
Homomorphic Secret Sharing from Paillier
Encryption

Nelly Fazio1∗, Rosario Gennaro1†, Tahereh Jafarikhah2, and William E. Skeith
III1

1 The City College and Graduate Center of CUNY, New York, NY, USA
{fazio,rosario,wes}@cs.ccny.cuny.edu

2 The Graduate Center of CUNY, New York, NY, USA jafarikhah@gmail.com

Abstract. A recent breakthrough by Boyle et al. [7] demonstrated se-
cure function evaluation protocols for branching programs, where the
communication complexity is sublinear in the size of the circuit (indeed
just linear in the size of the inputs, and polynomial in the security param-
eter). Their result is based on the Decisional Diffie-Hellman assumption
(DDH), using (variants of) the ElGamal cryptosystem. In this work, we
extend their result to show a construction based on the circular secu-
rity of the Paillier encryption scheme. We also offer a few optimizations
to the scheme, including an alternative to the “Las Vegas”-style share
conversion protocols of [7, 9] which directly checks the correctness of the
computation. This allows us to reduce the number of required repetitions
to achieve a desired overall error bound by a constant fraction for typical
cases, and for large programs, reduces the total computation cost.

Keywords: Homomorphic secret sharing · Function secret sharing · Paillier
encryption · Secure function evaluation · Private information retrieval.

1 Introduction

In this paper, following exciting recent results by Boyle et al. [7, 9], we present
new protocols for low-communication MPC. We extend the results in [7] (proven
secure under the Decisional Diffie-Hellman Assumption) by showing that they
can be based on the circular security of the Paillier encryption scheme [37].
Additionally, we describe a verification technique to directly check correctness
of the actual computation, rather than the absence of a potential error as in [7].
This results in fewer repetitions of the overall computation for a given error
bound.

1.1 Background and Motivation

Secure MultiParty Computation (MPC) has been a vital research area in Cryp-
tography for the last 30 years. Since the early seminal works [42, 43, 26, 4, 14],

∗Author supported by NSF CAREER 1253927.
†Author supported by NSF Grant 1565403.

we know that it is possible for two or more parties to compute a joint function
of individual secret inputs. It is a very powerful tool, since most, if not all of
the security problems can be solved in principle using a multiparty computation
protocol. Those initial results established the feasibility of the solutions, and at
the same time highlighted their complexity. The research of the last 30 years has
been focused on inventing increasingly powerful MPC techniques to get more
efficient solutions. One of the bottleneck parameters that immediately attracted
researchers’ attention was communication complexity: all the early results re-
quire communication between the parties which is at least as large as the size of
the circuit representing the function being computed. Ideally one would like the
parties to exchange just a few messages of limited size.

Most of the research on this issue focused on types of “homomorphic” encryp-
tion (resp. secret sharing) schemes, which allow the computation of a function
to be carried out non-interactively directly on the encryption (resp. shares) of
the secret inputs. For example additively homomorphic encryption [27, 17, 34, 36,
37, 19] allows the parties to publish encryptions of their inputs, and to compute
any linear function without interaction (except for a final decryption step). Sim-
ilarly this can be achieved by using linear secret sharing such as Shamir’s [39].
These techniques were applied to the concept of Private Information Retrieval
(PIR) [16, 15, 32] which allows the secure computation of a “selection” function
(Party 1 holds n values x1, . . . , xn, Party 2 holds an index i, the output is xi)
with communication which is sublinear in the size of the circuit.

General solutions for any function had to wait for the discovery by Gentry
of Fully Homomorphic Encryption (FHE) [21] which enables the computation of
arbitrary functions over encrypted input, breaking the circuit barrier in general.
The drawback of FHE is that in spite of continuous progress [40, 23, 10], even the
best implementations of FHE remain quite slow [22, 24, 35]. Additionally, the set
of cryptographic assumptions underlying FHE remains limited to assumptions
related to the complexity of lattice based problems [20, 25, 11, 12], and do not
include more classical assumptions such as factoring or discrete logarithm.

These observations motivated Boyle et al. to look for alternatives. In a very
exciting recent result [7] they present a Homomorphic Secret Sharing scheme
which allows the non-interactive computation of Branching Programs over the
shares of the secret inputs. Further optimizations (as well as transporting some
results to the generic group model for DDH-hard groups) are given by the same
authors in [9]. Their scheme is orders of magnitude more efficient than FHE and
its security is based on the DDH Assumption.

1.2 Our Results

We extend the results in [7, 9] by showing that Homomorphic Secret Sharing for
Branching Programs can be based on the (circular) security of the Paillier [37]
encryption schemes.

While our protocols follow the same blueprint of the Homomorphic Secret
Sharing in [7] our extensions were not immediate. Below we give an overview of

the main technical problems and challenges we encountered, and the techniques
used to overcome them.

1.3 Techniques

To begin, we give a very high-level review of the techniques used in [7]. We
then outline where new techniques are needed for our work. Informally, the
construction of [7] follows these steps:

1. The scheme uses the ElGamal encryption scheme modified to be additively
homomorphic by placing the plaintext in the exponent. That is, encryptions
of a message x look like JxK = (α = gr, β = hr · gx), where h = gc is the
public key. When messages are small, decryption is feasible by performing a
discrete logarithm after the usual ElGamal decryption.

2. The scheme also uses, simple 2-out-of-2 additive sharing. Given z ∈ Zq where
q is the order of the ElGamal group, we denote 〈z〉 = (z1, z2) such that
z1 + z2 = z mod q, where each party Pi holds zi.

3. Given JxK = (α, β), 〈y〉 = (y1, y2) and 〈cy〉 = (w1, w2) each party Pi can now
locally compute a share γi as γi = βyi · α−wi , such that γ1 · γ2 = gxy, i.e.
a multiplicative sharing of gxy. Note how this step effectively removes the
randomness from the encryption of x, using the secret key c.

