R, Then for 1 < j < m, 8; = A*f; is the weight by which T
rotates the sphere Sj(-n) (in the notation of §2.3); and 3,41 = A* f,41 is the weight

by which T acts on the fiber of Ly, over the point [S,...,S] (in the notation of
§2.3).

Equation (3.16) lets us identify it* with R**!. With this identification we have
B8; =(0,...,0,2,0,...,0) for 1 < j <n (with the 2 in the jth place) and 3,41 =
(0,...,0,m) where m is the maximal integer for which A/m is an integral weight.

Also note that via T 224 7 A4, T™+, the pull-back of f; is a;, for 1 < j <mn
and the pull-back of f,,41 is A.

3.8. Application to the symplectic picture. Let X be a flag manifold, realized
as a coadjoint orbit through X' € t* as in §1.3. Let w be the symplectic form on X
and let & : X — t* be a corresponding moment map. Motivated by §1.6, we wish
to describe the D-H measure ®,w™, where n = dim ¢ X. This measure is supported
on image (®), which is a convex polytope, in which the regular values of ® form
polyhedral regions [A, G-S 1]. On each of these regions, the measure ®,.w™ is given
by a polynomial density function times Lebesgue measure [D-H].

By using the machinery developed in previous sections, we will now give a de-
scription of ®,w™ which will illuminate the facts mentioned above. Moreover, this
description will also apply in the case that we replace X by a Schubert variety
X; even if it is singular, when the Duistermaat Heckman theorem does not apply.
The D-H measure is then defined by working not with all of X, but only with the
Bruhat cell whose closure is X,,. We then denote by w’ the symplectic form on the
coadjoint orbit X, we take w to be the pullback of w’ to the Bruhat cell under the
inclusion map, n is the dimension of the Bruhat cell, and the moment map @ is the
inclusion of the Bruhat cell into #*, composed with the projection £* — t* as in
§1.4.

Theorem 4. There is a twisted cube C in R™ and an affine projection L : R* — t*
such that ®.w™ = L,mc¢ in the notation of §2.5.

Proof. Consider the maps My SN Xo 2, t* where M7 is the Bott-Samelson
manifold associated to a Schubert variety X,, and to a reduced expression I of w
as in §3.3. Consider the 2-form n*w. If X,, is singular then w is only defined on a
dense open set, but the pullback n*w extends smoothly to all of AM;, because it is
equal to the pullback of ' under the multiplication map M; —— X whose image
was X,,. The composition ® o7 is a moment map for (M;,n*w,T); this follows
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easily from the definition of the moment map. Note that the pull-back n*w is no
longer symplectic.

Consider the action on M7 of the big torus, T' = T /Ty = (§')", given in §3.6.
We have an inclusion 7 < 7" and, dually, ¥ —= t*. Note that t* = R” naturally.

For any closed and invariant 2-form & on (M, T) and a corresponding moment
map ® : M; — R™, the push-forward measure ®,&" is a twisted cube in R”; this
follows from §2.6 and Propositions 3.10 and 3.14. We would then like to apply
Remark 1.4. Unfortunately, n*w might not be T-invariant. We therefore take its
average,

azzﬂgfm%ww»dw

Then & is a pre-symplectic form on (M;,T). Also, © and n*w represent the same
cohomology class in H?(M;). Let ® be a moment map for (M;,T,&). Then
®,0™ = me where C is a twisted cube in t*. The diagram below

M; 2, R”
nl does not IL
commute
Xuw — t*

does not commute, but L o ® and ® o 5 are moment maps for (M;,T,&) and for
(M;,T,n*w) respectively. By Theorem 1, the push-forward of Liouville measure

only depends on the cohomology class [¥] = [n*w], so
(Lo®).5" = (®on).(n'w)". (3.17)
Thus we have ®,w"/n! = L.mc. O

