L aboratory Exercise 8

Memory Blocks

In computer systems it is necessary to provide a substantial amount of memory. If a system is implemented
using FPGA technology it is possibleto provide some amount of memory by using the memory resources that exist
in the FPGA device. If additional memory is needed, it has to be implemented by connecting external memory
chips to the FPGA. In this exercise we will examine the general issuesinvolved in implementing such memory.

A diagram of the random access memory (RAM) module that we will implement is shown in Figure 1a. It
contains 32 eight-bit words (rows), which are accessed using a five-bit address port, an eight-bit data port, and a
write control input. We will consider two different ways of implementing this memory: using dedicated memory
blocksin an FPGA device, and using a separate memory chip.

The Cyclone 1l 2C35 FPGA that is included on the DE2 board provides dedicated memory resources called
M4K blocks. Each M4K block contains 4096 memory bits, which can be configured to implement memories of
various sizes. A common term used to specify the size of a memory isits aspect ratio, which gives the depth in
words and the width in bits (depth x width). Some aspect ratios supported by the M4K block are 4K x 1, 2K x
2, 1K x 4, and 512 x 8. We will utilize the 512 x 8 mode in this exercise, using only the first 32 words in the
memory. We should also mention that many other modes of operation are supported in an M4K block, but we will
not discuss them here.

Address _,L>

8
32 x 8 RAM — » Data
Write
(a) RAM organization
5 5
Address
>
Datal : : i
ataln = 8
32x 8 RAM ———<—— DataOut
>
Write
Clock -

(b) RAM implementation

Figure 1. A 32 x 8 RAM module.

There are two important features of the M4K block that have to be mentioned. First, it includes registers that
can be used to synchronize al of the input and output signals to a clock input. The registers on the input ports
must always be used, and the registers on the output ports are optional. Second, the M4K block has separate ports
for data being written to the memory and data being read from the memory. Given these requirements, we will

implement the modified 32 x 8 RAM module shown in Figure 1b. It includes registers for the address, data input,
and write ports, and uses a separate unregistered data output port.

Part |

Commonly used logic structures, such as adders, registers, counters and memories, can be implemented in an
FPGA chip by using LPM modules from the Quartus Il Library of Parameterized Modules. Altera recommends
that a RAM module be implemented by using the RAM LPMs. In this exercise you are to use one of these LPMs
to implement the memory module in Figure 1b.

1. Create anew Quartus Il project to implement the memory module. Select as the target chip the Cyclone |
EP2C35F672C6, which isthe FPGA chip on the Altera DE2 board.

2. You can learn how the MegaWizard Plug-in Manager is used to generate a desired LPM module by reading
the tutorial Using Library Modules in VHDL Designs. This tutorial is provided in the University Program
section of Altera's web site. In the first screen of the MegaWizard Plug-in Manager choose the RAM: 1-
PORT LPM, which isfound under the Memory Compiler category. Asindicated in Figure 2, select VHDL
HDL as the type of output file to create, and give the file the name ramlpm.vhd. On the next page of the
Wizard specify a memory size of 32 eight-bit words, and select M4K as the type of RAM block. Accept
the default settings to use a single clock for the RAM’s registers, and then advance to the page shown in
Figure 3. On this page deselect the setting called 'q’ output port under the category Which ports should
be registered?. This setting creates a RAM module that matches the structure in Figure 1b, with registered
input ports and unregistered output ports. Accept defaults for the rest of the settingsin the Wizard, and then
instantiate in your top-level VHDL file the entity generated in ramlpm.vhd. Include appropriate input and
output signalsin your VHDL code for the memory ports given in Figure 1b.

MegaWizard Plug-In Manager [page 2a] g]

‘wihich megafunction would you like to customize? wikich device family will you be T =
ing?
Select a megafunction from the list below UETEd

=[] Inztalled Plug-lns ‘which type of output file do you want to create?
Altera SOPC Builder AHDL
+- il AnthmetlF: . & VHDL
+ @8 Commurications .
&3 DSP " Verilog HDL
: g ﬁ;tes Wwhat name do you want for the output file? Browse...
+-@ Interfaces WHDL_source_files\E xercizeBhsolutionspart WHD L\ramlpm. vhd

+- @8 JTAG-accessible Extensions
-l _Memory Compiler

™ Retumn to this page for anather create operation

Mote: Ta compile a project successfully in the Quartus || software,
your design files must be in the project directory, in the global user
R 2-PORT Iibraries spe_c_:ifiet_:l in the Dptio_ns t:!ialog bow [Tools me_nu], of & user
library specified in the User Libraries page of the Settings dialog

] RAM: 3-PORT bow [Assignments menu).
] ROM:1-PORT
7 ROM: 2-PORT “rour current user library directonies are:
~] Shift register [RaM-based)
+ -8 Storage

+- @ P MegaStore

Cancel | < Back | Mest > | |

Figure 2. Choosing the RAM: 1-PORT LPM.