4. Finally, a clever technique is used to compute a distributed discrete logarithm,
thus recovering an additive sharing of xy without the need for interaction.
We point out that their procedure requires the multiplicative sharing to be
in a cyclic group.

Abstracting out from the specifics, we can see that the scheme in [7] requires
the following ingredients:

– An encryption scheme which is both message and key homomorphic over Z
(or a finite quotient), i.e., a scheme that allows the transformation in step 3
above.

– A non-interactive method for transforming a multiplicative sharing of gz into
an additive sharing of z, where these two values “live” in the ciphertext and
message space (respectively) of the encryption scheme.

Our Construction. We now address the challenge of adapting these techniques
to make use of the Paillier cryptosystem [37]. Recall that Paillier is naturally
additively homomorphic over the integers, which works in our favor here. Addi-
tionally, we can use a version of Paillier threshold decryption [18, 30] to obtain
the “key homomorphic” property which allows to perform Step 3.

Recall that a Paillier encryption of an integer x is of the form gxrn mod n2,
where n is an RSA modulus, ord(g) = n, and ord(rn) | ϕ(n). Since it is required
that (n, ϕ(n)) = 1, we can use the Chinese Remainder Theorem to find an integer
λ such that

λ ≡

{
1 mod n

0 mod ϕ(n)
.

Now if σ = gxrn is an encryption of x, then by raising to the λ power we get:
σλ = (gxrn)λ = gx mod n2. While there are efficient procedures for completing
the decryption (recovering x from gx), note that we have already made substan-
tial progress in obtaining the necessary ingredients for the [7] blueprint. Given
an additive sharing 〈λy〉 = (z1, z2) of λy (so that z1 + z2 = λy), then (σz1 , σz2)
is a multiplicative sharing of gxy, i.e.

σz1σz2 = σλy = gxy mod n2.

If xy is relatively small, we might hope to then perform the distributed discrete
log protocol from [7], however there are a few complications. To begin, it is not
entirely obvious that the distributed discrete log protocol would work in Z×n2

which is not a cyclic group. For example, while certainly gxy lives in 〈g〉, each
party’s shares do not – the shares sit in Z×n2 , and furthermore in different cosets
of 〈g〉. Fortunately, we can modify the protocol in [7] (as well as most of the
variants from [9], sans a few optimizations) to work for any finite group in a
fairly straightforward way (see Section 3 for details).

The other main issue concerns the representation of our additive shares. In
the original ElGamal-based scheme, additive shares of a value y satisfy

∑
yi ≡

y mod q, where q is the order of the group. Note that q is public in this case.
Thus, each party can perform addition modulo q without knowledge of any secret
values. In Paillier, however, we need to work with additive shares of values that
work modulo nϕ(n), a value that must be kept secret. Therefore we do this
sharing over the integers. Without a careful implementation this step can cause
the size of the shares to grow exponentially, but we are able to avoid this problem.
Details can be found in Section 4.

Verifying Computations. In [7, 9], the authors describe “Las Vegas” style tech-
niques to check for the potential risk of having incurred an incorrect computation
during each step of the protocol. If the possibility of an error is never signaled,
then the overall computation is considered correct. This method was then shown
to provide efficiency improvements for several applications.

In this work, we describe a technique to directly check correctness which
verifies the actual computation, rather than the absence of a potentially “risky”
situation. This method of checking does not produce false negatives (erroneously
reporting that the protocol failed), and allows us to reduce even further the
number of required invocations for a desired overall error bound by a constant
fraction. The price we pay for this (in addition to a negligible probability of a false
positive), is some extra effort to compute the values used in the check. However,
this effort depends linearly on the program size, whilst each repetition takes
quadratic time in the program size. Hence, we achieve a savings in computation
for large programs. Our verification method works both for the original ElGamal-
based construction of [7] and for our Paillier-based construction, although the
benefits are more pronounced for the latter. Details can be found in Section 5.

2 Preliminaries

2.1 Encryption

A public-key encryption systemΠ consists of three algorithms (KeyGen,Enc,Dec),
where KeyGen is a key generation (randomized) algorithm that takes a security
parameter k and outputs a public-secret key pair (PK,SK); Enc(PK,m) is the
encryption (randomized) algorithm that on input a message m and the public
key PK outputs a ciphertext c; and Dec(SK, c) decrypts ciphertext c with se-
cret key SK. Obviously if (PK,SK) ← KeyGen(1k) and c ← Enc(PK,m) then
m = Dec(SK, c).

Semantic Security [27] says that no polynomial time adversary can distin-
guish between the encryption of two messages of its choice. For all PPT A

Pr[b′ = b :(PK,SK)← KeyGen(k), (m0,m1)← A(PK),

b← {0, 1}, b′ ← AOb(PK)] ≤ 1

2
+ ν(k)

where oracle Ob takes no input and outputs c ← Enc(PK,mb), and ν(k) is a
negligible function.

Circular Security A public-key encryption Π is circular secure if it remains
secure even encrypting messages that depend on the secret keys in use. More
precisely, if c with length(c) = l(k) is the secret key of the public key encryp-
tion scheme Π which encrypts bits, there is a negligible function ν(k) that the
following holds for all PPT A:

Pr[b′ = b : (PK,SK)← KeyGen(k), b← {0, 1}, b′ ← AOb(PK)] ≤ 1

2
+ ν(k)

where oracle O takes no input and outputs (D1, D2, . . . , Dl) such that{
∀i ∈ [l], Di ← Enc(PK, 0) if b = 0

∀i ∈ [l], Di ← Enc(PK,SKi) if b = 1

in which SKi is the i-th bit of SK. Later we will see that circular security plays
an important role in the construction of our homomorphic secret sharing. We
remark that circular security implies semantic security.

