
Laboratory Exercise 7
Finite State Machines

This is an exercise in using finite state machines.

Part I

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or four consecutive 0s. There is an input w and an output z. Whenever w = 1 or
w = 0 for four consecutive clock pulses the value of z has to be 1; otherwise, z = 0. Overlapping sequences are
allowed, so that if w = 1 for five consecutive clock pulses the output z will be equal to 1 after the fourth and fifth
pulses. Figure 1 illustrates the required relationship between w and z.

Clock

w

z

Figure 1. Required timing for the output z.

A state diagram for this FSM is shown in Figure 2. For this part you are to manually derive an FSM circuit that
implements this state diagram, including the logic expressions that feed each of the state flip-flops. To implement
the FSM use nine state flip-flops called y8, . . . , y0 and the one-hot state assignment given in Table 1.

State Code
Name y8y7y6y5y4y3y2y1y0

A 000000001
B 000000010
C 000000100
D 000001000
E 000010000
F 000100000
G 001000000
H 010000000
I 100000000

Table 1. One-hot codes for the FSM.

1

E/10

Reset

w = 0

D/0

w = 0

C/0

w = 0

B/0

A/0

I/1 1

 1

H/0

1

G/0

1

F/0

w = 1w = 0
1

0

1

1

1

0

0

0

Figure 2. A state diagram for the FSM.

Design and implement your circuit on the DE2 board as follows.

1. Create a new Quartus II project for the FSM circuit. Select as the target chip the Cyclone II EP2C35F672C6,
which is the FPGA chip on the Altera DE2 board.

2. Write a VHDL file that instantiates the nine flip-flops in the circuit and which specifies the logic expressions
that drive the flip-flop input ports. Use only simple assignment statements in your VHDL code to specify the
logic feeding the flip-flops. Note that the one-hot code enables you to derive these expressions by inspection.

Use the toggle switch SW0 on the Altera DE2 board as an active-low synchronous reset input for the FSM,
use SW1 as the w input, and the pushbutton KEY0 as the clock input which is applied manually. Use the
green LED LEDG0 as the output z, and assign the state flip-flop outputs to the red LEDs LEDR8 to LEDR0.

3. Include the VHDL file in your project, and assign the pins on the FPGA to connect to the switches and the
LEDs, as indicated in the User Manual for the DE2 board. Compile the circuit.

4. Simulate the behavior of your circuit.

5. Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs,
and that it produces the correct output values on LEDG0.

6. Finally, consider a modification of the one-hot code given in Table 1. When an FSM is going to be im-
plemented in an FPGA, the circuit can often be simplified if all flip-flop outputs are 0 when the FSM is in
the reset state. This approach is preferable because the FPGA’s flip-flops usually include a clear input port,
which can be conveniently used to realize the reset state, but the flip-flops often do not include a set input
port.

2

Table 2 shows a modified one-hot state assignment in which the reset state, A, uses all 0s. This is accom-
plished by inverting the state variable y0. Create a modified version of your VHDL code that implements
this state assignment. Hint: you should need to make very few changes to the logic expressions in your
circuit to implement the modified codes. Compile your new circuit and test it both through simulation and
by downloading it onto the DE2 board.

State Code
Name y8y7y6y5y4y3y2y1y0

A 000000000
B 000000011
C 000000101
D 000001001
E 000010001
F 000100001
G 001000001
H 010000001
I 100000001

Table 2. Modified one-hot codes for the FSM.

Part II

For this part you are to write another style of VHDL code for the FSM in Figure 2. In this version of the code
you should not manually derive the logic expressions needed for each state flip-flop. Instead, describe the state
table for the FSM by using a VHDL CASE statement in a PROCESS block, and use another PROCESS block to
instantiate the state flip-flops. You can use a third PROCESS block or simple assignment statements to specify the
output z.
A suggested skeleton of the VHDL code is given in Figure 3. Observe that the present and next state vectors for
the FSM are defined as an enumerated type with possible values given by the symbols A to I . The VHDL compiler
determines how many state flip-flops to use for the circuit, and it automatically chooses the state assignment.