MegaWizard Plug-In Manager - RAM: 1-PORT [page 4 of 8]

' a RAM
Yersion 7.1 About

Docurnentation

ramlprn

data[7.0]

MEEN

address[4.0

jt=

a
3T irords

Create one clock enable signal for each -
clock signal. All registered ports are Mare Options ...

clock
controlled by the enable signal(s).

Bloch type: bt

o

Create an ‘acl’ asynchronous clear -
For the registered ports Maore Options ...

Resource Usage
1 Mk

| Cancel ” < Back ” Mext = ” Einish |

Figure 3. Configuring input and output ports on the RAM: 1-PORT LPM.

3. Compilethe circuit. Observein the Compilation Report that the Quartus |1 Compiler uses 256 bitsin one of
the M4K memory blocks to implement the RAM circuit.

4. Simulate the behavior of your circuit and ensure that you can read and write data in the memory.

Part 11

Now, we want to realize the memory circuit in the FPGA on the DE2 board, and use toggle switches to load some
datainto the created memory. We also want to display the contents of the RAM on the 7-segment displays.

1. Makeanew Quartus Il project which will be used to implement the desired circuit on the DE2 board.

2. Create another VHDL file that instantiates the ramlpm module and that includes the required input and
output pins on the DE2 board. Use toggle switches SW;_ to input a byte of data into the RAM location
identified by a 5-bit address specified with toggle switches SW;5_1;. Use SW;; asthe Write signal and use
KEY, asthe Clock input. Display the value of the Write signal on LEDG. Show the address value on the
7-segment displays HEX7 and HEX6, show the data being input to the memory on HEX5 and HEX4, and
show the data read out of the memory on HEX1 and HEXO.

3. Test your circuit and make sure that all 32 locations can be loaded properly.

Part [11

Instead of directly instantiating the LPM module, we can implement the required memory by specifying its struc-
ture in the VHDL code. In a VHDL-specified design it is possible to define the memory as a multidimensional
array. A 32 x 8 array, which has 32 words with 8 bits per word, can be declared by the statements

TYPE mem ISARRAY (0 TO 31) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL memory_array : mem;

In the Cyclone Il FPGA, such an array can be implemented either by using the flip-flops that each logic element
contains or, more efficiently, by using the M4K blocks. There are two ways of ensuring that the M4K blocks will
be used. Oneisto use an LPM module from the Library of Parameterized Modules, as we saw in Part I. The other
is to define the memory requirement by using a suitable style of VHDL code from which the Quartus Il compiler
can infer that a memory block should be used. Quartus Il Help shows how this may be done with examples of
VHDL code (search in the Help for “Inferred memory”).

Perform the following steps:

1. Create anew project which will be used to implement the desired circuit on the DE2 board.

2. WriteaVHDL file that provides the necessary functionality, including the ability to load the RAM and read
its contents asdone in Part I1.

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays.
4. Compilethe circuit and download it into the FPGA chip.

5. Test the functionality of your design by applying some inputs and observing the output. Describe any
differences you observe in comparison to the circuit from Part 11.

Part IV

The DE2 board includes an SRAM chip, called 1S61LV25616AL-10, which is a static RAM having a capacity
of 256K 16-bit words. The SRAM interface consi sts of aL18-bit adi&ss port, A17_o, and a 16-hit bidirectional
dataport, 1/015_¢. It also hasseveral control inputs, CE, OF, W E, U B, and L B, which aredescribed in Table 1.

Name | Purpose

CE | Chip enable—asserted low during all SRAM operations

OE | Output enable—can be asserted low during only read operations, or during all operations
WE | Write enable—asserted low during awrite operation

UB | Upper byte—asserted low to read or write the upper byte of an address

LB | Lower byte—asserted low to read or write the lower byte of an address

Table 1. SRAM control inputs.