2.2 The Paillier Encryption Scheme

Let n be an RSA modulus, i.e. n = pq where p, q are primes. A number z is
said to be an n-th residue modulo n2 if there exists a number y ∈ Z×n2 such that
z = yn mod n2. We assume that there exists no polynomial time distinguisher
for n-th residues mod n2. We will refer to this hypothesis as the Decisional
Composite Residuosity Assumption (DCRA).

More formally, we assume that there exists a randomized RSA key generation
algorithm RSAGen that on input a security parameter 1k selects two k-bit primes.
Then we say that the DCRA holds (with respect to RSAGen) if for all PPT A
there exists a negligible function ν(k), such that

Pr[b′ = b : (p, q)← RSAGen(k), n = pq, b← {0, 1}, b′ ← AOb(n)] ≤ 1

2
+ ν(k)

where oracle Ob takes no input, selects y uniformly at random in Z×n2 and outputs
z such that z = y if b = 0, and z = yn if b = 1.

The Paillier encryption scheme, whose security is based on DCRA is
defined as follows (where we use the modified definition of the secret key λ
from [19, 30] used in their threshold variant of the scheme). The key generation
algorithm KeyGenPaillier(1

k) picks two k-bit prime numbers p and q such that
n = pq satisfies (n, ϕ(n)) = 1 (which will hold with high probability for such n),
computes

λ =

{
1 mod n

0 mod ϕ(n)
(1)

and outputs (PK,SK) for PK = n and SK = λ. Note that the existence of such
a λ, as well as an efficient means of computing it, are given by the Chinese
Remainder Theorem since (n, ϕ(n)) = 1. Note also that λ is unique in the range
[0, . . . , nϕ(n)− 1]. The encryption algorithm for a message x ∈ Zn is defined by

EncPaillier(PK, x) = (1 + n)x · rn mod n2

and the decryption algorithm for σ < n2 is defined by

DecPaillier(SK, σ) =
L(σλ mod n2)

L((1 + n)λ mod n2)
mod n where L(u) =

u− 1

n

Paillier is an additive homomorphic scheme; given only the public-key and σi =
EncPaillier(xi) then σ1 · σ2 mod n2 = EncPaillier(x1 + x2 mod n).

2.3 Homomorphic Secret Sharing

A 2-out-of-2 homomorphic secret sharing scheme (HSS) [7] deals with the sce-
nario that a client wants to split a secret input w ∈ {0, 1}n into shares (w0, w1),
and sends each wi to a different server. Each server holding a representation of
a function f , can locally compute additive shares of f(w).
A representation for a function is a program P (a collection of bit strings). For
an input w ∈ {0, 1}n , the output of P is represented by P (w). The symbol ⊥ is
used when the output of P (w) is undefined. For simplicity we can consider the
inputs and outputs of a function as binary strings. A HSS scheme consists of two
algorithms: Share that splits the secret into two shares and Eval that evaluates a
program P on two inputs such that the outputs are the additive shares of P (w).

Definition 1. A homomorphic secret sharing scheme with error bound δ for the
collection of programs P consists of algorithms (Share,Eval) with the following
properties:

– Share(1k, w): on the security parameter 1k and w ∈ {0, 1}n outputs (w0, w1).
– Eval(b ∈ {0, 1} , wb, P, δ) outputs yb.
– Correctness: For every polynomial p there exists a negligible function ν

such that for every k,w, P, δ in which |P |, 1/δ ≤ p(k)

Pr[y0 + y1 = P (w) :(w0, w1)← Share(1k, w),

yb ← Eval(b, wb, P, δ), b ∈ {0, 1}] ≥ 1− δ − ν(k)

– Security: Each share computationally hides the secret input.

We would like to apply a stronger version of HSS that allows homomorphic
computation on encrypted inputs.

Definition 2. A Distributed-Evaluation Homomorphic Encryption (DEHE) with
error bound δ for a class of programs P consists of three algorithms (KeyGen,Enc,Eval)
as follows:

– (PK, (e0, e1))← KeyGen(1k): It takes a security parameter 1k and outputs a
PK and a pair of evaluation keys (e0, e1).

– Ew := Enc(PK, w): It encrypts a secret input bit w and output c.
– Evalb := Eval(b ∈ {0, 1} , eb, c = (c1, c2, . . . , cn), P, δ): Outputs yb as party b’s

share of output y.
– Correctness: For every polynomial p there exists a negligible function ν

such that for every k,w = (w1, . . . , wn) ∈ {0, 1}n , P, δ in which |P |, 1/δ ≤
p(k)

Pr[y0 + y1 = P (w) :(PK, (e0, e1))← KeyGen(1k),

C ← (Ew1 , . . . , Ewn), yb ← Evalb] ≥ 1− δ − ν(k)

– Security: Let Db stand for the distribution obtained by applying the evalu-
ation key eb in this setting. The security of the DEHE scheme means that
D0 and D1 are computationally indistinguishable.

2.4 Restricted Multiplication Straight-line Programs (RMS)

Our construction will provide non-interactive evaluation of some specific col-
lection of programs called as restricted multiplication straight-line programs
(RMS). The class of RMS programs with bound 1M (where M is an upper bound
for the size of a memory location) is an arbitrary sequence of the instructions as
follow:

1. Load an input x = (x1, x2, . . . , xn) ∈ {0, 1}n into memory: yj ← xi.
2. Add memory locations: yk ← yi + yj .
3. Multiply a memory location by an input: yk ← xi · yj .

4. Output a memory location: Oj ← yj .

Whenever the size of a memory value exceedsM , the program aborts and outputs
⊥. We define the size of an RMS program as the number of its instructions. As
pointed out in [7] RMS programs can be used to evaluate branching programs
with constant overhead.

