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Abstract

We enable highly improved performance of deformable
model (snake) segmentation of a known type of object (hu-
man bladder) with unclear edges in a cluttered domain (ab-
dominal CT scans). This is accomplished by learning an
objective function from ground-truth contours in test im-
ages, using a nonparametric estimator of the distributions
of chosen image quantities (intensity on the boundary and
image gradient perpendicular to it). The Parzen-window
estimator is found to reward correct contours much more
accurately than a model based on means and covariances.
This latter Gaussian model, in turn, performs adequately
where a traditional a priori objective function does not.
Performance of objective functions is measured by check-
ing the fraction of incorrect contours that score better than
ground truth (false positives), and the deviation of plots of
shape incorrectness vs. objective function value from the
closest strictly increasing function.

1. The framework
It can be difficult to find the boundaries of a structure in
a complex image. There may be nearby edges that are
sharper than those of the object sought; it may be unclear
what point in the transition from light to dark is consid-
ered the boundary, for purposes of a given task in a given
image domain; the boundary may be best characterized by
some feature other than image gradient, such as texture.
In such cases, learning from images with known ground-
truth boundaries can supply parameters that define where
a boundary most likely is. If the criterion that best pre-
dicts the correct separation of pixel regions is unknown,
then ground truth can be used to test the effectiveness of
segmentation algorithms based on different criteria. We re-
port here on the success of a Parzen-window model used
for segmentation based on intensity at the boundary and on
gradient perpendicular to it. We compare this to a some-
what poorer-performing Gaussian model of the same fea-
tures, and to a much worse traditional criterion. The do-

main is abdominal CT scans used for radiation treatment
of prostate cancer; for our tests, we sought the boundary of
the bladder.

The framework of criteria with parameters lends itself
well to implementation as objective functions, and the
method we employ for this study, the deformable model
[1], provides a way to use objective functions for image
segmentation. In it, a parametric model of boundary shape
is set to an initial guess for an image. An optimization
method (often gradient descent) then adjusts its parameters
to maximize an objective function of image and shape. The
traditional objective function simply sums edge strengths
on the shape boundary. But we believe the method is par-
ticularly useful in tasks and image domains for which a
different objective function is needed. Cluttered medical
images have proven to be such a domain (Figure 1).

The performance of different objective functions in an
image domain can be compared: In a sampling of test im-
ages, objective functions values are observed for shapes
randomly perturbed by different amounts from the ground
truth [2]. For each objective function, this allows us to
quantify how close to “optimal” it rates the ground truth;
and, if gradient descent optimization is used, we can mea-
sure the degree to which the objective function gives worse
scores to shapes that are further from ground truth.

2. Training a deformable model
Any deformable model segmentation algorithm uses a
parametrized shape model, s(u;S) 7! <

2 in 2D. Given an
image I and an initial guess at the shape (parameter vec-
tor S), it alters (deforms) the shape so as to maximize an
objective function of shape and image. (This is often done
iteratively by gradient descent, which actually only uses the
derivative of the objective function with repect to shape pa-
rameters.)

A typical traditional objective function f sums image
gradient magnitude jjrI(x)jj over the points on a shape
boundary: f(I;S) =

P
u
jjrI(s(u;S))jj. But when such

a function does not suffice, a function based on observed
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Figure 1: A CT scan of the bladder. A traditional objec-
tive function, summing edge strength around a candidate
contour, scores the contour on the left higher than the one
on the right. An objective function trained with ground truth
from the task domain gives the one on the right a higher
score.

statistics on qualities of the desired boundary may succeed.
To find the boundary that has maximum likelihood (ML)

based on some observable quantities F(I;S) in an image,
the probability distribution g(F) of those quantities must
be known. Then the shape S optimizing g(F(I;S)) can be
found. For example, the features we used were �-blurred
intensity on the boundary, I�(s(u;S)), and image gradient
perpendicular to it, s?(u;S) � rI�(s(u;S)), observed at
arc-length intervals of one pixel. (Others have often incor-
porated image-independent shape qualities.) We tried mod-
eling the distribution of these quantities as a joint Gaussian
distribution, and then as a Parzen-window distribution. For
both, we assumed that every contour pixel was identically
distributed (we have tested spatially-varying distributions
elsewhere [2]); and that pixels were independent, and thus
the probabilityof a full set of intensities or gradients around
a curve is the product of probabilities gp(x) of feature val-
ues x at each point. For example, for intensity:

f(I;S) = g(F(I;S)) =
Y

u

gp(I�(s(u;S)))