3

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY part2 IS
PORT (. . . define input and output ports

. . .);
END part2;

ARCHITECTURE Behavior OF part2 IS
. . . declare signals
TYPE State_type IS (A, B, C, D, E, F, G, H, I);
SIGNAL y_Q, Y_D : State_type; - - y_Q is present state, y_D is next state

BEGIN
. . .
PROCESS (w, y_Q) - - state table
BEGIN

case y_Q IS
WHEN A IF (w = ’0’) THEN Y_D <= B;

ELSE Y_D <= F;
END IF;

. . . other states
END CASE;

END PROCESS; - - state table

PROCESS (Clock) - - state flip-flops
BEGIN

. . .
END PROCESS;

. . . assignments for output z and the LEDs
END Behavior;

Figure 3. Skeleton VHDL code for the FSM.

Implement your circuit as follows.

1. Create a new project for the FSM. Select as the target chip the Cyclone II EP2C35F672C6.

2. Include in the project your VHDL file that uses the style of code in Figure 3. Use the toggle switch SW0 on
the Altera DE2 board as an active-low synchronous reset input for the FSM, use SW1 as the w input, and the
pushbutton KEY0 as the clock input which is applied manually. Use the green LED LEDG0 as the output z,
and use nine red LEDs, LEDR8 to LEDR0, to indicate the present state of the FSM. Assign the pins on the
FPGA to connect to the switches and the LEDs, as indicated in the User Manual for the DE2 board.

3. Before compiling your code it is possible to tell the Synthesis tool in Quartus II what style of state assign-
ment it should use. Choose Assignments > Settings in Quartus II, click on the Analysis and Synthesis
item on the left side of the window, and then click on the More Settings button. As indicated in Figure 4,
change the parameter State Machine Processing to the setting Minimal Bits.

4. To examine the circuit produced by Quartus II open the RTL Viewer tool. Double-click on the box shown
in the circuit that represents the finite state machine, and determine whether the state diagram that it shows
properly corresponds to the one in Figure 2. To see the state codes used for your FSM, open the Compilation
Report, select the Analysis and Synthesis section of the report, and click on State Machines.

5. Simulate the behavior of your circuit.

4

6. Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs,
and that it produces the correct output values on LEDG0.

7. In step 3 you instructed the Quartus II Synthesis tool to use the state assignment given in your VHDL
code. To see the result of changing this setting, open again the Quartus II settings window by choosing
Assignments > Settings, click on the Analysis and Synthesis item, and then click on the More Settings
button. Change the setting for State Machine Processing from Minimal Bits to One-Hot. Recompile the
circuit and then open the report file, select the Analysis and Synthesis section of the report, and click on
State Machines. Compare the state codes shown to those given in Table 2, and discuss any differences that
you observe.

Figure 4. Specifying the state assignment method in Quartus II.

Part III

For this part you are to implement the sequence-detector FSM by using shift registers, instead of using the more
formal approach described above. Create VHDL code that instantiates two 4-bit shift registers; one is for recog-
nizing a sequence of four 0s, and the other for four 1s. Include the appropriate logic expressions in your design to
produce the output z. Make a Quartus II project for your design and implement the circuit on the DE2 board. Use
the switches and LEDs on the board in a similar way as you did for Parts I and II and observe the behavior of your
shift registers and the output z. Answer the following question: could you use just one 4-bit shift register, rather
than two? Explain your answer.

5

Part IV

We want to design a modulo-10 counter-like circuit that behaves as follows. It is reset to 0 by the Reset input. It
has two inputs, w1 and w0, which control its counting operation. If w1w0 = 00, the count remains the same. If
w1w0 = 01, the count is incremented by 1. If w1w0 = 10, the count is incremented by 2. If w1w0 = 11, the
count is decremented by 1. All changes take place on the active edge of a Clock input. Use toggle switches SW2

and SW1 for inputs w1 and w0. Use toggle switch SW0 as an active-low synchronous reset, and use the pushbutton
KEY0 as a manual clock. Display the decimal contents of the counter on the 7-segment display HEX0.