3 Share Conversion

Here we provide our first technical contribution: A generalization of the dis-
tributed discrete log and share conversion procedures from [7] which works in
any finite group G, not just a cyclic group.

Consider the setting of two party computation, where one party holds x and
the other party holds y such that xy = gb where g is an element of a group G
(i.e. (x, y) is a multiplicative sharing relative to g of a small value b. Suppose
that both parties have access to a random function φ : G −→ {0, . . . , k − 1} for
k ∈ N (appropriate values for k will be determined shortly).

We will prove that if each party locally runs the procedure DDLog below
(where the input a is set to the share held by each party and δ,M are parameters
we will determine later) then at the end, the parties output values i, j such
that i − j = b with sufficiently high probability. In other words the procedure
simultaneously computes the discrete log3 of gb and turns the multiplicative
sharing into an additive one.

Algorithm 1 DDLogG,g(a, δ,M, φ)

1: i = 0;h = a;T = 2M ln(2/δ)/δ
2: while φ(h) 6= 0 and i < T do
3: h = gh
4: i = i+ 1
5: end while
6: return i

Let G be a finite group, and g ∈ G. Note that if two elements x, y ∈ G have
a product in 〈g〉, this is of course equivalent to saying that x and the inverse of
y live in the same coset of 〈g〉, or put another way, x and y−1 differ by some
number of “g-steps”:

x = gby−1. (2)

Define S = φ−1({0}). Then the parties will be able to “synchronize” by
counting g-steps to the next value in S, recovering an additive sharing of b. The
parameter k can be used to balance the running time of the process with its
success probability. The basic idea is depicted in Figure 1. Note that the domain

3There is no contradiction here with the hardness of discrete log, since this works
only for small values of b.

〈g〉x

y
−1

x

sy−
1

sx

b{

Fig. 1. Illustration of DDLog procedure on xy = gb. Here, x, y are multiplicative shares
of a small value b, which are inputs to DDLog. Both x and y−1 sit in the same coset 〈g〉x
of 〈g〉. The dots represent the elements of a random δ-sparse subset S in 〈g〉x. Note that
(with good probability) the difference in the number of steps taken is b = sy−1 − sx,
so that (−sx, sy−1) is an additive sharing of b.

of φ must be the entire group G not just the particular coset where x, y−1 reside.
Indeed, finding a useful representation of that coset (in order to instantiate φ)
might be difficult.4

Fortunately this is not much of a complication – equation (2) combined with
the fact that φ gives random labels to each element allows the same analysis to
proceed for the restriction of φ to any coset. Indeed, Algorithm 1 is a proper
generalization of the corresponding algorithm from [7] (where the group is cyclic
〈g〉 = G so there is only one coset), and a very similar argument suffices to show
its correctness in our application. We provide a few details for completeness.
Following the notation of [7], we set M to be an upper bound on the value being
shared and T will be a “timeout” value.

Proposition 1 ([7, Prop. 3.2]). Let G be any finite group, g ∈ G, δ > 0, and
M ∈ N. If M,T < ord(g), then for any x, y ∈ G such that xy = gb with b < M ,
we have

Pr
φ

[
DDLog(y−1, δ,M, φ)− DDLog(x, δ,M, φ) = b

]
≥ 1− δ

where φ is sampled uniformly from all functions from G −→ {0, . . . , b2M/δc}.
4For example in our DCRA-based construction, this would be equivalent to decryp-

tion.

Proof sketch: Modeling φ as a random function from G −→ {0, . . . , b2M/δc},
note that for any a ∈ G we have Pr

φ
$←R

[φ(a) = 0] ≈ δ
2M , and in particular the

same is true of φ restricted to the coset 〈g〉x. With this in hand, the rest of the
proof proceeds as that of [7, Prop. 3.2], using a few straightforward applications
of the well known inequality 1 + x ≤ ex. ut

Lastly, we remark that when the random function φ is replaced by a pseudoran-
dom function (PRF), an analogous proposition holds, stating that no efficient
adversary can find a sequence of instructions that would cause the probability
to deviate substantially below 1− δ. The important observation (present in [7])
is that by modularizing DDLog (in particular, this procedure accesses φ as an
oracle, and does not need to know the seed), we can use any adversary that finds
an input which is “bad” for a PRF φ to construct an adversary that distinguishes
φ from random, thus breaking the security guarantee of the PRF.

4 Construction from DCRA

Using DDLog introduced in previous section as one of our sub-procedures, we
will present an HSS scheme based on the circular security of Paillier’s encryption
which evaluates RMS programs (see section 2.4). We make use of the following
convenient notation, borrowed from [7]:

1. For input x ∈ Zn, JxKλ is a Paillier encryption of x with respect to the secret

key λ. That is, JxK := E(x) = σ = (1+n)x ·rn mod n2 where r
$← Z×n , and λ

is the unique integer in [0, . . . , nϕ(n)− 1] satisfying equation (1). Note that
σλ = (1 + n)x ∈ Z×n2 in this case.

2. 〈y〉 refers to additive secret shares of y, i.e., two values y0, y1 such that
y = y0 + y1 over the integers.

3. Lastly, 〈〈y〉〉 refers to multiplicative secret shares of (1 + n)y i.e., two values
h0, h1 ∈ Zn2 such that h0 · h1 = (1 + n)y mod n2. These are intermediate
values that arise during multiplication instructions, and will be converted
back to 〈y〉 by the sub-routine DDLog.

Note that JxKλ is a global value meaning that both parties receive the same
value, in contrast to 〈y〉 and 〈〈y〉〉, where each party has a different share. In the
following we denote with λ(i) is the i-th bit of the binary representation of λ;
that is, λ =

∑`−1
i=0 2iλ(i).