Corollary 3.18. Theorem 4 exhibits the measure ®,w"/n! as the linear projection
of a twisted cube C. This sheds light on the polynomial nature of ®,w”™ which
was established by Duistermaat and Heckman. Indeed, the density function for
®.w"/n! is given by p(a) = vol(p~'(a) N C) where we take a “twisted volume”,
i.e., we integrate the density function of C' over the set p~'(a). The set C, :=
p1(a) N C is a finite union of polytopes, each with a density function equal to 1
or —1, bounded by some hyperplanes. As « varies in a region of regular values of
®, the components of C, change in that their bounding hyperplanes get parallel-
translated. Moreover, the location of the hyperplanes depends linearly on «. It
follows that p(a) = vol(C,) depends on the location of the faces in a polynomial
manner. One way to see this is by investigating the dependence of vol(C,) on the
location of each face F'. Suppose that F' lies on the hyperplane ¢r = cp for some
linear functional ¢, then one can show that %UOZ(CQ) = vol(F'). By induction,
vol (F) is a polynomial of degree dim 7' — dim T — 1 in the variables {cp | the face
F' intersects F'}. Thus vol (C,) is a polynomial of degree dim T'— dim T in ¢ and
the cpr’s.

3.9. Application to the index. In §3.8 we related the symplectic form on a flag
manifold to an invariant 2-form on a Bott-tower by pulling-back and averaging. We
would like to obtain a similar relation between the holomorphic structures. The
analogue of pulling-back is that we pass from a flag manifold to a Bott-Samelson
manifold, which we can do by Demazure’s theorem (3.4). The averaging should be
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replaced by some process which allows us to pass from the index over the Bott-
Samelson manifold to the index over a Bott tower. This we will get from the
invariance of the index under deformations. We now carry out this program.
Let M be a complex manifold. Then we have the Dolbeault complex;
Q%0(ar) -2 0ty -2 - 2 0.
Let L — M be a holomorphic line bundle. The choice of a Hermitian metric on
L determines a connection

V=V 4+V": (L) — QML) & Q" (ML)
where Q% (M, L) = Q% (M) @ T'(L). From this we get a complex

Q0(M, L) 25 00 (M, L) 2 . 28 00 1)

where 0, =9 ® 14+ 1® V". The cohomology of this complex is equal to the sheaf

cohomology H*(M,O(L)). We denote either of these cohomologies by H*(M, L).
If we choose a Hermitian metric on M then we can form the operator D = (9 +

0*)®1+1®V". This is an elliptic differential operator which sends Q%" (M, L)

to Q0°44(M L) and whose kernel and cokernel are equal to
Ker(D) = @; H?(M,L)
CoKer(D) = &@;HY™(M,L)

Suppose that a torus T acts holomorphically on L — M and preserves the
metrics, then (3.19) holds as equalities between T-representations. We can then
form the equivariant index, inderr (D) = ker(D) — coker(D) = > (-1)’H’(M, L),
as in §2.7. Recall, this is a virtual 7T-representation, determined by its virtual
character y : T'— C, or equivalently, by its multiplicity function mult : (* — Z;
see §2.7.

The advantage of working with the index of an elliptic operator rather than sheaf
cohomology lies in the following theorem.

Theorem. (See [L-M, p.214, cor.9.6]). The equivariant index of D only depends
on the homotopy class of D in the space of T-equivariant elliptic operators from
QO,even(M, L) to QO,odd(M, L)

We now specialize to the case that M = M} and L = L, as constructed
in §3.4. Then we get a whole family of operators D; for ¢ < oco. The bundles
(/\O’even/OddT*MI ®Ly); are all smoothly isomorphic so we can redefine D; so that
they have the same domain and range. Then, by the above theorem, the index of
D; is independent of . Denote its character by X; : T' — C.

Recall, when t = oo, the action of T extends to a holomorphic action of a
larger torus T on L7, — M7°. Denote the corresponding virtual character by
X:T — C, then its restriction to 7" is X. Recall, M® is a Bott tower and T
acts by a complete torus action as defined in §2.4. Thus the descriptions of the
index in §2.7 apply to X.

