Csc343 LAB

Register File

Objective
Design a 4*4 register file and test it on VSIM, QUARTUS, and UP3 board.

What is a register file

A register file is the central storage of a microprocessor. Most operations involve using or
modifying data stored in the register file. The register file that will be designed has 4
locations(such as 00,01,10,11). Figure 1 is the suggested block diagram.

Bead register

I-Ilrm.ber 12y
clopkd (write) v} Y] 41
mu
o] 1 i porchid)
1 * Ol 5 G i
I H «
Tegiste o4
dec W
roamp er ?1*
A e |
| mu
IE{'P PortE ()
h o e [
Begister datalnid)
[1 2 3

Dead register mmber Z(2)

|:| Are all dff.

figure 1

Our Register File Description

If a register file is 4*4, it means we have 4 registers and each register is 4 bits wide. Each
cell of the register file, in this case, is constructed by a Dff. Therefore, a register is
constructed by 4 DFFs, for example, D1,D2,D3,and D4. Each of the four registers has a
clock input (positive edge triggered), a data input, and a data output. This collection of
registers is managed by one ‘2:4 decoder’ and two’4:1 multiplexors’.

There are two output ports(‘PortA’ and ‘PortB’) for the register file. Therefore, two
registers can be read simultaneously. Each output of the registers is connected to two
multiplexors. By changing the ‘Read register number 1’ and “Read register number 2’,

we can choose which two registers we want to extract data into the ‘PortA’ bus and
‘PortB’ bus.

We use clock4(write) combining with ‘and’ gates to control the register writing. When a
clock comes in, a candidate register will be selected to be updated according to which
‘and’ gates is ON (‘on of the input = *1”). This is determined by the ‘2:4 decoder’.

Compiling and Simulating your register file using VSIM

Get the ‘registerfile.vhd’ file from the Appendix B. You need to input your design of add,
dff, and multiplexor into your project and make them as the corresponding names that the
registerfile.vhd calls.

Design your own test_registerfile.vhd.

In your test file designing, first step, generate four clocks and combine the output of the
‘2:4 decoder’(00,01,10,11) to input the data(0000, 1010,0011,1111) into registerl,
register2, register3, and register4. Then, extract these data from the corresponding
registers by giving different values(for example, 00,01,10,11) to ‘read register number 1’
and ‘read register number 2.

After completing your test file design, according your pervious knowledge of how to run
VISM, you should get the wave form as figure 2.

=4 wave - default

Fle Edt View Insert Format Tools Window

EEE JRBA LXEY N RQAJ ”T ELEIEE

ol Nt registerfledt cl.. L TE]

o Mest_reqisterfet re.. U m il il — T ||||
ftest Teqisterflest_re.. 1l ' M) Jit |||| 1l
o Mest egisterien re.. I I T T T

gl test enitele d..
ol et registerledt oa
"o Mtest renisteriet ob

Naw

d 1 M * A

figure 2

Compiling and Simulating your register file using QUARTUSII

Open Quartusll and create a new object named LABN. Then do the same procedures
except in new project wizard of page 3 select the corresponding parameters for UP3.

In Quartusll, create symbol for registerfile.vhd called registerfile.bdf. Create
LABN.bdf file by adding pins to registerfile.bdf. Then do compilation and simulation
procedures.

Putting your design into UP3 board

In order to put your design into the corresponding board, usually, we need to do input
preparation and output preparation.

Input preparation

1.Using push-button to generate clocks and count the number of clocks using the figure
3’s suggestion.

o clock

o O Dre-hounce >
P Soounter Bys 00,01,10,..

g Nhultiplezor —w

figure 3

The function of de-bounce is to filter the bounces which generated by the push-button
and output a clock with a good shape, you can find this function in the disk of the book or
you can design it by yourself.

The Souncter function counts the number of clocks. You can use the module 4 counter
that we already have, or you can use megafunctions by specify the inputs and outputs.
The purpose of using Souncter function is to simultaneously select address for the
register file.

The purpose of using multiplexor here is to simultaneously select the input data to be
written into the selected register according to the push-button.

Output preparation
LED display (It is not a case in UP3 but I prefer include it)

For the register file, we have two output buses, ‘PortA’ and ‘PortB’. These ports all
output binary numbers. In order to show the corresponding number in LED display, we
need to design our own CONNECTOR to convert binaries into the corresponding LED
displayer codes. Table 1 shows the relationship.

Table 1
Hexadecimal Binary code LED display code
1 0001 1100111
2 0010 0010010
3 0011 0000110
4 0100 1001100
5 0101 0100100
6 0110 0100000
7 0111 0001111
8 1000 0000000
9 1001 0001100
A 1010 0001000
B 1011 1100000
C 1100 0110000
D 1101 1000010
E 1110 0110000
F 1111 0111000
0 0000 0000001

CONNECTOR can be designed according to Table 1.