When evaluating an RMS program a dealer will share each input x ∈ Zn, in

the following way JxKλ ,
{

(
q
xλ(i)

y
λ

}`−1
i=0

, 〈x〉, 〈λx〉. Note that this will typically
include encryptions of many bits of λ which is why we need the circular security
assumption for Paillier.

Values y in memory locations will instead be stored as 〈y〉, 〈λy〉. The original
shares of all additive sharing are chosen randomly in [−n3, n3] which result in a
distribution that is statistically close to uniform for any shared value.

We first notice that additions are easily computed due to the homomorphic
properties of Paillier’s encryption and the additive secret sharing. One thing to

note is that the size of the additive sharing increases by at most one bit after
each addition since each player locally adds shares over the integers. This is not
a major problem (since the size of the shares will still be polynomial by the end
of the execution of the program). Furthermore, upon each multiplication step
we will again have small additive shares for the product, as these shares are
produced by DDLog (which outputs shares of logarithmic size in its polynomial
running time). We discuss this further in what follows.

We now turn our attention to the computation of multiplication between
an input x and a memory location value y. Since this value will be stored in a
memory location (and so that it may be used again in subsequent multiplications)
we need to compute 〈xy〉 and 〈λxy〉.

The computation of 〈xy〉 uses JxKλ and 〈λy〉 via the following steps5

(JxKλ , 〈λy〉)
(a)- 〈〈xy〉〉 (b)- 〈xy〉. (3)

A description of steps (a) and (b) follows:

(a) Let z1+z2 = λy and σ = JxKλ. Then each player computes γi = σzi mod n2.
Note that γ1 · γ2 = σλy = (1 +n)xy mod n2. In other words (γ1, γ2) = 〈〈xy〉〉.
We denote with (γ1, γ2) = MultShares(JxKλ , 〈λy〉).

(b) Use the DDLog procedure on (γ1, γ2) with parameters δ,M (which will be
specified by the RMS program being run on the shares) and random function
φ. We denote with ConvertShares(〈〈xy〉〉, δ,M, φ) the pair

〈xy〉 = (−DDLog(γ1, δ,M, φ),DDLog(γ−12 , δ,M, φ)).

Note that the first party negates the result of DDLog to maintain the in-
variant that the shares add to the shared value (DDLog output shares whose
difference is the shared value), and that the second party must invert her
share before invoking DDLog (see Figure 1).

Then, to compute 〈λxy〉 we use
{

(
q
xλ(i)

y
λ

}`−1
i=0

and 〈λy〉 as follows{
(
r
xλ(i)

z

λ
, 〈λy〉)

}`−1
i=0

(c)-
{
〈λ(i)xy〉

}`−1
i=0

(d)- 〈λxy〉. (4)

A description of steps (c) and (d) follows:

(c) ` invocations of step (a,b) above to compute each 〈xyλ(i)〉
(d) Each party will locally multiply the i-th share by the value 2i and sum these

shares together.

Note that if the shares in 〈λy〉 are of size t at the beginning of this step, at the
end they are of size at most 3t (2t+ ` to be precise6). However these shares do

5Differently than in [7] we do not use 〈y〉 in the multiplication step – The additive
sharing of y however needs to be stored so that we can compute the output at the end.

6` ≤ t since additive shares start of size ` and then they can grow as the result of
addition operations.

not grow further since at the next step they are used “in the exponent”, and the
result of additive shares coming out of the DDLog procedure is always `.

The following figures will present our homomorphic secret sharing scheme
(Share,Eval).

Homomorohic Secret Sharing Scheme-Share(1k, x1, . . . , xn)

The inputs are security parameter 1k and bits xi for i ∈ {0, . . . , n}.

– Sample k-bit prime numbers p, q, set n = pq and ϕ(n) = (p− 1)(q − 1).
– Compute λ ∈ Zn·ϕ(n) according to Equation 1. Let ` = log(n2) .
– Sample a PRF φ : Z×

n2 −→ {0, . . . , b2M/δc}.
– For each input xi sample the following;
• JxiKλ: A Paillier encryption of the integer xi with public key n2.

•
r
λ(t)xi

z

λ
, ∀t ∈ [l] := {0, ..., l− 1}: A Paillier encryption of the integer λ(t)xi

with public key n2.
• 〈xi〉 ← AdditiveShare(xi).
• 〈λxi〉 ← AdditiveShare(λxi) .

– Party b receives

Shareb = {φ, (JxiKλ , {
r
λ(t)xi

z

λ
}t∈[l], 〈xi〉b, 〈λxi〉b)i∈[n]}.

Notation: The AdditiveShare operator on input x selects α ∈ [−n3, n3] uniformly at
random and computes β = x− α over the integers. It sets 〈x〉 = (α, β).

Fig. 2. Share for secret sharing an input x via the HSS scheme

Theorem 1. Assuming that Paillier is circular secure, the scheme (Share,Eval)
as described in figures 2and 3 is a secure homomorphic secret sharing with error
δ for the class of RMS programs.

The proof follows the same structure of the proof in [7] and we refer the reader
to that proof. The only difference is that our additive sharings are statistically
secure rather than perfectly secure as in [7]. This comes into play only in the
proof of Lemma 3.11 in [7], specifically in the proof of the indistinguishability of
Hybrid 0 versus Hybrid 1. In our simulation the shares of each player in Hybrid
1 are chosen uniformly at random in [−n3, n3]. For player P1 this distribution
is identical to the distribution in the real protocol (Hybrid 0). For player P2

that’s not the case, indeed the distribution of the shares of this player in the
real protocol is uniform in [−n3 + x, n3 + x] where x is the value being shared.
It’s not hard to see that the statistical distance between the two distributions is
2x
2n3 which is O(1

n) i.e. negligible in the worst case when x = λ = O(n2).

