USING LPM MODULES AND
VECTOR INPUTS

August 30™, 2007

CSC343

Fall 2007

Prepared by: Steven Medina

http://www.bcltechnologies.com/easypdf/

PURPOSE

Our purpose here is to learn how to use LPM modules. An LPM module is a
“black box” representation of a larger circuit. In other words, you can only see the inputs
and outputs of the circuit design. What is inside the box would represent zow it works.
However, when using an LPM module, zow it works is not important. All that matters is
that it does work. In this lab, you will learn how to utilize these LMP modules to create
the same multiplexer you created in the previous lab. You will then create slightly more
complex designs using the idea of LMP modules.

After learning LPM modules, you will learn how to create designs that use inputs
and outputs that are larger than 1-bit long. This will include the use of a counter. A
counter is simply a circuit block that counts. In our case, we will use a design that counts
only upward and by 1’s.

USING LPM MODULES

1) Create a new Quartus project file. If you forgot how, go back to “Project1Tutorial” to
read how to do it. I recommend naming your project your name followed by
“Ipm_mux”. For example, mine would be stevenlpm_mux. Open a new block
diagram file (bdf).

2) Click on “symbol tool”. In the menu, click the plus sign next to the bottom of the two
folders. Click on “megafunctions”, then gates, then Ipm_mux.

3) After clicking on Ipm_mux, the following menu will appear.

Megawizard Plug-In Manager|page 2c] x|

Selected Megafunctions: “Which type of output file do pou want to create?

ILF'M_MLI>< " AHDL
" Verlog HOL

Ywhat name do you want for the gutput file? Browse... |

IE:'\D ocuments and SettingshdminiztratorD esktophStevenCSC343T ukor

deszign files must be in the project directony, in the glabal user libraries
zpecified in the Options dialog box [Tools menu), or a user libramy specified

\ Mate: To compile & project successfully in the Quartus |1 software, pour
in the User Libraries page of the Settings dialog box [&ssignments menu).

“our current user library directories ane:

Glabal User Libraries:
c:hdocuments and settingshadministratorsmy documentshjorgeciregisteral
e:mb_tutonalvmarch_09_06ulladder',

[~ Don't ask me for an output file name or the output file format again.
I future, narne output files autamatically and use the current output file farmat.

[Mote: o can tum the Block Editor's auto naming ahd auto farmat selection
an ahd off with the Options command in the Taol: menu.)

Caticel | < Back | Hest > | Eittaty |

http://www.bcltechnologies.com/easypdf/

Where it asks “which type of output do you want to create?”, click “VHDL”. Then
click next.

4) Another menu of options will appear which looks as follows:

MegaWwizard Plug-ln Manager - LPM_MUX [page 3 of 5] | X|

a LPM_MUX
version 6. [shos | osemencen |

e

=

arameter
ettings

q:

Hows many 'data’ inputs do pou want? EE ol

Iprn_rmwx0

How wide should the 'data’ input and | 'I- —. ki
the result’ output buses be? | | | L

Do you want to pipeline the multiplexer?

* Mo

. ¥es, Twant an output latency of ok cycles
[Create an asynchronous Clear inpuk
[Create a Clock Enable inpuk

Resource LUsage
1 It

| Cancel || = Back ” Mext = ” Einish |

Where it asks how many inputs you want, click 2. Where it asks how wide the data
input and the result output buses should be, click 1. Do not pipeline the multiplexer.
Click finish, and then finish again. You will now have a 2-to-1 multiplexer.

result:

Inst Sel

2-to-1 multiplexer created using an LPM module.

As you can see, we have a “black box” representation of a 2-to-1 multiplexer. This
was much easier to create than connecting every gate that makes up a multiplexer.

http://www.bcltechnologies.com/easypdf/

5) After creating your multiplexer, add input and output pins to your design and compile.

Open a vector waveform file.

Simulate your design just as you did in the “Project1Tutorial “. Compare your
simulation to the simulation in “ProjectlTutorial”. If done correctly, they should have
the same logic values.

ORTHOGONAL BUS TOOL AND LPM COUNTER

1) Open a new project. Then open a new block diagram file. You are going to create the

2)

multiplexer design shown below.

Iprm_mux0

S o —— 22:23)({33}
[FlicMil} e resultf2_0] :
LT LT Jata (3.0l . pp——— L
FEETT T data0x{3..0]
nst 5el[1.0)

Ipm_counterQ
. . up counter . L. P P o o o
t Belect INELT L .. A ..
b (Sl clock o1 0] el e T T (MO

inst1

Thi's'des'ign includes a 4-to-1 m'ulti'p'lex'er' and a counter. Al'so', the 'inpUt‘s are more
than one bit long. In fact, the inputs of the multiplexer are all four bits long.

