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Abstract. In the mid 1980s, Yao presented a constant-round protocol for securely
computing any two-party functionality in the presence of semi-honest adversaries
(FOCS 1986). In this paper, we provide a complete description of Yao’s protocol, along
with a rigorous proof of security. Despite the importance of Yao’s protocol to the theory
of cryptography and in particular to the field of secure computation, to the best of our
knowledge, this is the first time that an explicit proof of security has been published.

Key words. Secure two-party computation, Semi-honest adversaries, Yao’s two-
party protocol, Proofs of security

1. Introduction

In the setting of two-party computation, two parties with respective private inputs x and
y wish to jointly compute a functionality f (x, y) = (f1(x, y), f2(x, y)) such that the
first party receives f1(x, y) and the second party receives f2(x, y). This functionality
may be probabilistic, in which case f (x, y) is a random variable. Loosely speaking,
the security requirements are that nothing is learned from the protocol other than the
output (privacy) and that the output is distributed according to the prescribed function-
ality (correctness). The definition of security that has become standard today [1,4,10,
11] blends these two conditions. In this paper, we consider the problem of achieving
security in the presence of semi-honest (or passive) adversaries who follow the protocol
specification but attempt to learn additional information by analyzing the transcript of
messages received during the execution.

The first general solution for the problem of secure two-party computation in the
presence of semi-honest adversaries was presented by Yao [15]. Later, solutions were
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provided for the multi-party and malicious adversarial cases by Goldreich et al. [9].
These ground-breaking results essentially began the field of secure multiparty computa-
tion and served as the basis for countless papers. In addition to its fundamental theoretic
contribution, Yao’s protocol is remarkably efficient in that it has only a constant number
of rounds and uses one oblivious transfer per input bit only (with no additional oblivious
transfers in the rest of the computation). Unfortunately, to the best of our knowledge,
a full proof of security of Yao’s protocol has never been published. Our motivation for
publishing such a proof is twofold. First, Yao’s result is central to the field of secure
computation. This is true both because of its historic importance as the first general so-
lution to the two-party problem, and because many later results have relied on it in their
constructions. As such, having a rigorous proof of the result is paramount. Second, the
current situation is very frustrating for those who wish to study secure multiparty com-
putation but are unable to find a complete presentation of one of the most basic results
in the field. We hope to correct this situation in this paper.

Yao’s Protocol [15] Let f be a polynomial-time functionality (assume for now that it
is deterministic), and let x and y be the parties’ respective inputs. The first step is to view
the function f as a boolean circuit C. In order to describe Yao’s protocol, it is helpful
to first recall how such a circuit is computed. Let x and y be the parties’ inputs. Then,
the circuit C(x, y) is computed gate-by-gate, from the input wires to the output wires.
Once the incoming wires to a gate g have obtained values α,β ∈ {0,1}, it is possible to
give the outgoing wires of the gate the value g(α,β). The output of the circuit is given
by the values obtained in the output wires of the circuit. Thus, essentially, computing
a circuit involves allocating appropriate zero-one values to the wires of the circuit. In
the description below, we refer to four different types of wires in a circuit: circuit-input
wires (that receive the input values x and y), circuit-output wires (that carry the value
C(x, y)), gate-input wires (that enter some gate g), and gate-output wires (that leave
some gate g).

We now present a high-level description of Yao’s protocol. The construction is actu-
ally a “compiler” that takes any polynomial-time functionality f , or actually a circuit C

that computes f , and constructs a protocol for securely computing f in the presence of
semi-honest adversaries. In a secure protocol, the only value learned by a party should
be its output. Therefore, the values that are allocated to all wires that are not circuit-
output should not be learned by either party (these values may reveal information about
the other party’s input that could not be otherwise learned from the output). The basic
idea behind Yao’s protocol is to provide a method of computing a circuit so that values
obtained on all wires other than circuit-output wires are never revealed. For every wire
in the circuit, two random values are specified such that one value represents 0 and the
other represents 1. For example, let w be the label of some wire. Then, two values k0

w

and k1
w are chosen, where kσ

w represents the bit σ . An important observation here is that
even if one of the parties knows the value kσ

w obtained by the wire w, this does not help
it to determine if σ = 0 or σ = 1 (because both k0

w and k1
w are identically distributed).