From Private to Public-key. In the construction above, secret shares of an input
x consisted of Paillier encryptions JxKλ , {

q
λ(i)x

y
λ
}t∈[l] and additive secret shares

〈x〉, 〈λx〉. It is not immediately clear how one would generate those values with-
out knowing the secret λ. However, by leveraging the homomorphic property of
Paillier, we can generate these values for a secret sharing of x given only public
key information which is independent of the input x. We can set up an initia-
tive algorithm that samples a Paillier key pair (n, λ), encryptions of {

q
λi

y
λ
}t∈[l],

and evaluation key corresponding to additive secret shares of 〈λ〉. A user without
any knowledge of the secret key can then compute JxKλ and {

q
λix

y
λ
}t∈[l] using

the public parameters and homomorphic property of the underlying encryption
scheme. Values 〈x〉 and 〈λx〉 can be computed by running Eval.

Optimizing the generator. For protocols based on DDH, considerable practical
performance improvements have been demonstrated in [9]. For example, by using
the quadratic reciprocity theorem to choose pseudo-Mersenne primes p for which
large prime order subgroups of Z×p are generated by the integer 2, impressive
speed-ups for DDLog are shown. Unfortunately, these techniques do not seem to
transfer well to Paillier, as the analogous subgroups (for which 2 is a generator)
would naturally be contained in the subgroup of n-th powers, rather than 〈1 + n〉.
While it might be the case that rejection sampling safe primes until 〈2〉 = 〈1 + n〉
is plausible,7 and moreover such that the modulus n is close to a power of 2, it is
not clear how this would affect security. However, we note that the “standard”
generator (1+n) of the subgroup of order n actually admits a small optimization,
which is as follows. Let h denote the share of one of the parties, which will be
input into DDLog. First, write h = an+b, where a, b < n. Then notice that h(1+
n) ≡ (a+ b)n+ b mod n2. Also, note that since the two inputs to corresponding
DDLog invocations will be in the same coset of 〈1 + n〉, the values b will also be
identical for each share. So not only can we define the PRF φ to have domain Zn,
more importantly we can substitute a multiplication (by (1 +n) mod n2) with a
simple addition of two values in Zn (we only need to keep track of (a+ b) mod n
for each step). Since performing the group multiplications was the most costly
part of DDLog, this may yield considerable savings in computation.

7At least the test is efficient if the factorization of the order of the group is known,
as is the case if n was a product of safe primes.

Homomorphic Share Evaluation of RMS Programs-EvalG,g(b, Shareb, P, δ)

Each party Pb runs on its secret share value Shareb, the RMS program P of size ≤ S
with magnitude bound 1M , error bound δ. Set δ′ := δ/((l + 1)MS).

– Load inputs into memory:
• 〈yj〉 ← 〈xi〉.
• 〈λyj〉 ← 〈λxi〉.

In which 〈xi〉 and 〈λxi〉 are as in Share.
– Addition over memory values:
• Compute 〈yk〉 ← 〈yi〉+ 〈yj〉.
• Compute 〈λyk〉 ← 〈λyi〉+ 〈λyj〉.

Each party locally adds its shares over the integers.
– Multiplication of an input xi and a memory value yj :
• For each t ∈ [l],

∗ Execute MultShares(
r
λ(t)xi

z

λ
, 〈λyj〉) and output 〈〈λ(t)xiyj〉〉.

∗ Run ConvertShares(〈〈λ(t)xiyj〉〉, δ′,M, φ) and output 〈λ(t)xiyj〉.
∗ Set 〈λ(t)yk〉 ← 〈λ(t)xiyj〉.

• Compute 〈λxiyj〉 =
∑
t∈[l] 2t〈λ(t)xiyj〉.

• Run MultShares(JxiKλ , 〈λyj〉) and output 〈〈xiyj〉〉.
• Execute ConvertShares(〈〈xiyj〉〉, δ′,M, φ) and output 〈xiyj〉.
• Set a new memory location k to value yk = xiyj by storing
∗ Set 〈λyk〉 ← 〈λxiyj〉.
∗ Set 〈yk〉 ← 〈xiyj〉.

– Output memory values:
• If b = 0, set 〈z〉 ← 〈yi〉 otherwise let 〈z〉 be the additive inverse i.e., 〈z〉 ←
−〈yi〉.

• Call the PRF φ on (1 +n) and shift the additive secret by its output meaning:
〈z〉 ← 〈z〉+ φ(1 + n).

• 〈Oj〉 ← 〈z〉.
• Output 〈Oj〉.

Fig. 3. Procedures for performing homomorphic operations on secret shares

5 Verifying Computations

The work of [7] mentions a “Las Vegas” style version of HSS in which one of the
parties checks for the potential of the ConvertShares / DDLog procedure failing
at each step. If there was never a chance of failure, then a special flag is set
by this party to indicate that the results of the computation are guaranteed to
be correct. This method was then shown to provide efficiency improvements for
several applications. In particular, for function secret sharing applications (de-
noted “FSS” henceforth; see [6, 8]) in which neither evaluator learns the output
(e.g., PIR), this method can be used to reduce the number of parallel invocations
required to attain a desired bound on the error probability of the protocol. In
this section, we briefly describe a technique to directly check correctness which

verifies the actual computation, rather than the absence of a potentially “risky”
situation arising during DDLog. Since this method of checking does not produce
false negatives (erroneously reporting that the protocol failed), we can reduce
even further the number of required invocations for a desired overall error bound
by a constant fraction. The price we pay for this (in addition to a negligible prob-
ability of a false positive), is some extra effort to compute the values used in the
check. However, this effort depends linearly on the program size, whilst each
repetition takes quadratic time in the program size. Hence, we achieve a savings
in computation for large programs. We suspect this technique will be most useful
in the case of Paillier-based constructions where some of the optimizations of [9]
which reduce computation are not readily available. We nevertheless describe the
method for both cases, as the ElGamal-based version has a simpler description.

