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Abstract. We propose a generalization of the learning parity with noise
(LPN) and learning with errors (LWE) problems to an abstract class of
group-theoretic learning problems that we term learning homomorphisms
with noise (LHN). This class of problems contains LPN and LWE as spe-
cial cases, but is much more general. It allows, for example, instantiations
based on non-abelian groups, resulting in a new avenue for the applica-
tion of combinatorial group theory to the development of cryptographic
primitives. We then study a particular instantiation using relatively free
groups and construct a symmetric cryptosystem based upon it.

Keywords. Learning with errors. Post-quantum cryptography. Non-commutative

cryptography. Burnside groups.

1 Introduction

Motivation. One of the pillars of the modern reductionist approach to
cryptography, as exemplified e.g., in [17,18], has been the focus on explicit
computational assumptions, precisely phrased in the language of proba-
bilistic modeling. The resulting separation of cryptographic mechanisms
from their underlying conjectured-hard problems has been instrumental
to the development of a proper formalization of security for disparate
cryptographic notions, and for the establishment of connections and elu-
cidation of relations among crypto primitives.

Despite their fundamental role in the theory of cryptography, there
is little variety in the family of intractability assumptions. Most of the
cryptographic constructs which are used in practice today either rely on a
small handful of computational assumptions related to factoring and dis-
crete logs (e.g., RSA, Diffie-Hellman), or lack a well-defined assumption
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altogether (e.g., AES, and any of the SHA functions). A number of alter-
natives have surfaced, beginning with elliptic curve cryptosystems [31,27]
and more recently with lattice-based constructions [1,2]. Both have turned
out to provide revolutionary advances in the theory. Elliptic curves led
to the development of identity based cryptosystems [37,11,12], and lat-
tices have recently led to the development of the first fully homomorphic
cryptosystems [14,38,15,16].

In this paper, we seek to tap into new sources of computational hard-
ness. Inspired by the recent success of the learning parity with noise
(LPN [26,10]) and learning with errors (LWE [36,30]) problems as a plat-
form for a variety of cryptographic applications, we pursue a general-
ization of these problems into an abstract class of hard group-theoretic
learning problems. Besides being of interest in its own right, this gener-
alization opens the way to a new approach for basing cryptography on
combinatorial group theory. The rich algebraic structure of non-abelian
groups compares favorably with the rigid structure of cyclic groups. More-
over, no efficient quantum algorithms are known for most computational
problems in combinatorial group theory, which provides substantial mo-
tivation for pursuing this direction of research.

Besides enriching the set of viable intractability assumptions and pro-
viding a plausible alternative for post-quantum cryptography, our ap-
proach brings into play tools and ideas that have traditionally not found
much application in cryptography. For example, in Section 4 we develop
an instantiation of our abstract group-theoretic learning problem from the
theory of groups with exponent k, or Burnside groups. We hope that the
computational properties of these mathematical objects will spark further
work to develop new applications of group theory to cryptography.

A number of attempts to apply combinatorial group theory to cryp-
tography exist in the literature (see below for a survey). Earlier efforts
aimed at capitalizing on the algorithmic unsolvability of many of the
standard computational problems in combinatorial group theory (e.g.,
the word problem, the conjugacy problem and the membership problem).
These attempts, however, overestimated the relevance of problems that
are unsolvable in the worst-case for cryptographic purposes. Our approach
instead suggests new group-theoretic problems and efficiently sampleable
distributions on which it is reasonable to conjecture that these problems
remain difficult on average.

Non-Commutative Cryptography. In 1984, Wagner and Magyarik [39]
proposed the first construction of a group-theoretic asymmetric cryptosys-
tem based on the hardness of the word problem for finitely-presented
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groups and semigroups. In a nutshell, their idea parallels that of Gold-
wasser and Micali [19]: rather than distinguishing between quadratic
residues and non-residues, the underlying problem is to distinguish two
words in a finitely presented group G.

The Wagner-Magyarik cryptosystem has been cryptanalyzed in a num-
ber of works, including [21,23,8]. The breakdown in the security was
not caused by a weakness of the word problem for groups, but rather
it stemmed from a general lack of precision when describing the system
and the assumptions on which it was founded. This absence of proper
formalization has been characteristic of a number of the early approaches
to applying group theory to cryptography [20]. For example, as noted in
[8], the description of the protocol in [39] is quite ambiguous, and many
design choices were left unspecified. More precisely, the authors failed to
provide polynomial time algorithms to generate system parameters (e.g.,
the group G), as well as the public and private keys, and also failed to
provide a complete description of the decryption algorithm. Formal defini-
tions of security were also lacking. When left with this level of ambiguity,
formal security analysis is impossible.