Of course, the difficulty with such an idea is that it seems to make computation of the
circuit impossible. That is, let g be a gate with incoming wires w1 and w2 and output
wire w3. Then, given two random values kσ

1 and kτ
2 , it does not seem possible to com-

pute the gate because σ and τ are unknown. We therefore need a method of computing
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Table 1. Garbled OR gate

Input wire w1 Input wire w2 Output wire w3 Garbled computation table

k0
1 k0

2 k0
3 E

k0
1
(E

k0
2
(k0

3))

k0
1 k1

2 k1
3 E

k0
1
(E

k1
2
(k1

3))

k1
1 k0

2 k1
3 E

k1
1
(E

k0
2
(k1

3))

k1
1 k1

2 k1
3 E

k1
1
(E

k1
2
(k1

3))

the value of the output wire of a gate (also a random value k0
3 or k1

3), given the value of
the two input wires to that gate. In short, this method involves providing “garbled com-
putation tables” that map the random input values to random output values. However,
this mapping should have the property that given two input values, it is only possible to
learn the output value that corresponds to the output of the gate (the other output value
must be kept secret). This is accomplished by viewing the four possible inputs to the
gate k0

1, k1
1, k0

2, k1
2 as encryption keys. Then, the output values k0

3 and k1
3 , which are also

keys, are encrypted under the appropriate keys from the incoming wires. For example,
let g be an OR gate. Then, the key k1

3 is encrypted under the pairs of keys associated
with the values (1,1), (1,0), and (0,1). In contrast, the key k0

3 is encrypted under the
pair of keys associated with (0,0). See Table 1.

Notice that given the input wire keys kα
1 and k

β

2 corresponding to α and β , and the four
table values (found in the fourth column of Table 1), it is possible to decrypt and obtain
the output wire key k

g(α,β)

3 . Furthermore, as required above, this is the only value that
can be obtained (the other keys on the input wires are not known, and so only a single
table value can be decrypted). In other words, it is possible to compute the output key
k
g(α,β)

3 of a gate, and only that key, without learning anything about the real values α,
β or g(α,β). (We note that the values of the table are randomly ordered so that a key’s
position does not reveal anything about the value that it is associated with. Despite this
random ordering, the specific construction is such that given a pair of input wire keys,
it is possible to locate the table entry that is encrypted by those keys.)

So far we have described how to construct a single garbled gate. A garbled circuit
consists of garbled gates along with “output decryption tables”. These tables map the
random values on circuit-output wires back to their corresponding real values. That
is, for a circuit-output wire w, the pairs (0, k0

w) and (1, k1
w) are provided. Then, after

obtaining the key k
γ
w on a circuit-output wire, it is possible to determine the actual output

bit by comparing the key to the values in the output decryption table.1 Notice that given
the keys associated with inputs x and y, it is possible to (obliviously) compute the entire
circuit gate-by-gate. Then, having obtained the keys on the circuit-output wires, these
can be “decrypted” providing the result C(x, y).

The above construction can be described metaphorically using “locked boxes”. The
basic idea, as above, is that every wire is allocated two padlock keys; one key is as-
sociated with the bit zero, and the other with the bit one. Then, for each gate four
doubly-locked boxes are provided, where each box is associated with a row in the truth

1 Alternatively, in the output gates it is possible to directly encrypt 0 or 1 instead of k0
w or k1

w , respectively.
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table computing the gate (i.e., one box is associated with inputs (0,0), another with
(0,1), and so on). The four boxes are locked so that each pair of keys (one from each
input wire) opens exactly one box. Furthermore, in each box a single key relating to the
output wire of the gate is stored. This key is chosen so that it correctly associates the
input bits to the output bit of the gate. (For example, if the keys that open the box are
associated with 0 and 1 and the gate computes the AND function, then the key inside
the box is the key associated with 0 in the output wire.) The first important observation
is that given the set of keys that are associated with the parties’ inputs, it is possible to
“compute the circuit” by opening the locked boxes one at a time (for each gate, only
one box will open). The process concludes at the output-gate boxes, which can con-
tain the actual output rather than a key. The second important observation is that the
computation of the circuit reveals absolutely no information beyond the output itself.
This is due to the fact that the keys are not labeled, and so it is impossible to know if a
given key is associated with zero or with one. This all holds under the assumption that
the keys associated with the circuit-input wires are obtained in an “oblivious manner”
that does not reveal the association with the parties’ inputs. Furthermore, we must as-
sume that only a single set of keys is provided (and so in each gate only a single box
can be opened). Of course, in the actual garbled-circuit construction, double-encryption
replaces doubly-locked boxes, and decryption keys replace physical padlock keys.