The operation of the IS61LV25616AL chip isdescribed in its data sheet, which can obtained from the DE2 System
CD that isincluded with the DE2 board, or by performing an Internet search. The data sheet describes a number
of modes of operation of the memory and lists many timing parameters related to its use. For the purposes of
this exercise a simple operating mode is to always assert (set to 0) the control inputs CE, OF, UB, and LB, and
then to control reading and writing of the memory by using only the W E input. Simplified timing diagrams that
correspond to this mode are given in Figure 4. Part (a) shows a read cycle, which begins when a valid address
appearson A;7_o and the W E input is not asserted. The memory places valid dataon the /015 port after the
address access delay, t44. When the read cycle ends because of a change in the address value, the output data

remains valid for the output hold time, to 4.

t
AR T tona

A17_0 Address in

1/1045_¢ Data out

(a) SRAM read cycle timing

— tyy —— ta
Ao Address in
WE
tsa
1/05_¢ Data in
tsp — o

(b) SRAM write cycle timing

Figure 4. SRAM read and write cycles.

Figure 4b gives the timing for awrite cycle. It begins when W E is set to 0, and it ends when W E is set back to
1. The address has to be valid for the address setup time, ¢ 41/, and the data to be written has to be valid for the
data setup time, tgp, before the rising edge of W E. Table 2 lists the minimum and maximum values of all timing
parameters shown in Figure 4.

Value
Parameter | Min ~ Max
taa — 10 ns

toga 3ns —

taw 8ns —
tsp 6ns —
tua 0 -
tsa 0 -
tup 0 -

Table 2. SRAM timing parameter values.

You are to realize the 32 x 8 memory in Figure 1a by using the SRAM chip. It is a good approach to include in
your design the registers shown in Figure 1b, by implementing these registers in the FPGA chip. Be careful to
implement properly the bidirectional data port that connects to the memory.

1. Createanew Quartus|| project for your circuit. WriteaVHDL file that providesthe necessary functionality,
including the ability to load the memory and read its contents. Use the same switches, LEDs, and 7-segment
displays on the DE2 board asin Parts 11 and 111, and use the SRAM pin names shown in Table 3 to interface
your circuit to the 1IS61LV25616AL chip (the SRAM pin names are also given in the DE2 User Manual).

Note that you will not use all of the address and data ports on the IS61LV25616AL chip for your 32 x 8
memory; connect the unneeded portsto O in your VHDL entity.

SRAM port name | DE2 pin name
Ar_g SRAM_ADDR;7_g
1/015_¢ SRAM_DQi;5
CE SRAM_CE_N
OF SRAM_OE_N
WE SRAM_WE_N
UB SRAM_UB_N
LB SRAM_LB_N

Table 3. DE2 pin names for the SRAM chip.

2. Compilethe circuit and download it into the FPGA chip.

3. Test the functionality of your design by reading and writing values to several different memory locations.

Part V

The SRAM block in Figure 1 has a single port that provides the address for both read and write operations. For
this part you will create a different type of memory module, in which there is one port for supplying the address
for aread operation, and a separate port that gives the address for awrite operation. Perform the following steps.

1. Createanew QuartuslI project for your circuit. To generate the desired memory module open the M egawiz-
ard Plug-in Manager and select the RAM: 2-PORT LPM in the Memory Compiler category. On Page 3 of
the Wizard choose the setting With one read port and one write port in the category called How will you
be using the dual port ram?. Advance through Pages 4 to 7 and make the same choices asin Part I1. On
Page 8 choose the setting | don’t care in the category Mixed Port Read-During-Write for Single Input
Clock RAM. This setting specifies that it does not matter whether the memory outputs the new data being
written, or the old data previously stored, in the case that the write and read addresses are the same.

Page 7 of the Wizard is displayed in Figure 5. It makes use of a feature that allows the memory module
to be loaded with initial data when the circuit is programmed into the FPGA chip. As shown in the figure,
choose the setting Yes, use this file for the memory content data, and specify the filename ramlpm.mif.
To learn about the format of a memory initialization file (MIF), see the Quartus Il Help. You will need to
create thisfile and specify some data valuesto be stored in the memory. Finish the Wizard and then examine
the generated memory module in the file ramlpm.vhd.

MegaWizard Plug-In Manager - RAM: 2-PORT [page 10 of 12]

RAM: 2-PORT
Yersion 7.1 ,&bT‘

Docurnentation

Do you want to specify the initial content of the memary?

Mo, leave it blank

dlata[7..0
wvraddress[4..0 s
HH g
Meren 3
HH 2 = % Yes, use this file for the memory content data
|rdaddress(4. 0] HH - qr.0 (¥ou can use a Hexadecimal {Intel-Format) File [.hex] or a Memary
clock Initialization File [.mifT)
-Browse. o0
Block Type: Wik y -
File name: framlprn. mif
v
Resource Usage
256 ram_hits
| Cancel ” < Back ” Mext = ” Einish |

Figure 5. Specifying amemory initiadization file (MIF).