A more recent proposal was the work of Anshel et al. [4], which can use
essentially any non-abelian group as the platform. In their original paper,
the authors adopted braid groups. However this choice made the protocol
susceptible to various attacks, some of them quite successful (e.g., [13];
see also [33] for a survey).

Perhaps it is not surprising that many of the early attempts to employ
non-abelian groups in cryptographic protocols were lacking in precision.
The transition from finite abelian groups to non-abelian (possibly infi-
nite) groups for cryptographic purposes is not a small step. Very little
is known regarding problems in the theory of non-abelian groups with
high average-case complexity, let alone about problems that additionally
could support public-key operations. To move a discussion of security to
the setting of infinite groups is more difficult still. To begin with, many of
the fundamental definitions of security (e.g., [19]) are phrased in terms of
probability. Probabilistic analysis for finite groups is readily manageable
because the uniform distribution over, say, a finite cyclic group is easy to
sample given just a generator and an estimate of the order. For infinite
groups, it is even unclear what the corresponding concept of the uniform
distribution is, let alone how one goes about sampling it. An attempt to-
ward defining a suitable analogue of the uniform distribution on infinite
groups has been recently made by Lee [28], who proposed the notion of
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right invariance, and observed that all previous concrete cryptographic
constructions on infinite groups have failed to achieve it.

LPN/LWE. Roughly speaking, the LPN and LWE problems are about
learning a certain function by sampling a “noisy” oracle3 for its input
/ output behavior. Early research on these problems appears in [10]
and [36], respectively. Both problems exhibit attractive self-reducibility
properties, giving strong evidence to support the hypothesis that natural
randomized versions of these problems are intractable. For LWE, there is
more evidence still: the works of [36,35] demonstrate reductions to LWE
from worst-case lattice problems. The self-reducibility arguments for these
problems are very algebraic, which perhaps suggests that the generaliza-
tions we propose may enjoy similar properties when instantiated with
other classes of groups. Such a development could produce an exciting
new source of problems in group theory which are difficult on average.

Our Contributions. Our main result is the generalization of the learn-
ing parity with noise (LPN) and learning with errors (LWE) problems
to an abstract class of learning problems. At high level, we generalize
the LWE setting of linear functions over vectors spaces to the context
of homomorphisms between groups. This yields conjectured hard prob-
lems where the computational task is the recognition of noisy samples of
(preimage, image) pairs for a hidden homomorphism versus random pairs
of elements from the relevant domain and codomain.

The resulting abstract class of group-theoretic learning problems con-
tains the LPN and LWE problems as special cases, but is much more gen-
eral. It allows, for example, instantiations based on non-abelian groups:
Another important component of our work is the development of a learn-
ing assumption based on free Burnside groups of exponent 3.

As an application, we propose a symmetric cryptosystem whose prov-
able security can be rigorously analyzed and established based on the
conjectured hardness of our Burnside learning problem. This is, to the
best of our knowledge, the first time that the computational properties
of Burnside groups have been employed for cryptographic purposes.

Organization. Section 2 provides a brief review of basic group-theoretic
notions. The proposed generalized learning problem is described in Sec-
tion 3. Section 4 develops a combinatorial instantiation from free Burnside
groups of exponent 3. A symmetric cryptosystem based on Burnside is
reported in Section 5.1. Attaining asymmetric encryption is substantially

3 Here, “noisy” refers to the fact that the oracle may perturb the correct output
according to some random variable whose probability distribution is known.
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more involved: a possible approach toward this goal is outlined in Sec-
tion 5.2.

2 Review of Relevant Group-Theoretic Notions

Free groups. If X is a subset of a group G, let X−1 = {x−1 | x ∈ X}.
An expression w of the form a1 . . . an (n ≥ 0, ai ∈ X ∪X−1) is termed
a word or an X-word. Such an X-word is said to be reduced if n > 0
and no subword aiai+1 takes either of the forms xx−1 or x−1x. If F is a
group and X is a subset of F such that X generates F and every reduced
X-word is different from 1F , then one says that F is a free group, freely
generated by the set X, and refers to X as a free set of generators of F ,
and writes F as F (X). A key property of a free group F freely generated
by a set X is that for every group H, every mapping θ from X into H
can be extended uniquely to a homomorphism θ∗ from F into H. If θ∗ is
a surjection, and if K is the kernel of θ∗, then the quotient group F/K
is isomorphic to H. If R is a subset of F , then in the event that K is
generated by all of the conjugates of the elements of R, we express this
by writing H = 〈X;R〉 and term the pair 〈X;R〉 a presentation of H
(notice that the mapping θ is usually implicit).

