Debug C code on Sparc Processor from Command Line

OBJECTIVE

The objective of this tutorial ia to show you how to take a C program compile it and show
how to do single step debug on a Sparc processor in the command line.

HOW TO COMPILE C CODE IN UNIX

C CODE

main()

{
register int i =0;
register int sum = 0;

static int A[10] ={1,2,3,4,5,6,7,8,9,-1};

Loop: sum =sum + A[il;
i =i+1;

if(i 1= 10)
goto Loop;
}

For this tutorial to compile C code gcc will be used. So if you take the C code provided
above and name it loop.c, then to compile it all you have to do is enter the following:

-

bash-2.035 gcc -g loop.c -0 loo
Gcec is the name of the compiler, loop.c is the file, and —o loop specifies the output file so
that it is not the default output file which is a.out. If there are no errors than you will see a
new line else you will get an error message and you will have to find your error(s).
For the assembly code you have to enter the following command:

kash-2.03% geoo loop.c -5

RUN YOUR C CODE IN UNIX

Now if you want to run your program in Unix, if you have successfully compiled your
code then you will have to enter the following text.

kash-2.03% ./loop

Keep in mind if you are using the code from this tutorial you will not see an output as
there is no output in the program.

DEBUG YOUR CODE

To debug your code you will first have to invoke gdb, which is a command line
debugger. In order for the debugger to work you will have to have successfully compiled
your code. Then you will enter the following text:

bash-2.03% gdb loop

And the result should look as follows:

bash-2.03% gdb loo

GHO gdb 5.0

Copyright 2000 Free Socftwere Foundaticn, Inc.

GOB iz free scftware, covered byw the GHNU Genersl Puklic License, and vou are
welccme to changs it andfor distribute copies of it under certain conditions.
Iype "show copying”™ to see the conditions.

There is sbksclutely no warranty for GDB. TIype "show warranty" for details.
This GDB was confiigured as "sperc-sun-sclaris2.7".

| (gdk) break main

Now that we are in the debugging environment lets set a break point at the beginning of
the code. This will be done by entering the following text:

[gdb) break main
Ereakpoint 1 at 0x1059c: f£file loop.c, line 3.
(b

At this time we can now begin to run our program since we have inserted a break point to
do this lets enter the following:

{gdb) run
Starting program: Jhome/cslab/faculty/cs34/loopprogram,/loop
Breakpoint 1, main () at loop.c:3

3 register int i = 0;

Now your program should have started and is ready to execute line 3 which is to initialize
an Int 1 as 0 in a register. At this point | will demonstrate how to make a single step. To
do this enter the following:

(gdh) step
4 register int sum = 0;

If you now want to see the contents of | then please enter the following:

[gdb) print i
§l =10

Now if you want to see where you are currently at in the debug mode then you enter the

following command:

[gdbh)] where

#0 main () at loop.c:d

If you want to see what is in the registers then enter:

{gdb) info registers

gl
gl
g2
g3
gd
g5
g6
g7
ol
ol
o2
o3
od
ok
3p
o7
10
11
12
13
14
15
la

Ox0

1]

Oxf£3197ceo

0x0
0x0
0x0
0x0
0x0
0x0
Oxl
Oxl
0=l
0x0
0x0

1]

Lo R N el 0 ol = I e R

0x££29bhd0
Oxffbhefbal

Ox1l064dc

67145

Ox££33e5d3

0x0
0x0
0x0
0x0
0x0
0x0

o o o o o

1]

-13527092

-1404z160
-4262496

-13376040

---Type <returrn- to continue, or J <returmn- to quit———l

To view the assembly code enter disassemble and you should get the following:

lgdb) disassemble
Dump of aszembler code for function main:
010598 <main=: sawve %3p, -1l2, %3p

0x1059c <maint4-: clr %o0

Ox105al <majn+as=: clr %ol

Ox105ad <maintlx: sethi Zhi(0x20400), %03
0x105a8 <maint+la-: or %03, 0x<3cd, %oz ! OxZ07cd <force_to_datar
Ox105ac <main+20-: wov %00, %03

0x105b0 <main+2d-: zll %03, 2, %04
0x105bd <maint28%>: 14 [%02 + %04], %02
Ox105bE8 <main+3z>: add %ol, %02, %ol
0x105bc <majint3e-: inc %00

0x105%c0 <main+d0-: cup %00, Oxa

Ox105cd <majint+dds-: be 0x105d44 <main+ol=
Ox105c8 <maintdi-: nop

0x105cc <majnd+52-: b 0xl05ad <main+l->
010540 <main+se-: nop

010544 <maint+60-: ret

010548 <maintods-: restore

End of assembler dump.

To find out what is at a given memory location enter as follows:

[gdb) = O0x207%7c0
0x207c0 <completed.d>=: Ox00000000

But if you want to find more than just one memory location you can enter:

{ogdb) =10

0x207cd «<force to_data-: 0x000o0001 0xoo00ooo0z 0x00000003 0x00000004
0x207d4 «<force to_datatle: 0x000000035 0x00000006 0x000o0007 0x00000005
DXZD?ei <force to_datat+3ix: 000000009 OxEEEEFfff

(gdb]

This will give you the next ten words in memory. At this point you have all the
instructions needed to do a single step debug of C code in assembly.

Assignment:
Try another example. Write a program that calculates the Factorial of a number. Run it

in Sparc and then on SPIM (MIPS) software.