(3.19)

Proposition 3.20. Let w € W be the longest element of the Weyl group. Let
W =S4, ** " Sa;, be a minimal expression for w in terms of simple reflections and
let T = (i1,...,0n). Let X\ be a dominant integral weight. Let X :T — C be the
virtual character for the action of T on M$° and L7\. Recall that we have an
embedding T — T. Then the restriction of X to T coincides with the character
X7 (A) of the irreducible representation Ry of G of highest weight .
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Proof. From the above discussion we have, at ¢t = oo, that >~<|T = Xs. Demazure’s
theorem (3.4) together with the Borel-Weil theorem tell us that H¢(M/, Ly ) van-
ishes for 4 > 0 and that H°(M7, L;.,) is the irreducible representation of G with
highest weight A, thus at ¢ = 0 we have Xo = X7 (A). Finally, by the homotopy
invariance of the index, Xp = X O

Theorem 5. Let C C R™ be the twisted cube corresponding to the Bott-tower Ms°
and the line bundle L7°\. Denote by L : R* — t* the linear projection which

is dual to the inclusion T — T. Then the multiplicity of a weight o € (* in the
representation Ry is equal to the number of lattice points, counted with signs, in
the polyhedral region C N L~ (i 1a).

Proof. This follows immediately from Proposition 3.20, Theorem 3, Proposition
3.10 and Remark 2.28. O

We call X the extended character. We should point out that we have made
two unnecessary specializations for clarity. First, we stated the results for w the
longest element of W because this corresponds to representations of G. However,
one can also state the results for an arbitrary element of W. In this case one would
obtain extended characters of certain representations of B associated to Schubert
Varieties. Second, we assumed that A is dominant. Thanks to the Borel-Weyl-Bott
theorem, the case of non-dominant A can easily be treated.

Remark 3.21. We can interpret Theorem 5 pictorially as follows. If we choose a
basis for T then a weight of T is represented by n integers. For example if K =
SU(3), and wp = w is the longest element then in terms of the simple reflections
S, and s, there is a reduced expression w = Sq,Sa,8q,. Thus n = 3 and so it is
three dimensional. We now plot the twisted cube for A = 31 + 4+, where the ~; are
fundamental weights.

FIGURE 2. K = SU(3), Twisted cube

The darker dots represent HeV**(M$°, Ly ) and the lighter dots represent H°44(M$° Ly )).
In this case, for A dominant, we have H?(M7°, Ly ) = H3(M?*,L;\) =0, so ‘even’
is really just the Oth cohomology, and ‘odd’ is just the first cohomology.
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The lines represent the twisted cube defined by equations (2.21). We take the
lattice points which satisfy equations (2.21).

Proposition 3.20 is interpreted by looking at the projection it* — it* dual to
the inclusion. If we project figure 2 using L, with L as in Theorem 4 we get
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F1qURE 3. Twisted cube projected into t*

which is the familiar weight diagram for a generic representation of SU(3). We
see that for a weight p € it* the multiplicity is the number of preimage points in
the twisted cube, counted with sign. Again this bares strong similarities with the
work of Kashiwara and Lusztig in that, by choosing a decomposition of the longest
element, they can parameterizes their crystal basis (resp. canonical basis) by a
lattice points in a convex body defined by equations similar to equations (2.21),
e.g., [Lu, §8.12].

We note that the multiplicities can also be given by the famous formula of
Kostant [Ko2, (1.1.5)]. From that formula alone it might be suprising that the
region for which the multiplicity is non-zero is bounded. This fact is obvious from
the definition of the character and the finite dimensionality of the representation,
and it can be seen geometrically in the description that we gave above. We note
that in Kostant’s paper, he defines a function “Q” which bares some kinship to our
formula, in that it is defined by a sum of £1 over a finite combinatorially defined
region.

3.10. A Demazure type formula. As a corollary of Proposition 3.20 and Theo-
rem 3 we will now prove a Demazure type character formula. This formula bares
strong formal resemblances to the formula of Littelmann regarding the crystal base
of Kashiwara, see Remark 3.23. In fact, our formula implies Demazure’s formula.