Relatively Free Groups. If F is a free group and K a normal sub-
group of F , then the factor group F/K is called relatively free if K
is fully invariant, i.e., if α(K) ≤ K for any endomorphism α of F . If
x1, . . . , xn are free generators of F , then x1K, . . . , xnK are called rela-
tively free generators of F/K, and typically denoted simply by x1, . . . , xn
when there is no risk of confusion. Let En denote a relatively free group of
rank n, i.e., Fn = F (x1, . . . , xn) and En = Fn/K for some fully invariant
K. One key property of such a group is that any set map on its genera-
tors into En can be extended to an endomorphism of En. Hence, one is
immediately equipped with an exponential number of homomorphisms,
provided that the image is non-trivial.

Cayley distance. Finitely generated groups can also be viewed as geo-
metric objects via the notion of the Cayley graph. The Cayley graph of
a group G relative to a particular set of generators has the group elements
as vertexes, and an edge between two vertexes if and only if multiplication
by a generator (or its inverse) translates one to the other. Figure 1 depicts
Cayley graphs for few simple groups, including the 27-element Burnside
group B(2, 3) of exponent 3 with 2 generators. (Burnside groups are dis-
cussed in Section 4.) The Cayley distance between two group elements
is defined as the length of the shortest path between the corresponding
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(a) Free group, F (a, b) (b) B(2, 2)∼=(F2
2,+) (c) B(2, 3) = B2

Fig. 1: Cayley graphs for various groups

nodes in the Cayley graph. The maximum Cayley distance between any
two elements in the graph is the diameter of the Cayley graph. The Cay-
ley norm of an element x, denoted ‖x‖, is its distance from the identity
element in the Cayley graph. We remark that maxx∈G(‖x‖) corresponds
precisely to the diameter.

Commutators. In non-abelian groups, the commutator of two group
elements a, b, denoted [a, b], is the group element satisfying the identity
ab = ba[a, b], that is, [a, b] = a−1b−1ab. Starting with the generators
x1, . . . , xn of the group as the recursive basis, one obtains an ordered se-
quence of formal commutators by combining two formal commutators
a, b into the formal commutator [a, b]. The weight of a formal commu-
tator is defined by assigning weight 1 to the generators, and defining the
weight of [a, b] as the sum of the weights of a and b. The weight imposes
a partial order on formal commutators, which is typically made total by
assuming an arbitrary ordering among formal commutators of any given
weight greater than 1, and by adopting the lexicographical order among
the generators.

Center. The center of a group G, denoted Z(G), is the set of all ele-
ments that commute with every element of G.

3 Generalized Learning Problems

We begin by reviewing the learning with errors problem, and we then gen-
eralize it to a novel abstract group-theoretic problem concerning learning
with respect to a “noisy” oracle.

3.1 Learning with Errors (LPN/LWE)

The problem of learning from noisy examples has been considered by
Angluin and Laird [3], and subsequently by Kearns [26] and Blum, Kalai,
and Wasserman [10]. Informally, the problem is to deduce a particular
function by sampling the input / output behavior in the presence of noise

6



(i.e., some of the outputs are incorrect). Of particular interest is the
problem of learning vectors from parity with noise (LPN) [10], which may
be stated as follows. Let Ψ be a distribution on F2. Let s and {ai}mi=1

be randomly chosen vectors, s,ai ∈ Fn2 , and let {ei}mi=1 be independent
samples from Ψ . Define bi = s · ai + ei for i = 1, . . . ,m, where · denotes
the inner product. The problem is then to determine s given {(ai, bi)}mi=1.
In general, this problem is believed to be computationally intractable.
The best known algorithm is only slightly sub-exponential (2O(n/ logn),
due to [10]).

More generally, one may consider the same problem on vector spaces
over finite fields other than F2. The case of Fp under zero-mean/low-
variance discrete Gaussian noise was considered by Regev and termed
learning with errors (LWE) problem [36]. Therein, Regev showed a quan-
tum reduction from worst-case lattice problems (e.g., the shortest vector
problem), which gives further support to the conjecture that these prob-
lems are intractable. When the noise parameter is greater than

√
n, the

best known algorithm for solving this problem was demonstrated in [10]
and requires 2O(n) time. When the noise parameter is smaller than

√
n,

the recent work of [6] has demonstrated a subexponential time algorithm
using certain linearization techniques.