1. Create a new project which will be used to implement the circuit on the DE2 board.

2. Write a VHDL file that defines the circuit. Use the style of code indicated in Figure 3 for your FSM.

3. Include the VHDL file in your project and compile the circuit.

4. Simulate the behavior of your circuit.

5. Assign the pins on the FPGA to connect to the switches and the 7-segment display.

6. Recompile the circuit and download it into the FPGA chip.

7. Test the functionality of your design by applying some inputs and observing the output display.

Part V

For this part you are to design a circuit for the DE2 board that scrolls the word "HELLO" in ticker-tape fashion on
the eight 7-segment displays HEX7 − 0. The letters should move from right to left each time you apply a manual
clock pulse to the circuit. After the word "HELLO" scrolls off the left side of the displays it then starts again on
the right side.

Design your circuit by using eight 7-bit registers connected in a queue-like fashion, such that the outputs of the
first register feed the inputs of the second, the second feeds the third, and so on. This type of connection between
registers is often called a pipeline. Each register’s outputs should directly drive the seven segments of one display.
You are to design a finite state machine that controls the pipeline in two ways:

1. For the first eight clock pulses after the system is reset, the FSM inserts the correct characters (H,E,L,L,0, , ,)
into the first of the 7-bit registers in the pipeline.

2. After step 1 is complete, the FSM configures the pipeline into a loop that connects the last register back to
the first one, so that the letters continue to scroll indefinitely.

Write VHDL code for the ticker-tape circuit and create a Quartus II project for your design. Use KEY0 on the DE2
board to clock the FSM and pipeline registers and use SW0 as a synchronous active-low reset input. Write VHDL
code in the style shown in Figure 3 for your finite state machine.

Compile your VHDL code, download it onto the DE2 board and test the circuit.

Part VI

For this part you are to modify your circuit from Part V so that it no longer requires manually-applied clock pulses.
Your circuit should scroll the word "HELLO" such that the letters move from right to left in intervals of about one
second. Scrolling should continue indefinitely; after the word "HELLO" scrolls off the left side of the displays it
should start again on the right side.
Write VHDL code for the ticker-tape circuit and create a Quartus II project for your design. Use the 50-MHz clock
signal, CLOCK_50, on the DE2 board to clock the FSM and pipeline registers and use KEY0 as a synchronous
active-low reset input. Write VHDL code in the style shown in Figure 3 for your finite state machine, and ensure
that all flip-flops in your circuit are clocked directly by the CLOCK_50 input. Do not derive or use any other clock
signals in your circuit.

Compile your VHDL code, download it onto the DE2 board and test the circuit.

6

Part VII

Augment your design from Part VI so that under the control of pushbuttons KEY2 and KEY1 the rate at which the
letters move from right to left can be changed. If KEY1 is pressed, the letters should move twice as fast. If KEY2

is pressed, the rate has to be reduced by a factor of 2.
Note that the KEY2 and KEY1 switches are debounced and will produce exactly one low pulse when pressed.

However, there is no way of knowing how long a switch may remain depressed, which means that the pulse
duration can be arbitrarily long. A good approach for designing this circuit is to include a second FSM in your
VHDL code that properly responds to the pressed keys. The outputs of this FSM can change appropriately when
a key is pressed, and the FSM can wait for each key press to end before continuing. The outputs produced by this
second FSM can be used as part of the scheme for creating a variable time interval in your circuit. Note that KEY2

and KEY1 are asynchronous inputs to your circuit, so be sure to synchronize them to the clock signal before using
these signals as inputs to your finite state machine.

The ticker tape should operate as follows. When the circuit is reset, scrolling occurs at about one second
intervals. Pressing KEY1 repeatedly causes the scrolling speed to double to a maximum of four letters per second.
Pressing KEY2 repeatedly causes the scrolling speed to slow down to a minimum of one letter every four seconds.

Implement your circuit on the DE2 board and demonstrate that it works properly.

Copyright c©2006 Altera Corporation.

7