First let us recall the Demazure formula [D], [J, I1,§14.17]. Suppose that A € it*
is a dominant weight. Let X7(\) be the character of the representation of highest
weight A restricted to the maximal torus T as before. Denote by Z[T] the space
of functions on 7" which are obtained as integral combinations of the multiplicative
weights, e, for u € *. For each simple root « define the operators D, : Z[T] —
Z[T] as follows.

et et fermaa i () VY >0
D,(e") = 0 if (p,a)=-1
—erte __epm (e e i () aV) < =2
D, extends to Z[T] by additivity. Demazure’s formula says that if a;,,... ,q;, isa

sequence of simple roots associated to a reduced expression of the longest element
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of the Weyl group, then
Xr(A) = Dq,, -+ Dq,, €.

Note that the coefficient of e* in this expression is also given by Kostant’s multi-
plicity formula [Ko2].

We can now state our theorem. In what follows, The 3;’s are as in the notation
of Proposition 2.33, when we consider the homomorphism 7" — T+ which gives
the action of 7' on the Bott-tower. In §3.7 we computed the B;’s explicitly. Note
that they form a linear basis for it*. We also computed the pullbacks of the 3;’s to
it* via the inclusion T« T. Denote by L : t* — t* the dual projection, then we
obtained L(3;) = a;; for 1 < j < n and L(Bp41) = A.

Theorem 6. Let X' the character of T acting on H{(M$*, L) and let X =
SN=1)'X". As an element of Z[T), it is given by

X = f)l .. .Dneﬁnﬂ
where we define ﬁj : Z[T] — Z[T) by

et 4 elh=Bi ... 4 eh—kil; if k; >0
Dje“ = 0 Zf kj = -1
—ettBi — et (LFR)B i f < =2

and where k; = k() are defined for as follows; if pw = > x;3; then k;(n) =
(o) + 3000 (s, o ).

Proof. The formula follows from Proposition 2.33, that for the bundle L% — Mg®
we have I; = (\, o) and c;; = (a;,, a}); see §3.7. O

Remark 3.22. We can simplify the definitions of the k;’s in Theorem 6 in the fol-
lowing way. Note that k;(p) = O, aim + AZpi1, ), this follows from the
formula for the extended character X, because we only apply k; to p’s which are
combinations of 3;41,...,Bny1 and in which x,.1 = 1. Then, by §3.7 we have
ki(p) = (L(,u),a-vj) where L : it" — 4t* is the projection which is dual to the

(3

- dia ~ . . .
composition 7' &) T In particular, k; only depends on the integer ¢;.
When restricted to the subtorus 7', our formula implies Demazure’s formula.

Remark 3.23. Our formula, while refining the Demazure formula, bares a strong
similarity to a formula of Littelmann and M. Kashiwara [L, K2] which we now
describe. We use the notation of [K1, K2]. Let U,(g) be the quantized universal
enveloping algebra defined by Drinfeld and Jimbo. Let A be the subring of Q(q)
which consists of the rational functions which are regular at ¢ = 0. Let V/(A) be
the irreducible U,(g)-module of highest weight A and let (L(A), B(A)) be its crystal
base. Recall [K1], this means that L(A) C V(A) is a free sub-A-module such that
V(A) = Q(q) ®a L, that B(A) C L(X)/qL()) is a linear basis over Q, and that
the quantum operators &;, f; : V(\) — V(\) send L()) into itself. Let uy be the
maximal weight vector in V' (A). Let wg = s;, - - - 8;, be a reduced expression for the
maximal element wq in the Weyl group W. Then Littelmann’s formula states that

Z b= Dil - 'Dinuk
beB(N)



32 M. GROSSBERG AND Y. KARSHON

where D; are defined in terms of &, f;, by

Db — D 0<k<(a weight(b)) fEb i (o, weight(b)) > 0
' - 20<k<—<a2/7weight(b)> éfb if <a7\l/7 Welght(b» <0
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