A probability distribution is recovered from obser-
vations of the chosen features F in a set of training
images fI1; : : : ; Ing in which correct shape boundaries
fS1; : : : ;Sng, the ground truth, are known. It is a mem-
ber of a family G of probability density functions (PDFs);
the family is a probability model. The member g 2 G

which gives the highest joint probability for observing
the feature values actually seen in the training set is the
maximum-likelihood PDF. If training images were ran-
domly drawn, then we choose the PDF g which maximizesQ

i
g(F(Ii;Si)).
The family G from which g is drawn determines the

form of the PDF function g. If it is a family of multidi-
mensional Gaussians, then the maximum-likelihood PDF is
that with the means, variances and covariances of feature-

values that are observed in the training set.

3. Parzen-window probability model
Another probability model is one which will take the shape
of the training data, no matter what that shape is, rather
than being confined to a family of distributions with a small
number of degrees of freedom. The distribution of feature
values (e.g., intensities on the boundary) in the training data
itself is a sum of spikes, or delta functions, one for each
observed occurence of a value. This would be a truly “non-
parametric” distribution derived from training. Such meth-
ods have been used before, although without a comparative
performance analysis: for example, Grzeszczuk and Levin
[4] trained a snake based on a 2D histogram of intensity
inside vs. outside a snake boundary.

But training data is only useful if the resulting distribu-
tion gives a nonzero probability to a feature value that is
close, but not identical, to one observed in training. So an
occurence of a value in training must be taken as evidence
that nearby values are also likely. So each observed value
can contribute some kernel, centered around it, to the PDF.
This is known as a Parzen-window estimator [3]. If the
probabilities of values near the observed one are taken to
be Gaussian, Gs, then the standard deviation s determines
how probable is a value different by one unit, based on the
evidence of the observed value. As more identical or sim-
ilar values appear in a cluster, the value of the (smooth)
PDF in that region grows. Though the Parzen approach is
called “nonparametric,” it still requires a choice of kernel
and kernel width.

Thus, if N feature value observations (for instance, in-
tensities) x1; : : : ; xN were made during training, then the
estimated likelihoodof a feature value x, observed in a can-
didate shape in an image, is:

g(x) =
1

N

NX

k=1

Gs(x� xk)

We tried a trained Parzen-window objective function
based on a Gaussian kernel. Since a Parzen estimation of
a multidimensional (joint) PDF would require a combina-
torially large array of terms, we made the simplifying as-
sumption that the multiple quantities observed in one image
(intensities on the boundary and perpendicular gradients)
were independently distributed, allowing the multiplication
of two one-dimensional PDFs. By contrast, a multidimen-
sional Gaussian PDF requires only a small array of covari-
ances. We tested a Gaussian model that also assumed inde-
pendence, and one that had covariances.

It is not clear how to test whether evidence contributed
by a training observation is actually Gaussian around that
observation; so the choice of a Gaussian kernel, though
reasonable, is not derived from analysis or measurement.
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Figure 2: Parzen estimator of intensity PDF (high curve)
and its derivative (low curve) with Gaussian windows of
� =0.5, 1.0, 1.5 and 2.0. Only 1.5 and above eliminates
the numerous local extrema, zero crossings in the deriva-
tive, which will attract the deformable shape to incorrect in-
tensity values.

The width of the kernel was chosen as a standard devi-
ation of two intensity units, the smallest that yielded a
smooth PDF rather than one characterized by small spikes
(see Figure 2). Thus, this choice was not strictly compu-
tational: humans decided at what scale the data displayed
modes rather than separate spikes from individual values.
The data for our domain appeared unimodal. In CT data,
soft tissue intensity was around 1000, and air was 0. For
real-valued perpendicular gradient values, data was accu-
mulated in bins of size 2.

4. Measuring objective function per-
formance

To assess the effectiveness of a deformable model, we
needed a way to characterize an objective function’s per-
formance, whether learned or specified a priori.