We also mention a variant of the LWE problem, recently proposed
by Lyubashevsky et al. in [30] to improve the ratio of the entropy of the
noisy images over that of their preimages. In the setting of [30], termed
ring-LWE, the noisy samples have the form (a, b) ∈ R×R, where R is a
ring of algebraic integers in a suitable number field, b ≈ a · s for a secret
random ring element s, and · denotes multiplication in R.

3.2 Learning Homomorphisms with Noise (LHN)

The class of functions at play in the LWE problem is the class {λs}s∈Fnp of

linear functionals from Fnp into Fp. By algebraic abstraction, we may re-
place arbitrary homomorphisms between groups for the linear functionals
thus translating the learning problem from the setting of vector spaces to
that of arbitrary groups. We describe the resulting generalization below.

For every n ∈ Z+, let Gn and Pn be groups (with the operation
written multiplicatively). Let Γn, Ψn, and Ξn be distributions on Gn, Pn,
and Gn × Pn, respectively. Intuitively, Γn determines how preimages are
sampled, and will usually be uniform; Ψn is the error distribution on the
codomain; and Ξn is a sort of “base” distribution which is independent of
any homomorphism and will also be uniform in most finite cases. Finally,
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let Φn be a distribution on the set hom(Gn, Pn) of homomorphisms from
Gn to Pn. Furthermore, assume that Γn, Ψn, Ξn and Φn are efficiently
sampleable. Let ϕ

$← Φn and define a distribution AΨnϕ on Gn×Pn whose

samples are preimage / distorted image pairs (a, b) where a
$← Γn and

b = ϕ(a)e for e
$← Ψn. Figure 2 depicts the above generalization.

Fnp 3 a Gn 3 a

Fp

λs
?

3 b = s · a+ e

≈ s · a
?

Pn

ϕ

?
3 b = ϕ(a)e

≈ ϕ(a)

?

Fig. 2: Generalizing learning problems from vector spaces (LWE, left) to
arbitrary groups (LHN, right).

We now formulate search and decision versions of a general problem
which we term learning homomorphisms with noise (or for brevity, LHN).

Definition 1 (LHN-Search). Given an AΨnϕ -oracle, the LHN-search
problem is to recover ϕ.

Definition 2 (LHN-Decision). The LHN-decision problem is to dis-
tinguish AΨnϕ from Ξn.

For the search problem, the corresponding assumption is that for all
probabilistic polynomial time algorithms W and for every polynomial p,
we have:

Pr
[
ϕ′ = ϕ | ϕ′ ←WAΨnϕ (1n)

]
<

1

p(n)

where the probability is over the random choices of ϕ
$← Φn and over the

random coins of the attacker W and of the oracle AΨnϕ . The corresponding

assumption for the decision problem is simply that AΨnϕ ≈
PPT

Ξn.

Note that this is a proper generalization of the standard LWE prob-
lem [36], with Gn = Fnp , Pn = Fp, Φn uniform on the linear functionals
from Fnp into Fp, Γn uniform on Fp, Ξn uniform over Gn×Pn, and where
Ψn corresponds to a zero-mean discrete Gaussian over Fp of suitable vari-
ance. At the same time, casting the assumption into abstract terms facili-
tates the formulation of new learning problems that leverage the potential
hardness of group-theoretic settings other than the usual ones of cyclic
groups and vector spaces. In particular, we will discuss an instantiation
from combinatorial group theory in Section 4.
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3.3 Looking for Instantiations of LHN: What Makes
LPN/LWE Hard?

To gain insight as to what ingredients are required in the more general
context, and to understand what properties one might need of a candi-
date group-theoretic setting to serve as a platform for the abstract LHN
problem, we begin with some general observations on the standard LWE
problem. First, we note that part of what makes LWE difficult in the
standard vector space case is that Fnp is a free module. Not only does this
afford one with an exponential space of secret keys (| hom(Fnp ,Fp)| = pn);
in some sense, it also maximizes the difficulty of learning with errors:
Given a single noisy image ϕ(ai) + ei, every choice of noise ei produces
a value that can be plausibly explained as the true image ϕ̄(ai) of some
homomorphism ϕ̄. Consequently, one must collect many samples in order
to rule out any given potential value of the hidden homomorphism ϕ.
Even once enough equations have been obtained to uniquely constrain
ϕ, it is not clear which path to take to distill this large set of equations
down to ϕ, leading to an essentially exponential number of choices to be
considered. This is in sharp contrast with the setting of arbitrary finite
groups, where | hom(Gn, Pn)| may not be exponential, and furthermore,
one could potentially detect the presence of error from but a single sample
(a, b) if, for example, the order of b does not divide the order of a.