We now proceed to informally describe Yao’s protocol. In this protocol, one of the
parties, henceforth the sender, constructs a garbled circuit and sends it to the other party,
henceforth the receiver. The sender and receiver then interact so that the receiver obtains
the input-wire keys that are associated with the inputs x and y (this interaction is de-
scribed below). Given these keys, the receiver then computes the circuit as described,
obtains the output, and concludes the protocol. This description only shows how the re-
ceiver obtains its output, while ignoring the output of the sender. However, the receiver’s
output can include the sender’s output in encrypted form (where only the sender knows
the decryption key). Then, the receiver can just forward the sender its output at the end
of the computation. Since the sender’s output is encrypted, the receiver learns nothing
more than its own output, as required.

It remains for us to describe how the receiver obtains the keys for the circuit-input
wires. Here we differentiate between the inputs of the sender and the inputs of the
receiver. Regarding the sender, it simply sends the receiver the values that correspond
to its input. That is, if its ith input bit is 0 and the wire wi receives this input, then
the sender just hands the receiver the string k0

i . Notice that since all of the keys are
identically distributed, the receiver can learn nothing about the sender’s input from these
keys. Regarding the receiver, this is more problematic. The sender cannot hand it all of
the keys pertaining to its input (i.e., both the 0 and 1 keys on the receiver’s input wires),
because this would enable the receiver to compute more than just its output. (For a given
input x of the sender, this would enable the receiver to compute C(x, ỹ) for every ỹ.
This is much more information than a single value C(x, y).) On the other hand, the
receiver cannot openly tell the sender which keys to send it, because then the sender
would learn the receiver’s input. The solution to this is to use a 1-out-of-2 oblivious
transfer protocol [6,13]. In such a protocol, a sender inputs two values x0 and x1 (in this
case, k0

w and k1
w for some circuit-input wire w), and a receiver inputs a bit σ (in this

case, corresponding to its appropriate input bit). The outcome of the protocol is that the
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receiver obtains the value xσ (in this case, the key kσ
w). Furthermore, the receiver learns

nothing about the other value x1−σ , and the sender learns nothing about the receiver’s
input σ . By having the receiver obtain its keys in this way, we obtain that (a) the sender
learns nothing of the receiver’s input value, and (b) the receiver obtains only a single
set of keys and so can compute the circuit on only a single value, as required. This
completes our high-level description of Yao’s protocol.

Related Work Sketches of Yao’s protocol have appeared in a number of places; see,
for example, [2,7,12]. In addition, an extension of Yao’s protocol to the multiparty case
was presented in [3], with a full proof in [14]. This work also contains an implicit
description (and proof) of Yao’s protocol. We remark also that a full proof of [9] has
recently appeared in [7].

2. Definitions

We denote the length of the inputs and the security parameter by n. We say that a
function μ(·) is negligible in n (or just negligible) if for every positive polynomial p(·)
and all sufficiently large n’s, it holds that μ(n) < 1/p(n). Let S be an infinite set, and
let X = {Xs}s∈S and Y = {Ys}s∈S be distribution ensembles. We say that X and Y are

computationally indistinguishable, denoted X
c≡ Y , if for every nonuniform probabilistic

polynomial-time distinguisher D and all sufficiently large s ∈ S, |Pr[D(Xs) = 1] −
Pr[D(Ys) = 1]| is negligible in |s|. Finally, for a probabilistic machine M , we denote by
a ← M(x) the event of obtaining a by invoking M on input x and a uniformly chosen
random tape.

2.1. Secure Two-Party Protocols for Semi-Honest Adversaries

The model that we consider here is that of two-party computation in the presence of
static semi-honest adversaries. Such an adversary controls one of the parties (statically,
and so at the onset of the computation) and follows the protocol specification exactly.
However, it may try to learn more information than allowed by looking at the transcript
of messages that it received. Since we only consider static semi-honest adversaries here,
we will sometimes omit the qualification that security is with respect to such adversaries
only. The definitions presented here are according to Goldreich in [7].