Figure 4 is the output preparation design. This design will extract data from these 4
registers according to clock serially. For example, when you first time push the button, it
will show the data has the address 01, second, the data of address 10, third, the data of
address 11, fourth, the data of address 00.

Portd 4

Mhulip CoMN | 7
Vee clock —p lexor +> MEC JT’
‘|_ i3 £ TOR.

T O De-hounce T’
Sco Bu\s UIJ.D_ll.]D..

" L

PortE Ivlulti Ccom
plexo MNEC E
mm— = ToR [P

e dock
L{j [s) De-hounce T’
Scownter BL\S DD.IJ_ll.JD..
LY Ll

figure 4.

Appendix A shows the result of VISM according these design ideas. The clocks of the
first three lines are generated by three push-buttons. The first clock is for generating
addresses(00,01,10,11) and inputting data (0001, 0010, 0011,0100) into registers with
these addresses in the register file. The second clock is for reading data from the register
file into ‘PortA’ at the same time converting binary code into LED display code, and the
third clock is doing the same thing for ‘PortB’.

LCD display

Because we have two output ports ‘PortA’ and “PortB’ and only one LCD display in
UPS3 board, you need to add one 2:1 multiplexor for the selection.

The LCD display is totally different from the LED. Either you can design your own LCD
CONNECTOR or use the book provided Lcd_display.vhd. In both ways, to make LCD
working, we need to have an enable, a data bus, a read and write signal, and a read and
write memory address. And these signals have strict requirements(details see appendix
C) . Figure 5 shows the basic concept design for LCD.

Portd 4

Nulip
leszor

‘E:: o — £ + | Erable
o O De-bounce) il LCD [57™ | LCD
- e L] CorM W. displa

—»

Bys 000110, | |t NEC pe® |y
Scouwnter > > TOR.
i #
PortE IWulti Data

plexo

(== clock

° -

Seomter BL@ DD.D_ll.]D..

figure 5.

Appendix A:

The output after input preparation and output preparation

1@ Q @R

0ao1
noin
0011
0100

0., J1007700 JA00TT17 {001 007 00000t T0 1001100

0. J1001100 {70011 17 {00100 o onaai 10 7097100

|+ [%
i

I/

00 ne 100 200 00

400

500

]

Appendix B: register file vhdl code

registerfile.vhd

library ieee;
use leee.std logic_1164._all;
use work.all;

entity registerfile is
port (clock4: in std_logic;

registerNumber: in std_logic_vector(1l downto 0);
Read_registerNumberl: in std logic_vector(1l downto 0);
Read_registerNumber2: in std logic_vector(l downto 0);
Dataln: in std _logic_vector(3 downto 0);

DataOut_A: out std_logic_vector(3 downto 0);
DataOut_B: out std_logic_vector(3 downto 0)

);

end registerfile;

architecture struct of registerfile is
component dff is
port (clock: in std_logic;
D: in std_logic;
Q: out std_logic
);
end component;
component decoder is
port (I: in std_logic vector(l downto 0);
0: out std_logic vector(3 downto 0)
);
end component;
component AND1 is
port (x: in std_logic;
y: in std_logic;
F: out std_logic
);

end component;

component multiplexor4d is
port (13: in std_logic_vector(3 downto 0);
12: in std_logic_vector(3 downto 0);
11: in std_logic vector(3 downto 0);
10: in std _logic vector(3 downto 0);

S: in std logic_vector(l downto 0);
0: out std_logic_vector(3 downto 0)
)

end component;

signal ssl1: std_logic;
signal ss2: std_logic;
signal ss3: std_logic;
signal ss4: std _logic;

signal ss: std_logic_vector(3 downto 0);

signal DataOutl: std _logic_vector(3 downto 0);
signal DataOut2: std logic vector(3 downto 0);
signal DataOut3: std_logic_vector(3 downto 0);
signal DataOut4: std_logic_vector(3 downto 0);

begin
decoderl: decoder port map (1(0) => registerNumber(0),
1(1) => registerNumber(l),
0(0)=>ss1, 0(1)=>ss2,0(2)=>ss3,
0(3)=>ss4);

And_1: AND1 port map (X=>clock4,Y=>ssl,F=>ss(0));
And_2: AND1 port map (X=>clock4,Y=>ss2,F=>ss(1));
And_3: AND1 port map (X=>clock4,Y=>ss3,F=>ss(2));
And_4: AND1 port map (X=>clock4,Y=>ss4,F=>ss(3));