From the above discussion, the setting of free groups arises as a seem-
ingly natural alternative to vector spaces. As for the case of Fnp , instanti-
ating LHN over free groups results in a huge space of possible keys (homo-
morphisms). Other similarities with vector spaces, however, are not easy
to derive. First, free groups are infinite, which adds non-trivial complica-
tions to the sampling process, and makes it cumbersome to even formally
state the abstract learning problem in this case. Second, multiplication in
free groups is a rather transparent operation. For example, the analogue
of the subset sum problem (a crucial ingredient that is often paired with
the LPN/LWE assumptions, and used e.g., in the cryptosystem of [36])
admits an efficient algorithm in the setting of free groups (see e.g., [29,
Proposition I.2.21]), which makes it rather unsuitable for cryptographic
applications.

We contend, however, that suitable analogues of Fnp might be found
by restricting attention to certain sub-classes of groups, like relatively free
groups. As mentioned in Section 2, these groups enjoy many of the desir-
able properties that free groups exhibit: they are, for instance, equipped
with exponentially many homomorphisms into any non-trivial group, and
thus provide adequate key space for the LHN problem. In contrast to free
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groups, they can also be chosen to be finite, thus avoiding many of the
complications that come with free groups. In the next section, we describe
an infinite class of finite relatively free groups: The free Burnside groups
of exponent 3.

4 An Instantiation from Combinatorial Group Theory

We now put forth a new intractability assumption by instantiating LHN
with a certain class of finite non-abelian groups. We begin with some
background and basic facts on the class of groups in question, and then
discuss their computational properties and choice of parameters suitable
for instantiating the LHN problem.

4.1 Burnside Groups

For a positive integer k, consider the class of groups for which all elements
x satisfy xk = 1. Such a group is said to be of exponent k. We will be
interested in a certain family of such groups called the free Burnside
groups of exponent k, which are in some sense the “largest.” The free
Burnside groups are uniquely determined by two parameters: the number
of generators n, and the exponent k. We will denote these groups by
B(n, k):

Definition 3 (Free Burnside group). For any n, k ≥ 0, the Burnside
group of exponent k with n generators is defined as

B(n, k) = 〈{x1, . . . , xn}; {wk | for all words w over x1, . . . , xn}〉.

The question of whether B(n, k) is finite or not is known as the
bounded Burnside problem. For sufficiently large k, B(n, k) is generally
infinite [25]. For small exponents, it is known that k ∈ {2, 3, 4, 6} yields
finite groups for all n. (We remark that with the exception of k = 2, these
are non-trivial results.) For other small values of k (most notably, k = 5),
the question remains open.

For the purposes of this paper, we will be interested primarily in
groups of exponent 3; hence in what follows we will denote B(n, 3) simply
by Bn for brevity. Next, we review some important facts about Bn (see
[24,22] for a fuller account).

Normal form of Bn. Each Bn-element can be written uniquely as an
ordered sequence of (a subset of) generators (or their inverses4), appearing
in lexicographical order, followed by (a subset of) the commutators of
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weight 2 (or their inverses), and finally by (a subset of) the commutators
of weight 3 (or their inverses):

n∏
i=1

xαii
∏
i<j

[xi, xj ]
βi,j

∏
i<j<k

[xi, xj , xk]
γi,j,k

where all αi, βi,j , γi,j,k ∈ {0, 1,−1} for all 1 ≤ i < j < k ≤ n, and
[xi, xj , xk] = [[xi, xj ], xk].

Order of Bn. From the above normal form, it follows that Bn has

exactly 3n+(n2)+(n3) elements.

Homomorphisms from Bn to Br. There are 3n(r+(r2)+(r3)) homomor-
phisms from Bn → Br. This follows immediately from the order of Br
and from the fact that Bn is a free object in the category of groups of
exponent 3 with generating set of size n.

We also have the following lemma regarding the diameter of Bn (for
a proof see [7]):

Lemma 1. ∃τn ∈ Bn such that ‖τn‖ ∈ Ω( n3

logn).

4.2 Computational Aspects of Burnside Groups

In order for the Burnside groups to be of use in cryptography, at a mini-
mum, they must have a concise representation, and the group operation
must be efficiently computable. We demonstrate here that both criteria
are met. First, we note that as described above, each element of Bn has
a unique normal form as a product of the generators and certain commu-
tators. Hence by storing an array of the exponents (each of which is in
the set {0, 1,−1}) we can uniquely represent an element. The size of the
array is cubic in n.