Two-Party Computation A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗,
where f = (f1, f2). That is, for every pair of inputs x, y ∈ {0,1}n, the output-pair is a
random variable (f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with
input x) wishes to obtain f1(x, y), and the second party (with input y) wishes to obtain
f2(x, y). We often denote such a functionality by (x, y) �→ (f1(x, y), f2(x, y)). Thus,
for example, the oblivious transfer functionality is specified by ((z0, z1), σ ) �→ (λ, zσ ),
where λ denotes the empty string. When the functionality f is probabilistic, we some-
times use the notation f (x, y, r), where r is a uniformly chosen random tape used for
computing f .
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Privacy by Simulation Intuitively, a protocol is secure if whatever can be computed
by a party participating in the protocol can be computed based on its input and output
only. This is formalized according to the simulation paradigm. Loosely speaking, we
require that a party’s view in a protocol execution be simulatable given only its input
and output.2 This then implies that the parties learn nothing from the protocol execution
itself, as desired.

Definition of Security We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality, and let π be a
two-party protocol for computing f .

• The view of the ith party (i ∈ {1,2}) during an execution of π on (x, y) is denoted
viewπ

i (x, y) and equals (x, ri ,mi
1, . . . ,m

i
t ), where ri equals the contents of the ith

party’s internal random tape, and mi
j represents the j th message that it received.

• The output of the ith party during an execution of π on (x, y) is denoted
outputπi (x, y) and can be computed from its own view of the execution. Denote
outputπ (x, y) = (outputπ1 (x, y),outputπ2 (x, y)).

Definition 1 (Security w.r.t. semi-honest behavior). Let f = (f1, f2) be a functional-
ity. We say that π securely computes f in the presence of static semi-honest adversaries
if there exist probabilistic polynomial-time algorithms S1 and S2 such that

{(
S1

(
x,f1(x, y)

)
, f (x, y)

)}
x,y∈{0,1}∗

c≡ {(
viewπ

1 (x, y),outputπ (x, y)
)}

x,y∈{0,1}∗ (1)

{(
S2

(
y,f2(x, y)

)
, f (x, y)

)}
x,y∈{0,1}∗

c≡ {(
viewπ

2 (x, y),outputπ (x, y)
)}

x,y∈{0,1}∗ (2)

where |x| = |y|.

Equations (1) and (2) state that the view of a party can be simulated by a probabilistic
polynomial-time algorithm given access to the party’s input and output only. We empha-
size that the adversary here is semi-honest, and therefore the view is exactly according
to the protocol definition. We note that it is not enough for the simulator Si to gen-
erate a string indistinguishable from viewπ

i (x, y). Rather, the joint distribution of the
simulator’s output and the functionality output f (x, y) must be indistinguishable from
(viewπ

i (x, y),outputπ (x, y)). This is necessary for probabilistic functionalities; see [4,
7] for a full discussion.

A Simpler Formulation for Deterministic Functionalities In the case that the function-
ality f is deterministic, a simpler definition can be used. Specifically, we do not need to

2 A different definition of security for multiparty computation compares the output of a real protocol exe-
cution to the output of an ideal computation involving an incorruptible trusted third party. This trusted party
receives the parties’ inputs, computes the functionality on these inputs and returns to each their respective out-
put. Loosely speaking, a protocol is secure if any real-model adversary can be converted into an ideal-model
adversary such that the output distributions are computationally indistinguishable. We remark that in the case
of semi-honest adversaries, this definition is equivalent to the (simpler) simulation-based definition presented
here; see [7].
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consider the joint distribution of the simulator’s output with the protocol output. Rather,
we separately require that

{
outputπ (x, y)

}
x,y∈{0,1}∗

c≡ {
f (x, y)

}
x,y∈{0,1}∗

and in addition, that there exist S1 and S2 such that

{
S1

(
x,f1(x, y)

)}
x,y∈{0,1}∗

c≡ {
viewπ

1 (x, y)
}
x,y∈{0,1}∗ (3)

{
S2

(
y,f2(x, y)

)}
x,y∈{0,1}∗

c≡ {
viewπ

2 (x, y)
}
x,y∈{0,1}∗ (4)

The reason that this suffices is that when f is deterministic, outputπ (x, y) must equal
f (x, y). Furthermore, the distinguisher for the ensembles can compute f (x, y) by itself
(because it is given x and y which are the indices of the ensemble). See [7, Sect. 7.2.2]
for more discussion.