2. WriteaVHDL file that instantiates your dual-port memory. To see the RAM contents, add to your design a
capability to display the content of each byte (in hexadecimal format) on the 7-segment displays HEX1 and
HEXO. Scroll through the memory locations by displaying each byte for about one second. As each byte
is being displayed, show its address (in hex format) on the 7-segment displays HEX3 and HEX2. Use the
50 MHz clock, CLOCK_50, on the DE2 board, and use KEY, as a reset input. For the write address and
corresponding data use the same switches, LEDs, and 7-segment displays as in the previous parts of this
exercise. Make sure that you properly synchronize the toggle switch inputs to the 50 MHz clock signal.

3. Test your circuit and verify that the initial contents of the memory match your ramlpm.mif file. Make sure
that you can independently write data to any address by using the toggle switches.

Part VI

The dual-port memory created in Part V allows simultaneous read and write operations to occur, because it has
two address ports. In this part of the exercise you should create a similar capability, but using a single-port RAM.
Since there will be only one address port you will need to use multiplexing to select either aread or write address
at any specific time. Perform the following steps.

1. Create anew Quartus Il project for your circuit, and use the MegawWizard Plug-in Manager to again create
aRAM: 1-PORT LPM. For Pages 1 to 5 of the Wizard use the same settings asin Part |. On Page 6, shown
in Figure 6, specify the ramlpm.mif file as you did in Part V, but also make the setting Allow In-System
Memory Content Editor to capture and update content independently of the system clock. This
option allows you to use a feature of the Quartus Il CAD system called the In-System Memory Content
Editor to view and manipulate the contents of the created RAM module. When using this tool you can
optionally specify afour-character ‘Instance ID’ that serves as a name for the memory; in Figure 7 we gave
the RAM module the name 32x8. Complete the final steps in the Wizard.

MepaWizard Plug-In Manager - RAM: 1-PORT [page 6 of B]

RAM

Yersion 7.1

Do vou want to specify the initial content. of the memory?

Mo, leave it blank.

=

address(4. 00

a2
32 ords

% ez, use this file for the memory content data

{¥ou can use a Hexadecimal (Intel-format) File [hex] or a Memory
clock Initialization File [,mif T}

File name: Jrarnlpro. mif

w

1 Allow In-System Memary Content Editor ko capture and update content
independently of the system clock

The 'Tnstance ID' of this RAM is: 32x8]
1 Mak + 1 sld_mod_ram_rom|
| Cancel || < Back ” Mext = || Finish |

Figure 6. Configuring RAM: 1-PORT for use with the In-System Memory Content Editor.

2. Write a VHDL file that instantiates your memory module. Include in your design the ability to scroll

through the memory locations as in Part V. Use the same switches, LEDs, and 7-segment displays as you
did previously.

3. Before you can use the In-System Memory Content Editor tool, one additional setting has to be made. In
the Quartus Il software select Assignments > Settings to open the window in Figure 7, and then open the
item called Default Parameters under Analysis and Synthesis Settings. As shown in the figure, type
the parameter name CYCLONEII_SAFE_WRITE and assign the value RESTRUCTURE. This parameter
allows the Quartus Il synthesistools to modify the single-port RAM as needed to allow reading and writing
of the memory by the In-System Memory Content Editor tool. Click OK to exit from the Settings window.

Settings - part6

Category:

General
Files
Libraries
Device
Operating Settings and Conditions
Compilation Process Settings
Early Timing E stimate
Incremental Compilation
EDA Tool Settings
Design Entry/Synthesiz
Simulation
Timing Analysiz
Formal Verification

¥

3

Default Parameters

Specify the default settings for the parameters used in your project. Assignments in design files or
azzignments made in the Azzignment Editor will override these defaults.

Parameter

Change
Delete

MName: |EYELDNEII_SAFE_WF|ITE

Default setting: |F|ESTF|UETUF|E

Existing parameter settings:

‘ ! Mame: Setting:
Physical Syrithesis CYCLONEN_S4FE_W.. RESTRUCTURE
Board-Lewvel
= Analyziz & Synthesis Settings
WHOL Input

Werilog HOL Input

Optimizations

Synthesiz Metlist
Fitter Settings
Physical Synthesiz Optimizations
Timing Analyziz Settings
Timelluest Timing Analyzer
= Clazzic Timing Analyzer Settings
Clazzic Timing Analyzer Repor
Azzembler
Dresign Assistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
Simulator Settings
PowerFlay Power Analyzer Settings

| =

¥

=]

Cancel

|

Figure 7. Setting the CYCLONEII _SAFE_WRITE parameter.