As for the group operation, this can be computed simply by concate-
nating two normal forms, and then reducing the resulting word back into
normal form. This process, referred to as the collection process, takes
cubic time (see [24], chap. 11) in the length of the input (which is itself
cubic in n). However, all commutators of weight 3 are in the center Z(Bn)
of Bn, and hence there is no need to expand them and apply the collec-
tion process—one can simply add the corresponding exponents modulo 3.
Furthermore, since all commutators of weight 4 are trivial (see [24], chap.
18), we know that [Bn, Bn] is commutative. Hence, we can again avoid
the collection process when moving the weight-2 commutators amongst

4 Note that x−1 = x2 in Bn, as Bn has exponent 3.
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themselves, and in cubic time, we can reduce the expression to a “nearly”
normal form consisting of a product of at most 2n generators (or their
inverses) followed by commutators in normal form. Therefore we need
only to apply the collection process on linear input, and so the overall
running time of computing the product is indeed O(n3). Inverses can also
be computed over Bn in at most cubic time by a similar (yet somewhat
simpler) collecting process.

The last and most challenging computational aspect of Bn relates to
its geodesics—the computation of distances in the Cayley graph. For the
applications we introduce here, it will suffice to compute the norm (i.e.,
the distance to the identity of the group).

In general, geodesics in the Cayley graph is a difficult problem. In
some cases, it is known to be NP-hard [32].5 However, this is not as
troubling as it seems. We need only to compute norms in the codomain
group Pn, which is generally small, and does not necessarily grow with the
security parameter (although it may grow with a correctness parameter).
For the case of the free Burnside group Br, one possible solution is to
perform a breadth-first search of the Cayley graph, storing the norm of
every element in a table. This process will begin to become infeasible
around r = 5. However, even with this small number of generators, the
diameter is large enough to properly decode for many interesting error
distributions Ψn. For the general case, geodesics in the Cayley graph of
Bn might be efficiently computable (perhaps up to small approximation
factors) making use of a number of commutator identities. We do not
consider this in detail here, but will address this problem seperately.

4.3 Instantiating LHN over Burnside Groups

Here we propose a concrete instantiation from Burnside groups, which
we subsequently denote by Bn-LHN. Set Gn

.
= Bn and Pn

.
= Br, where

2 ≤ r ≤ 4. Let Γn
.
= U(Bn) and Ξn

.
= U(Bn×Br). The error distribution

Ψn on Br is constructed by taking a randomly ordered product of the
generators, raised to random exponents. More precisely, its probability
mass function is:

∀e ∈ Br, Pr
E

$←Ψn
[E = e] = Pr

v
$←Fr3,σ

$←Sr

[
e =

r∏
i=1

xviσ(i)

]
(1)

5 One entertaining example is that of the Rubik’s cube group, whose diameter was
demonstrated to be 20 in 2010 via a distributed computing project which required
35 CPU-years.
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where the xi’s are the generators of Br, the vi’s are the components of
v, and Sr denotes the symmetric group on r letters. Since x2 = x−1 in
Br, the norm ‖e‖ of a Ψn-sample e is at most r. (Some intuition for this
choice of Ψn is discussed at the end of this Section.) For any given secret
homomorphism ϕ, the above choices completely describe the distribution
AΨnϕ . As for the distribution Φn from which ϕ is drawn, we simply let
Φn

.
= U(hom(Bn, Br)). Note that since Bn is a relatively free group, any

mapping of its n generators uniquely extends to a homomorphism. Hence,
to sample Φn, it suffices to select random Br-images for the n generators
of Bn. Note that for 2 ≤ r ≤ 4, elements of Br take at most 3 bytes, and
thus storing ϕ requires just linear space.

Figure 3 summarizes the choice of groups and distributions for the
Bn-LHN problem.

Gn Pn Γn Ξn Ψn Φn

Bn Br U(Bn) U(Bn ×Br)
[
v

$← U(Fr3), σ
$← Sr :

∏r
i=1 x

vi
σ(i)

]
U(hom(Bn, Br))

Fig. 3: Choice of groups and distributions for the Bn-LHN problem.

Choice of Parameters. To determine suitable choice of parameters
for the Bn-LHN instantiation described above, here we consider known
approaches to attacking the assumption. First, observe that the key space
is rather large: |hom(Bn, Br)| = 3Θ(nr3), and so even small choices of n
and r will defeat a brute-force attack. In terms of a distinguishing attack,
we derive below an interesting connection to LWE with p = 3, based on
the projection onto the commutator-factor (cf. Figure 4).