Deterministic Same-Output Functionalities We say that a functionality f = (f1, f2)

is same-output if f1 = f2. In our presentation, we will show how to securely compute
deterministic same output functionalities only. This suffices for obtaining secure proto-
cols for arbitrary probabilistic functionalities.

In order to see this, first note that given a protocol for securely computing any de-
terministic functionality, it is possible to construct a secure protocol for computing any
probabilistic functionality as follows. Let f = (f1, f2) be a probabilistic functional-
ity. Then, define a deterministic functionality f ′((x, r), (y, s)) = f (x, y, r ⊕ s) and
assume that we have a secure protocol π ′ for computing f ′. Now, the following is a
secure protocol π for computing f . Upon respective inputs x, y ∈ {0,1}n, parties P1
and P2 choose uniformly distributed strings r ∈R {0,1}q(n) and s ∈R {0,1}q(n), respec-
tively, where q(n) is an upper bound on the number of random bits used to compute f .
They then invoke the protocol π ′ for securely computing f ′ in order to both obtain
f ′((x, r), (y, s)) = f (x, y, r ⊕ s). The fact that this yields a secure protocol for com-
puting f was formally proved in [7, Sect. 7.3]. Note that the size of the circuit comput-
ing f ′ is of the same order as the size of the circuit computing f . The only difference
is that the circuit for f ′ has |r| additional exclusive-or gates, where |r| is the length of
f ’s random tape.

So far we have shown that it suffices to consider deterministic functionalities. Next,
we show that the restriction to same-output functionalities is also not a limitation. That
is, as above it is possible to construct a secure protocol for computing arbitrary function-
alities from a secure protocol for computing same-output functionalities. In particular,
let f = (f1, f2) be an arbitrary functionality and define the same-output functionality f ′
as follows: f ′((x, r), (y, s)) = (f1(x, y)⊕ r‖f2(x, y)⊕ s), where a‖b denotes the con-
catenation of a with b. Now, given a secure protocol π ′ for computing the same-output
functionality f ′, it is possible to securely compute the functionality f = (f1, f2). As
above, upon respective inputs x, y ∈ {0,1}n, parties P1 and P2 choose uniformly dis-
tributed strings r ∈R {0,1}q(n) and s ∈R {0,1}q(n), respectively, where q(n) is an upper
bound on the output length of f on inputs of length n. They then invoke the protocol
π ′ for securely computing f ′ in order to both obtain f ′((x, r), (y, s)); denote the first
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half of this output by v and the second half by w. Then, upon receiving (v,w), party P1

computes v ⊕ r and obtains f1(x, y). Likewise, upon receiving (v,w), party P2 com-
putes w ⊕ s and obtains f2(x, y). It is easy to see that the resulting protocol securely
computes f . This is due to the fact that r completely obscures f1(x, y) from P2 and
likewise s completely obscures f2(x, y) from P1. Thus, neither party learns more than
its own input. (In fact, the strings f1(x, y) ⊕ r and f2(x, y) ⊕ s are uniformly distrib-
uted and so are easily simulated.) As above, the size of the circuit computing f ′ is of
the same order as the size of the circuit computing f . The only difference is that f ′ has
one additional exclusive-or gate for every circuit-output wire.

Since it suffices to consider deterministic same-output functions only, we will present
Yao’s protocol for this simpler case. The generalization to arbitrary probabilistic func-
tionalities will then be derived by corollary from the above arguments.

3. Tools

3.1. “Special” Private-Key Encryption

Our construction uses a private-key encryption scheme that has indistinguishable en-
cryptions for multiple messages. Informally speaking, this means that for every two
(known) vectors of messages x and y, no polynomial-time adversary can distinguish an
encryption of the vector x from an encryption of the vector y. We stress that according
to our construction of Yao’s garbled circuit, the encryption scheme must be secure for
multiple messages. Therefore one-time pads cannot be used. In our proof of security,
we will actually use an encryption scheme that is secure under chosen-plaintext attacks
(strictly speaking this is not necessary, but it does simplify the presentation). We refer
the reader to [7, Chap. 5] for formal definitions of secure encryption.