The method works by constructing a sort of “hash” of the intermediate states
of the computation in two ways – the states prescribed by multiplicative shares,
and the states given by the additive shares after performing DDLog. We first
consider the original case of ElGamal-encrypted inputs. Let G be a group of
prime order q, and let 〈g〉 = G. Let m be the number of multiplication steps in
the program being evaluated. Then we denote by zi = z0i + z1i the exponents
of the multiplicative sharing of the i-th multiplication step. That is, the players
hold gz

0
i , gz

1
i . After running DDLog, the players will hold z0i , z

1
i , respectively.

If the DDLog protocol was successful, it should be the case that zi = zi for
i = 0, . . . ,m − 1, where zi = z0i + z1i . We now define polynomials P, P ∈ Fq[X]
for each of the two potential transcripts:

P (X) =

m−1∑
i=0

ziX
i, P (X) =

m−1∑
i=0

ziX
i. (5)

Note that each player (j ∈ {0, 1}) can compute shares of these polynomials

P j(X) =
∑
zjiX

i and P
j
(X) =

∑
zjiX

i, so that P = P 0+P 1 and P = P
0
+P

1
.

Now consider the polynomial (P − P) ∈ Fq[X]. If DDLog succeeded at each
multiplication step, then this polynomial is identically 0. On the other hand, if
at any point DDLog failed, this polynomial will be non-zero, and of course will
have degree at most m − 1. Since q is prime, (P − P) can have at most m − 1
roots so that

Pr
α

$←Zq

[
(P − P)(α) = 0

]
≤ m− 1

q
= negl. (6)

Thus, with high probability, [(P − P)(α) = 0] ⇐⇒ [no errors occurred in
DDLog]. For applications like PIR, this observation alone will suffice: we can
modify the protocol to send a random α along with the query, and the servers
will compute their shares of (Pj − P j)(α), which will be returned with the an-
swers to the query. Note that the shares of P (α) must be computed in the
exponent (which can nevertheless be done using Horner’s rule), and the shares
of P (α) are computed directly in Zq. Hence the total additional cost is m expo-
nentiations and m multiplications. We also mention a few optimizations. First,
since each exponentiation will be to the same exponent α, we can pre-compute

an addition chain for α and reuse this for all the exponentiations. Second, we
note that it is not necessary to choose α

$← Zq. We could for example choose

α
$←
{

1, . . . , (m− 1)280
}

instead and still achieve the same effect as equation (6),
meanwhile reducing the number of multiplications for exponentiations by a fac-
tor of two to four (for common choices of G, as of this writing).

From Paillier Encryption. We can also adapt the above to work with Paillier. In
this case, (1+n) will serve as our generator g, but since we now work in the larger,
composite order group Z×n2 (rather than 〈g〉), a few remarks are in order. First
note that if n = pq is an RSA modulus, then for f ∈ Zn[X] with deg(f) = d, f
has at most d2 roots. This follows at once from the Chinese Remainder Theorem:
the roots α ∈ Zn of f are in bijective correspondence with the respective pairs
of roots (αp, αq) of fp = (f mod p) ∈ Zp[X] and fq = (f mod q) ∈ Zq[X]. Since
deg(fp),deg(fq) ≤ d and since Zp,Zq are fields, it follows that there can be at
most d2 roots of f in Zn, and thus the main point of (6) still holds (that is,
Pr
[
(P − P)(α) = 0

]
= negl).

We also remark on the importance of using Horner’s rule in computing (1 +
n)Pj(α). Before, we were working in a cyclic group, and so the multiplicative
shares were of the form gPj(α) for j ∈ {0, 1}. In this case, each player has a
sequence of group elements γ0i , γ

1
i such that γ0i γ

1
i = (1 +n)zi . Naturally we have[

m−1∏
i=0

(γ0i)α
i

][
m−1∏
i=0

(γ1i)α
i

]
= (1 + n)P (α)

but at first glance, it seems that it might be somewhat expensive to raise the
shares γji to the (large) exponents αi: since the order of the group (nϕ(n)) is not
public, it might seem that this would take work proportional to the length of αi,
which is proportional to the multiplicative depth of the program. Fortunately
using Horner’s rule prevents us from having to compute or store αi directly,
and instead we can simply exponentiate by α repeatedly.8 Lastly, since current
values of n may be 2048 bits in length, choosing α

$←
{

1, . . . , (m− 1)2 · 280
}

will
provide substantial savings. At this point, the protocol follows identically to the
above version for ElGamal.

Applications. Applications of the above Las Vegas versions of ConvertShares
include situations where it is unimportant to keep the intermediate states of
the computation hidden from the receiver of the output. For example (as noted
by [7]), using the scheme as an FSS to perform two-server PIR protocols. The
benefit of this approach is that, for a target overall error bound, it further reduces
the number of parallel repetitions of the protocol that must be performed to
achieve it. Under the (generally wrong) assumption that the intermediate values
of the computation are uniform in their domain, it is not hard to show that the

8We note that naive polynomial evaluation could also be made reasonable by raising
to αi mod n, since in any abelian group, if

∏
hi ∈ H < G with |H| = n, then for any

k ∈ Z, (
∏
hi)

k = (
∏
hi)

k mod n =
∏

(hk mod n
i).

probability of failure for a single round decreases by a factor of ≈ 1/2. However,
as noted this assumption is generally not true. What can be said, is that the
smaller the intermediate values are (relative to their domain), the more of an
advantage this method provides. For concreteness, an example: assuming half of
the intermediate values are 0 and half are 1 (as would hold in expectation for
the random case), then if the target error bound was 2−80 and the error for a
single invocation of the original protocol was set to be 1/4, then our protocol
(assuming random intermediate values) would reduce this failure rate to 1/8 and
thus the required number of invocations would decrease from 40 to 27. Again,
we note that while the computation cost increases, this increase is linear in the
multiplicative depth of the program (and polynomial in a security parameter)
which provides an advantage for large programs, especially for Paillier-based
constructions where many of the speed-ups for DDLog from [9] do not seem
available.