ρn : Bn → Bn/[Bn, Bn] ∼= (Fn3 ,+)

ρr : Br → Br/[Br, Br] ∼= (Fr3,+)

Bn
ϕ - Br

(Fn3 ,+)

ρn
?

ϕ′
- (Fr3,+)

ρr
?

Fig. 4: Projection of Bn and Br onto the commutator-factor.

Computationally, ρn amounts to just retaining the exponent-tuple cor-
responding to the generators in the normal form of a Bn-element. One
easily verifies that ρn and ρr transform the distribution AΨnϕ from an Bn-

LHN instance to a new distribution, A
Ψ ′n
ϕ′ over Fn3 × Fr3, which presents

us with a problem very similar to the standard LWE with p = 3. (Even
with r > 1, the resulting problem is polynomial-time equivalent to the
standard version; see e.g., [5], Lemma 4.2.) Notably, the resulting noise
distribution Ψ ′n for the LWE-like instance is just the abelianization of

13



Ψn, which by construction amounts to a random r-tuple of F3-exponents
(cf. Equation (1)). Thus, applying the commutator-factor transformation
yields an LWE-like instance where the noisy distribution is identical to
the random one, and so the instance is impossible to break. Nevertheless,
in light of this connection with LWE, it seems prudent to pick values for
n that would also make LWE hard. The best algorithm for this setting
is currently the one of [10], and requires time 2O(n/ logn), which suggests
values of n in the few hundreds.

Remark 1. Regarding the error distribution, we remark that the support
of Ψn should never be contained in a proper normal subgroup of Pn, else an
adversary may be able to “factor out” the noise to mount a distinguishing
attack. Note that for the standard LWE/LPN problems, as well as the
error distribution we propose for Bn-LHN in Equation (1), this issue does
not arise because the support of Ψn generates all of Pn.

Regarding the choice of r, as discussed above, r = 4 will suffice, as
this permits an exhaustive, breadth first search of the Cayley graph. For
each element of Br, a geodesic representative (or just the norm) can be
stored in a moderately-sized table (≈ 14MB) for future use. We stress
that only one pre-computation is required for the lifetime of the system.

We note also that there is still much flexibility in the choice of Ψn;
random walks of variable length, perhaps according to a similar distribu-
tion as that of [9], may also be appropriate. Additionally, we remark that
one may consider altogether different metrics on the group, e.g., taking a
normal form for the elements and then using the Hamming metric on the
resulting vector of exponents. The distribution Ψn could then correspond
to explicitly corrupting part of the description of ϕ(a). However, the for-
mer approach using the Cayley graph seems to have much more promise
for application to an asymmetric setting—we discuss this further in the
following section.

5 Applications

5.1 A Group-Based Symmetric Cryptosystem

In this section, we present a symmetric cryptosystem based on the hard-
ness of learning Burnside homomorphisms with noise (Bn-LHN cf. Sec-
tion 4.3). Proofs of the following theorems are provided in [7].

Precomputation: Run breadth-first search on the Cayley graph of Br,
recording the norm of each element. We stress that this procedure
need only be done once for the lifetime of the system.
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Key-Gen(n): Run the setup algorithm for Bn-LHN to select a random
homomorphism ϕ from the set of homomorphisms from Bn into Br,
and set the shared key SK

·
= ϕ. Using the table generated in the pre-

computation phase, select an element τ ∈ Br of maximal norm. Given
the lower bound from Lemma 1, we know that ‖τ‖ = Ω(r3/ log r).

Encrypt(SK, t): To encrypt a bit t, select (a, b)
$← AΨnϕ , compute b′

·
=

bτ t(= ϕ(a)eτ t), and output the ciphertext c
.
= (a, b′).

Decrypt(SK, (a, b′)): Compute e′ = ϕ(a)−1 · b′ and output t = 0 if and
only if ‖e′‖ ≤ r.

Theorem 1 (Correctness).

If (a, b′)
$← Encrypt(SK, t), then Decrypt(SK, (a, b′)) = t.

Remark 2. For the case of small r, we must take more care. Note that from

the proof of Lemma 1, we have more precisely that ‖τ‖ ≥
⌈
r+(r2)+(r3)

log3 2r

⌉
.