D1: dff port map

(clock => ss(0), D =>Dataln(0), Q=>DataOutl(0));
D2: dff port map

(clock => ss(0), D=>Dataln(l), Q=>DatalOutl(l));
D3: dff port map

(clock=>ss(0), D=>Dataln(2), Q=>DataOutl(2));
D4: dff port map

(clock=>ss(0), D=>Dataln(3), Q=>DataOutl(3));
D5: dff port map

(clock => ss(1), D =>Dataln(0), Q=>DataOut2(0));
D6: dff port map

(clock => ss(1), D=>Dataln(1l), Q=>DataOut2(1));
D7: dff port map

(clock=>ss(1), D=>Dataln(2), Q=>DataOut2(2));
D8: dff port map

(clock=>ss(1), D=>Dataln(3), Q=>DataOut2(3));
D9: dff port map

(clock => ss(2), D =>Dataln(0), Q=>DataOut3(0));
D10: dff port map

(clock => ss(2), D=>Dataln(l), Q=>DataOut3(1));
D11: dff port map

(clock=>ss(2), D=>Dataln(2), Q=>DatalOut3(2));
D12: dff port map

(clock=>ss(2), D=>Dataln(3), Q=>DataOut3(3));
D13: dff port map

(clock => ss(3), D =>Dataln(0), Q=>DataOut4(0));
D14: dff port map

(clock => ss(3), D=>Dataln(l), Q=>DataOut4(l));
D15: dff port map

(clock=>ss(3), D=>Dataln(2), Q=>DataOut4(2));
D16: dff port map

(clock=>ss(3), D=>Dataln(3), Q=>DataOut4(3));

muxl: multiplexor4 port map
(S(0)=>Read_registerNumber1(0), S(1)=>Read_registerNumberl(l),
10(0)=>

DataOutl1(0), 10(1)=>DataOutl(l),10(2)=>DataOutl(2),10(3)=>DatalOutl(3),
11(0)=>DatalOut2(0), 11(1)=>DataOut2(1),11(2)=>DataOut2(2),

11(3)=>DataOut2(3),
12(0)=>DataOut3(0), 12(1)=>DatalOut3(1), 12(2)=>Datalut3(2),
12(3)=>DataCut3(3),
13(0)=>DataCut4(0), 13(1)=>DatalOut4(1), 13(2)=>Datalut4(2),
13(3)=>Datalut4(3),
0(0)=>DataOut_A(0),0(1)=>Datalut_A(1l), 0(2)=>DataOut _A(2),
0(3)=>Datalut_A(3));

mux2: multiplexor4 port map
(S(0)=>Read_registerNumber2(0), S(1)=>Read_registerNumber2(l),
10(0)=>
DataOutl1(0),10(1)=>Datalutl(l), 10(2)=>Datalutl(2), 10(3)=>DataOutl(3),
11(0)=>DataCut2(0), 11(1)=>DatalOut2(1), 11(2)=>Datalut2(2),
11(3)=>DataCut2(3),
12(0)=>DataOut3(0), 12(1)=>DataOut3(1),12(2)=>Datalut3(2),
12(3)=>DataOut3(3),
13(0)=>DatalOut4(0), 13(1)=>DataOut4 (1), 13(2)=>Datalut4(2),
13(3)=>DataCut4(3),
0(0)=>DatalOut_B(0),0(1)=>DataCut_B(1), 0(2)=>DatalOut_B(2),
0(3)=>Datalut_B(3));

end struct;

Appendix C: time requirement for writing and reading LCD

13.Timing Characteristics

13.1 Write Operation

¥VIEH] VIHIY
RS ><g';n_1 VIL '-i><
tas A=
RT S VILL AF VILL
PWes an
tze
e TTET VIH
E ,/ VIL VIL1 \\]/‘.::
(LA tDsw tH
DBO to DB7 ><£2;i§f; X
tey<E
Item Symbhaol Min Typ Max Unit
[Enable cycle time toyeE 500 - - ns
[Enable pulse width (high level) PWEex 230 - — ns
[Enable rise/fall time tEe tEf — — 20 ns
A ddress set-up time (RS, B/W to E) tag 40 — — ns
A ddress hold tume tam 10 — — ns
[Data set-up time tosw 80 — - ns
[Data hold time 5 10 — — ns

10

13.2 Read Operation

. EVIHL JIHI
RS ><~—c.'[1.l VIL1 A
tAS tAE
RIW AviEL VIEDR,
PW:H tAE
tEf
TH
E VILL \\ J/,I;
{DER
DBO to DB7 raid dae o B
feyeE
NOTE: *VOL1 is assumed to be 0.8V at 2 MHZ operation.
ITEM Svmbol Min Typ Max Unit

[Enable cycle time teyE 500 - - ns
[Enable pulse width (high level) PWey 230 — — ns
[Enable rise/fall time ey tEs — — 20 ns
A ddress set-up time (RS, R/W to E) tas 40 — — ns
1A ddress hold time tax 10 - - ns
Data delay time toDDR - - 160 ns
[Data hold time tDER. 5 — — ns

11

	What is a register file
	Our Register File Description
	Compiling and Simulating your register file using VSIM
	Putting your design into UP3 board
	Input preparation
	Output preparation
	LED display (It is not a case in UP3 but I prefer include i
	LCD display