4. Compile your code and download the circuit onto the DE2 board. Test the circuit’s operation and ensure
that read and write operations work properly. Describe any differences you observe from the behavior of
thecircuitin Part V.

5. Select Tools > In-System Memory Content Editor, which opens the window in Figure 8. To specify the
connection to your DE2 board click on the Setup button on the right side of the screen. In the window in
Figure 9 select the USB-Blaster hardware, and then close the Hardware Setup dialog.

= In-System Memory Content Editor

@) x

| Mode |

JTAG Chain Configuration: |JTAG ready @
j Setup...

Instance Manager: |F\eady to acquire

Index | Instance |0 | Status ‘ “width | Depth | Type

Hardware: | USE-Blaster [USE-0]

|@l0 32x8 Mot urning 8 32 FaM/ROM Readfwiite
Device: |@1.EP2C35[DHUZUB4DDD] j Scan Chain
File: [L]
= 0 32e8
LU A i)
oooole @R o R T PR owR o R o o Earirr

Instance 0: 32x8 WWord: 0x000000 |Bit: 0000007

Figure 8. The In-System Memory Content Editor window.

Hardware Setup &
Hardware Settings]JTAG Seltings]

Select a programming hardware setup to use when programming devices. This programming
hardware zetup applies only ta the curent programmer window

Currently selected hardware: |USB-EIaster [USE-O] j
Available hardware items:
Hardware: ‘ Server | Port | Add Hardware:
Byteb lazter Local LFT1

LUSE-Elaster Local USe-0

Close

Figure 9. The Hardware Setup window.

Instructions for using the In-System Memory Content Editor tool can be found in the Quartus Il Help.
A simple operation is to right-click on the 32x8 memory module, as indicated in Figure 10, and select
Read Data from In-System Memory. This action causes the contents of the memory to be displayed
in the bottom part of the window. You can then edit any of the displayed values by typing over them. To
actually write the new value to the RAM, right click again on the 32x8 memory module and select Write
All Modified Words to In-System Memory.

Experiment by changing some memory values and observing that the datais properly displayed both on the
7-segment displays on the DE2 board and in the In-System Memory Content Editor window.

Instance Manager. =T 'EG = |F|Eady to acquire ® | JTAG Chain Configuration: |JJTAG

Index | Instance ID | Status Width | Depth | Type fode

Mot running 8 32 Rabd/HOM Read wiite

Hardware: | USE-Blaster [USE-0]

5 (w0208

Read Data from In-Syskem Memory

Continuously Read Data from In-System Memory Fé
\Write Data to In-System Memory F?7

w0 328

oogoon TE oY YT YT oYY oYY Ty Y]

000016 77 77 99 37 77 79 o7 7 LmportDats from Fie. .
Export: Data to File.,,

TR

Instance Status Help

Figure 10. Using the In-System Memory Content Editor tool.

Part VII

For this part you are to modify your circuit from Part VI (and Part 1V) to use the IS61LV25616AL SRAM chip
instead of an M4K block. Create a Quartus Il project for the new design, compile it, download it onto the DE2
boards, and test the circuit.

In Part VI you used a memory initialization file to specify the initial contents of the 32 x 8 RAM block, and
you used the In-System Memory Content Editor tool to read and modify this data. This approach can be used
only for the memory resources inside the FPGA chip. To perform equivalent operations using the external SRAM
chip you can use a special capability of the DE2 board called the DE2 Control Panel. Chapter 3 of the DE2 User
Manual shows how to use this tool. The procedure involves programming the FPGA with a special circuit that
communicates with the Control Panel software application, which isillustrated in Figure 11, and using this setup

10

to load data into the SRAM chip. Subsequently, you can reprogram the FPGA with your own circuit, which will
then have access to the data stored in the SRAM chip (reprogramming the FPGA has no effect on the external
memory). Experiment with this capability and ensure that the results of read and write operations to the SRAM
chip can be observed both in the your circuit and in the DE2 Control Panel software.

DE2 Control Panel

Open Help About

PS2 & 7-SEG | LED & LCD | TOOLS |

FLASH ' sRaM | vea |
SDRAM

Fandom Access

Address ,g— WDATA:W rDATA W

Sequential Write

Address: g Length : |D [~ File Length

Sequential Read

Address: |p Length: | ™ Entire Sdram

Figure 11. The DE2 Control Panel software.

Copyright (©2006 Altera Corporation.

11