Hence if r = 4, then our lower bound for ‖τ‖ is 8, which presents a small
problem, since the maximal norm element from the support of Ψn is of
norm 4. Such an element will be sampled from Ψn with probability 16

81 , and
hence in this case, we simply remark that correctness can be amplified by
sending multiple encryptions. The Decrypt algorithm will then output 0 if∥∥ϕ(a)−1 · y

∥∥ is ever less than 4, 1 if it is ever greater, and ⊥ if it is always
4. We also remark that the elementary lower bounds from Lemma 1 are
likely not tight, in which case there is no need for the amplification. Even
for r = 4, if ‖τ‖ = 9 rather than 8, the scheme above would attain
correctness with probability 1, making amplification unnecessary.

Theorem 2 (Security). If the Bn-LHN -Decision problem is hard, then
the above cryptosystem is IND-CPA secure.

5.2 Towards Group-Based Asymmetric Cryptosystems

There are several remaining obstacles to basing asymmetric cryptography
on Bn-LHN . The primary issue is in providing a means of sampling the
distribution AΨnϕ without knowledge of the secret ϕ. In cryptosystems
like that of [36], this was accomplished via computing the sum over a
random subset of known samples from the distribution. However, note
that commutativity seems critical for this to be effective:6 if {(ai, bi)}mi=1

are samples (so bi = ϕ(ai) + ei, where ei are “small”) and S ⊂ [m],
then

∑
i∈S bi =

∑
i∈S(ϕ(ai) + ei) = ϕ

(∑
i∈S ai

)
+
∑

i∈S ei. It follows

6 We adopt below additive notation, as it is more natural for the LPN/LWE setting.
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that, if |S| is not too large,
∑

i∈S bi will remain close to the true image
ϕ(
∑

i∈S ai). In the non-abelian case,
∏

(ϕ(ai)ei) is not generally equal to∏
ϕ(ai)

∏
ei, and so it is not necessarily true that

∏
(ϕ(ai)ei) remains

close to ϕ(
∏
ai) just because the norm of

∏
ei is small.

We briefly mention some possible approaches toward bypassing this
issue. A first workaround might be to consider only abelian Pn. How-
ever, this makes the problem somewhat less interesting, since applying
the factor-commutator transformation to AΨnϕ would then produce a new
distribution over abelian groups which likely is not any more difficult to
distinguish from uniform as the original (assuming that Γn = U(Gn) and
Ξn = U(Gn × Pn) as usual).7 So it would seem that to consider only
abelian Pn is to rule out non-abelian groups altogether.

A more promising approach might be to place additional constraints
on the distribution Ψn. By careful selection of the error terms, one might
be able to guarantee that the resulting product behaves well in the sense
that commutators involving e

$← Ψn are small in comparison to the di-
ameter of Pn. However, we remark that the näıve method of forcing the
support of Ψn to be contained in Z(Pn) is flawed: the commutator-factor
transformation then produces a distribution without noise, which will
typically be easy to distinguish from random via standard linear algebra
techniques. More generally, as discussed in Section 4, the support of Ψn
should never be contained in a proper normal subgroup of Pn. Note that
in our instantiation of Bn-LHN using free Burnside groups, the support
of Ψn generates all of Pn.

6 Conclusions and Future Work

In this paper, we put forth a generalization of the learning parity with
noise and learning with errors problems, moving from linear function-
als over vector spaces to homomorphisms between arbitrary (possibly
non-abelian) groups. We also developed an instantiation of our abstract
group-theoretic learning problem from the theory of Burnside groups, and
proposed the first cryptographic applications of these groups in the form
of a symmetric cryptosystem.

Our work broadens the family of cryptographically useful intractabil-
ity assumptions. It also raises several research questions, ranging from

7 This follows primarily from the fact that for any epimorphism ψ : G→ P of groups,
ψ(U(G)) = U(P ), but also requires the assumption that the commutator subgroup
[Gn, Gn] can be efficiently sampled, or that some other means exist for sampling the
fibers of the projection Gn → Gn/[Gn, Gn].
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specific issues like estimating the most suitable choice of parameters, to
broader problems like devising alternate instantiations of our learning
problem. Other related lines of inquiry to be investigated in future work
include: 1) applying the techniques of [34] to extend the symmetric scheme
to efficiently encrypt multiple bits; 2) adapting our Burnside-based cryp-
tosystem to the asymmetric setting; 3) improving existing algorithms for
computing over Burnside groups (e.g., to compute the Cayley norm);
and 4) assessing the hardness of learning homomorphisms with noise over
Burnside groups by designing sub-exponential distinguishing attacks.

Acknowledgement. We are grateful to Hugo Krawczyk for suggesting
a cleaner acronym for our generalized learning assumption.
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