We work in negative logs of probabilities. Therefore,
if a deformable model’s objective function yields a smaller
value in every image for the ground truth contour than for
any other contour nearby, then an ideal optimization pro-
cess will guarantee a correct segmentation. If not, it must
occasionally fail. We can estimate a function’s closeness to
this guarantee by generating perturbations of ground truth
in representative test images, and seeing what fraction of
them generate objective function values smaller than the
ground truth. Ideally, none of them will. We call this mea-
sure the “false positive” rate. The perturbed shapes only

need be as far from ground truth as the initial shape guess,
and intermediate shapes explored by optimization, are ex-
pected to be. But perturbations should not be generated that
are within tolerance for correctness of the supplied ground
truth. We generate 1000 random perturbations using nor-
mally distributed translations with standard deviation of 5
pixels, and scaling with a standard deviation of 10% inde-
pendently along two random orthogonal axes. The distri-
bution created for one shape is shown in Figure 3, left.

If optimization is by gradient descent, then convergence
to the correct shape is likely if shapes that are closer to cor-
rect always have lower objective function values (the nega-
tive gradient in shape parameter space points toward them).
So assume a measure of shape distance. Then a plot of dis-
tance from ground truth vs. objective function value, for
perturbed contours, should monotonically increase. Fig-
ure 3 shows 1000 random perturbations of a ground-truth
bladder contour, and two resulting scatter plots of shape
distance vs. objective function value.

In practice, no function will strictly increase without
exception; and even a theoretically perfect function only
needs to increase along each single path of deformation,
not for any two widely separated perturbations. But a real-
valued (rather than Boolean) measure of closeness to an
increasing function can provide an indicator of the like-
lihood of local objective function minima other than the
ground truth shape. We use the RMS distance from the
data to the nearest increasing sequence. Since y-axis units
should not affect a “monotonicity” measure, we normalize
by variance, resulting in a measure that ranges from 0 (data
is strictly increasing) to 1 (data is strictly decreasing). Ran-
dom data tends to have a measure of 0.99, almost as far as
possible from the nearest increasing sequence.

The shape distance measure used is chamfer distance
[5]. The nearest increasing sequence is the complete-
ordering case of a well-known statistical technique, iso-
tonic regression. The efficient Pool Adjacent Violators al-
gorithm of Ayer, Brunk et al. [6], among others, finds the
closest increasing function to the perturbation test data.

5. Results

Thirty-six images with known ground truth were tested.
Each was tested using objective functions leaned from the
other 35. Below we see the “false-positive” rate and mono-
tonicity for a traditional sum-of-edge-strength objective
function, and for functions based on likelihood of intensity
and directional gradient on the contour, as learned with sev-
eral different probability models — independent Gaussians
for intensity and directional gradient; a 2D Gaussian with
covariance; and independent Parzen-window models. All
assume identical distributions for every pixel on the con-
tour. They were tested on unblurred images, and on images
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Figure 3: Left: 1000 perturbed versions of a heart wall contour. Each perturbed contour is a point in a scatter plot of difference
from correct shape vs. objective function value. Middle: Plot has 0% false positives (below the dotted line), and is close (.55)
to the nearest increasing function. Right: Plot has 8.8% false positives, and is far (.98, with the worst possible being 1.0) from
the nearest increasing function.

convolved with Gaussians of standard deviation 2, 4 and 8.
Figure 4 shows histograms and statistics of the distri-

butions of the intensities and perpendicular gradient values
found around all 36 contours in the ground-truth test set.
They are unimodal, but, as the Kolmogorov-Smirnov test
results in Table 1 show, with high confidence, they are not
Gaussian.
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Figure 4: Bladder CT: Distribution and learned parameters.
Distributions were not Gaussian, but similar-shaped Gaus-
sian model may succeed.

# of K-S K-S min for confidence of

pixels value 90% 95% 99%

9700 0.043 0.008 0.009 0.010

Table 1: The Kolmogorov-Smirnov test simply returns the
maximum difference between two cumulative distributions.
Here we test our bladder contour intensity data against
Gaussians with the same mean and variance. Although the
distribution of intensities is bell-shaped, its K-S value ex-
ceeds that for which there is 99% confidence that it is not
Gaussian.

Table 2 compares the false positive rate for objective
functions based on the different estimators and image blurs,
in test images from our domain. (Comparative performance
might differ greatly in some other domain.) We see that the
traditional, untrained snake has a high false positive rate,
reflecting cases like that shown in Figure 1.

The uncorrelated Gaussian estimators for intensity and
perpendicular gradient on the boundary provide an objec-
tive function which, on an unblurred image, score less than
1% of perturbed contours better than unperturbed ground
truth. The correlated Gaussians perform the same at their
best, but twice as well for higher blurs where the perfor-
mance was worse.