Click on the “symbol tool” box. Click on “lpm_mux”, just as you did in the first
multiplexer in this tutorial. In the first menu, select VHDL like normal. Click “next”.
In the next menu, set the number of data inputs to 4. Also, where it asks how wide the

data input and result output should be, select 4. Click “finish” twice. You should have
a multiplexer that looks as follows.

lpm_mux0

: data3x([3..0
data2x]3..0
data1x[3..0
data0x[3..0

result|3..0|§

inst

Place your multiplexer on your block diagram.

http://www.bcltechnologies.com/easypdf/

3)

4)

5)

6)

7)

8)

Next, we will create an LPM counter. Click on the “symbol tool” box. Click on
megafunctions, then arithmetic. You should see an option for “lpm_counter”. Click
on this option to bring up the LPM wizard for this counter.

In the first screen, click on VHDL. Then click “next” to advance to the next screen.
Where it asks “How wide should the ‘q’ output be”, select 2 bits. Make sure the
counter direction is set to “up only”. Click finish twice. Following the diagram on the
beginning of page 3, place your new LPM counter on your diagram to make it look
similar to the diagram on page 3. Your LPM counter should look like the image
below.

lpm_counterQ
up counter

q[1..0]
inst1

> clock

Place an input pin going into the “clock” input of your counter. Connect the input pin
to the counter.

The output of your counter is 2 bits long, as well as the selector input for the
multiplexer. Therefore, you cannot use the “Orthogonal Node Tool” to connect the
counter to the multiplexer like we usually do. We will use the tool right under it,
called the “Orthogonal Bus Tool. You will notice that the line connecting the output
of the counter to the 2-bit input of the multiplexer is thicker than normal. This is the
connection used anytime you are connecting two blocks together that have more than
one bit in either their input or their output. The normal naming convention for an
input that has more than one bit is a vector.

Connect input pins in each of the four inputs of the multiplexer. Since the inputs of
the multiplexer are 4-bits long, you will use the orthogonal bus tool to make your
connections. This also goes for the output pin that you connect from the output of the
multiplexer.

When renaming the input and output pins to the multiplexer, you have to use a vector
notation to do so. This is because they are 4-bits long. For example, I would normally
name the input pins to this multiplexer 10, 11, 12, and 13. However, in this case, we
must name them 10[3..0], 11[3..0], 12[3..0], and 13[3..0]. The numbers in parenthesis
“[3..0]” represent a 4-bit vector whose bits are bit 3, bit 2, bit 1, and bit 0. This
naming convention MUST be used for all input and output pins that are connected to
vectors.

http://www.bcltechnologies.com/easypdf/

9) Change the name of your output pin to meet the naming convention used for vector
outputs (For example, output[3..0]).

10) Simulate your design with a vector waveform file. Make sure to give initial values to
your four inputs. Set the input into the selector as a clock (right click the selector
input, click “value”, and then click “clock”. This was also done in the first tutorial).
Your simulation should look similar to the image below

FUNCTIONAL SIMULATION

Functional simulations are simulations done in vector waveform files, but with
NO delays. They are much easier to read when trying to determine how a circuit design
works. Open

1) Open a vector waveform file. Click on Processing=>Simulator tool. You will see a
box that looks as follows.

&, Simulator Tool M= I-
Simulation mods: IFunctiDnal j Generate Functional Simulation Netlist |
Simulation input: Istevenlpm_muH. wf |

— Simulation period

@ Fun simulation until all vector stimuli are used
 End simulation at; |1 0o ns v

— Simulation options

¥ &utomatically add pins to simulation output waveforms

[Check outputs “Wavefonm Campanson Settings...l

I | Setum and beldlime viclation detestin

= | Gliteh detection: |1-U Ins 'I

[~ Ovenwrite simulation input fils with simulation resulks

[~ Generate Signal Activie Fil: I |

2
00:00:00

Lbn Start | @ Stom | @- Open | GEILD Repart |

Under the “Simulation Mode” dropdown menu, change the mode from “timing” to
“functional”. Then, click “Generate Functional Simulation Netlist”.

http://www.bcltechnologies.com/easypdf/

2) Click “Start” on the lower left-hand corner. Usually this will simulate your design. If
the simulation does not show up after this, simply close the box, and click
Processing=>Start Simulation. This will simulate your design with no timing delays.
A picture of this is shown below.

]
A
W
E
L]
%)
&
5
,
e
i
e
E
i
e
Y
e
8l
SIS ety)
5 o sim v e i TIF ter Yoo i cawee o] [=
R wa: 0 warning: 21 “
o | 0|
g A N P N (e o e) e
=T el e H

ForHep, restF1 T (il o [N0 |

As you can see, it is easier to analyze the logic when using a “functional” simulation.
However, remember that in reality, there will always be some delay. Only the
“timing” simulator mode will show the actual delays.

http://www.bcltechnologies.com/easypdf/