6 Conclusions and Future Work

We extend recent breakthrough results by Boyle et al. [7, 9], which under the
DDH Assumption, present homomorphic secret sharing and secure function eval-
uation protocols for branching programs with low communication complexity.
We show how to construct similar protocols based on the circular security of
the Paillier encryption scheme. In the process we extended their “distributed
discrete log” procedures to work over any finite group, and in particular when
the discrete log is being sought in a subgroup of unknown order. This techni-
cal contribution could be of independent interest and may lead to techniques
for proving the security of such protocols under larger classes of computational
assumptions.

Our result leaves several interesting open problems:

1. Analyze the circular security assumption on the Paillier encryption scheme
and/or come up with alternative schemes with the same functionality that
can be proven to be circular secure. This seems a non-trivial question, and
as shown by [38], there is no chance for proving a “blanket” result for bit
encryption, as there is no black-box reduction of circular security to seman-
tic security. Indeed, there have been many results in the recent literature
showing separations between the two notions under various assumptions [1,
13, 5, 33, 2, 31, 28, 41].

2. Construct Homomorphic Secret Sharing based on other assumptions. One
interesting question here is if we can have HSS based directly on LWE which
results in more efficient protocols than those based on FHE.

3. Extend the class of functions for which we can break the “circuit barrier”
for communication complexity in secure MPC.

4. Explore further optimizations to the Paillier-based protocol. In particular,
the work of [9] makes use of PKI for the setup phase, in place of performing
general purpose MPC. Their technique seems to leverage heavily a sort of

symmetry that is present in ElGamal, which is not shared by the Paillier en-
cryption scheme: in particular, they make use of the fact that many different
secret keys can exist for a single set of common parameters (the group G
and generator g). With Paillier, the modulus n uniquely determines secret
information, so it would seem new ideas are required.

5. Empirical data regarding implementations may also be of interest to have
a better idea of at what point various trade-offs make sense (for example,
making use of the verification process from Section 5 to reduce the number of
repetitions vs trying to squash the degree using randomizing polynomials [29,
3]).

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 403–422. Springer (2010)

2. Alamati, N., Peikert, C.: Three’s compromised too: Circular insecurity for any cycle
length from (ring-) lwe. In: Annual Cryptology Conference. pp. 659–680. Springer
(2016)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115–162
(2006)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10 (1988)

5. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: International Conference on the
Theory and Application of Cryptology and Information Security. pp. 776–800.
Springer (2014)

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 337–
367. Springer (2015)

7. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under ddh. In: Annual Cryptology Conference. pp. 509–539. Springer (2016)

8. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and ex-
tensions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1292–1303. ACM (2016)

9. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimizing
rounds, communication, and computation. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 163–193. Springer
(2017)

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 13 (2014)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43(2), 831–871 (2014)

12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based fhe as secure as pke. In: Proceed-
ings of the 5th conference on Innovations in theoretical computer science. pp. 1–12.
ACM (2014)

13. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: International Workshop on Public Key Cryptography. pp. 540–557.
Springer (2012)

14. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the twentieth annual ACM symposium on Theory of computing.
pp. 11–19. ACM (1988)

15. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing. pp.
304–313. ACM (1997)

16. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

17. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: 26th Annual Symposium on Foundations
of Computer Science, Portland, Oregon, USA, 21-23 October 1985. pp. 372–382
(1985)

18. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: ACISP. pp. 350–364 (2003)

19. Damgrd, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: LNCS. pp. 119–136. Springer-Verlag
(2001)

20. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: EUROCRYPT. pp. 24–43 (2010)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC ’09: Pro-
ceedings of the 41st annual ACM symposium on Theory of computing. pp. 169–178.
ACM, New York, NY, USA (2009)

22. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, Report 2010/520 (2010)

23. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on. pp. 107–109. IEEE (2011)

24. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 465–482. Springer (2012)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology–CRYPTO 2013, pp. 75–92. Springer (2013)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC. pp. 218–229
(1987)

27. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)
28. Goyal, R., Koppula, V., Waters, B.: Separating ind-cpa and circular security for

unbounded length key cycles. In: IACR International Workshop on Public Key
Cryptography. pp. 232–246. Springer (2017)

29. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on. pp. 294–304. IEEE (2000)

30. Jurik, M.J.: Extensions to the paillier cryptosystem with applications to crypto-
logical protocols. BRICS (2003)

31. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles
from lwe. In: Annual Cryptology Conference. pp. 681–700. Springer (2016)

32. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS. pp. 364–373 (1997)

33. Marcedone, A., Orlandi, C.: Obfuscation(ind-cpa security\ not\ rightarrow circular
security). In: International Conference on Security and Cryptography for Networks.
pp. 77–90. Springer (2014)

34. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Proceedings of the 5th ACM conference on Computer and communications
security. pp. 59–66. ACM (1998)

35. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124. ACM (2011)

36. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
Advances in CryptologyEUROCRYPT’98 pp. 308–318 (1998)

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 223–238. Springer (1999)

38. Rothblum, R.D.: On the circular security of bit-encryption. In: Theory of Cryp-
tography, pp. 579–598. Springer (2013)

39. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

40. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Public Key Cryptography. pp. 420–443 (2010)

41. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under lwe.
Tech. rep., Cryptology ePrint Archive, Report 2017/276, 2017. http://eprint. iacr.
org/2017/276 (2017)

42. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS.
pp. 160–164 (1982)

43. Yao, A.C.C.: How to generate and exchange secrets. In: Foundations of Computer
Science, 1986., 27th Annual Symposium on. pp. 162–167. IEEE (1986)