The Parzen estimator, though, has one-third to one-fifth
of the false positives of the correlated Gaussians. The best
performance is with no image blur, where the false posi-
tive rate is less than 1 in 700. This improvement over the
Gaussian models is probably because of skew in one of the
feature distributions, causing the Gaussian’s maximum to
be at the wrong feature value.

Another condition for good segmentation performance,
when gradient descent optimization is used, is that an ob-
jective function be close to a monotonically increasing
function with respect to the shape’s distance from ground
truth. Once again, as Table 3 shows, the untrained model
performs the worst. With no blur, the other models do no
better: A blurred image is best at guiding a distant shape
toward ground truth, even though an unblurred image best
allows it to settle in the correct spot.

But in blurred images, the Gaussian models have sig-
nificantly better values of this measure, and the Parzen-
window function, in turn, does much better than the Gaus-
sians.
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Performance on Bladder CT: False Positives

Objective False positive rate
function blur avg avg 95%
model (pixels) % dev conf

Untrained
(traditional)

2 15 15 �5.9
4 23 17 �6.3
8 32 20 �7.7

Joint intensity
& gradient
strength Gaussians

0 0.79 1.3 �0.99
2 1.1 1.6 �0.98
4 11 11 �4.1
8 33 5.8 �2.7

2D Gaussian
with covariance

0 0.79 1.3 �0.94
2 1.6 2.5 �1.4
4 6.6 7.9 �3.0
8 14 12 �4.4

Joint Parzen
model

0 0.14 0.16 �0.11
2 0.18 0.20 �0.10
4 1.5 1.9 �0.96

Table 2: False-positives in the bladder CT image domain,
for a traditional snake objective function and three probabil-
ity models of image intensity on the boundary and perpen-
dicular image gradient, with various Gaussian image blurs.
The unacceptable traditional objective function always pro-
duced at least 15% false positives. Gaussian models gave a
rate of less than 1%, and the nonparametric Parzen-window
PDFs gave a rate of one-fifth that.

Average deviation of false positives among the 36 test
images is like standard deviation, but less sensitive to out-
liers. The false positive rate is within the stated limits with
95% confidence, assuming Gaussian sampling error.

6. Conclusions and future work
Nonparametric training has proven useful for image seg-
mentation using deformable models. Although the para-
metric Gaussian model made false assumptions about the
distribution of pixel (and differential) values, it still per-
forms quite well. There are undoubtedly unwarrented as-
sumptions even in the “nonparametric” model that per-
forms better, such as the assumption that the estimated dis-
tributions of intensity and gradient at the boundary were
independent; the choice of a Gaussian kernel; and and
human-assisted selection of kernel width; but the model
still proved rewarding. Perhaps performance measurement
is the only final word on what models are justified.

Though we varied the probability models we used, we
did not vary the features they modeled. We are facing an-
other image domain, ultrasound heart images, in which we
believe different features will be necessary, and there is no
guarantee that multiple features will be independent. We
are therefore working on a software framework for multidi-
mensional Parzen-windowed distributions, as well as find-

Performance on Bladder CT: Monotonicity

Objective
function model

blur
(pixels)

Obj. function monotonicity

avg avg dev 95% conf

Untrained
(traditional)

2 .86 .16 �.060

4 .83 .21 �.078

8 .84 .18 �.068

Joint intensity
& gradient
strength Gaussians

0 .85 .076 �.031

2 .78 .13 �.048

4 .76 .12 �.049

8 .85 .086 �.041

2D Gaussians
with covariance

0 .86 .059 �.025

2 .82 .071 �.029

4 .77 .087 �.034

8 .72 .11 �.045

Joint Parzen
model

0 .81 .096 �.037

2 .60 .096 �.038

4 .55 .12 �.051

Table 3: Monotonicity of various objective functions on blad-
der images. This is the distance to the nearest increasing
function from the shape-incorrectness vs. objective-function
plot, normalized by standard deviation. Thus, the value is
zero for a function that is perfectly increasing. The worst it
can get is 1.0.

When there is little image blur, different objective func-
tions are equally far from monotonically increasing. But with
more blur, the traditional function does not improve; Gaus-
sian PDFs give improved monotonicity; and the Parzen
model gives much more improvement.

ing image features that will be effective in distinguishing
correct boundaries.
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