We will require an additional property from the encryption scheme that we use.
Loosely speaking, we require that an encryption under one key will fall in the range of
an encryption under another key with negligible probability. We also require that given
the key k, it is possible to efficiently verify if a given ciphertext is in the range of k.
(These two requirements are very easily satisfied, as demonstrated below.) The reason
that we require these additional properties is to enable the receiver to correctly compute
the garbled circuit. Recall that in every gate, the receiver is given two random keys that
enable it to decrypt and obtain the random key for the gate-output wire; see Table 1.
A problem that immediately arises here is how can the receiver know which value is the
intended decryption. (Notice that it may be the case that all strings can be decrypted.)
By imposing the requirement that encryptions under one key will almost never be valid
encryptions under another key, and requiring that this can also be efficiently verified,
it will hold that only one of the values will be valid (except with negligible probabil-
ity). The receiver will then take the (single) correctly-decrypted value as the key for the
gate-output wire.

We now formally define the requirements on the encryption scheme:

Definition 2. Let (G,E,D) be a private-key encryption scheme and denote the range

of a key in the scheme by Rangen(k)
def= {Ek(x)}x∈{0,1}n . Then,
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1. We say that (G,E,D) has an elusive range if for every probabilistic polynomial-
time machine A, every polynomial p(·), and all sufficiently large n,

Prk←G(1n)

[
A

(
1n

) ∈ Rangen(k)
]
<

1

p(n)

2. We say that (G,E,D) has an efficiently verifiable range if there exists a prob-
abilistic polynomial-time machine M such that M(1n, k, c) = 1 if and only if
c ∈ Rangen(k).

By convention, for every c /∈ Rangen(k), we have that Dk(c) = ⊥.

Notice that the requirements for an “elusive range” are quite weak. In particular, the
machine A is oblivious in that it is given no information on k and no examples of
ciphertexts within Rangen(k). Thus, A must “hit” the range with no help whatsoever.

We now show that it is easy to construct encryption schemes with the above prop-
erties. Let F = {fk} be a family of pseudorandom functions [8], where fk : {0,1}n →
{0,1}2n for k ∈ {0,1}n. Then, define

Ek(x) = 〈
r, fk(r) ⊕ x0n

〉

where x ∈ {0,1}n, r ∈R {0,1}n, and x0n denotes the concatenation of x and 0n.3

The fact that this encryption scheme has indistinguishable encryptions under chosen-
plaintext attacks is well known. Regarding our additional requirements:

1. Elusive range: Notice that if a truly random function frand was used instead of
fk , then the probability that a value c output by the machine A is in the range of
〈r, frand(r) ⊕ x0n〉 is negligible. This follows from the fact that obtaining such a
c involves finding a value r and then predicting the last n bits of frand(r) (notice
that these last n bits are fully revealed in frand(r) ⊕ x0n). Since frand is random,
this prediction can succeed with probability at most 2−n. Now, by the assumption
that fk is pseudorandom, it follows that a polynomial-time machine A will also
succeed in generating such a c with at most negligible probability. Otherwise, such
an A could be used to distinguish fk from a random function.

2. Efficiently verifiable range: Given k and c = 〈r, s〉, it is possible to compute fk(r)

and verify that the last n bits of fk(r) equal the last n bits of s. If yes, then it
follows that c ∈ Rangen(k), and if not, then c /∈ Rangen(k).

We stress that there are many possible ways to ensure correctness in the decryption of a
gate. For example, as described in [12], explicit (and randomly permuted) indices may
be used instead.4

3 In fact, the string of 0’s can have any super-logarithmic length. We set it to be of length n for simplicity.
4 We chose this method somewhat arbitrarily. We feel some preference due to the fact that the gate de-

scription and circuit construction is the simplest this way. As we will see, however, some price is paid in the
proof of correctness.
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Double-Encryption Security In Yao’s protocol, the private-key encryption scheme is
used in order to double-encrypt values. As we have described, the protocol works by
double-encrypting four values, where each double encryption uses a different combi-
nation of the keys associated with the input wires. Intuitively, given only two keys, it
is possible to decrypt only one of the values. However, formally, this must be proven.
We define a double-encryption experiment here and prove that any encryption scheme
that is secure under chosen plaintext attacks is secure for double-encryption here. We
remark that the experiment does not look very natural. However, it is exactly what is
needed in our proof of security. Let (G,E,D) be a private-key encryption scheme
and assume without loss of generality that G(1n) returns a string of length n (i.e.,
the length of a key generated with security parameter 1n is exactly n). We denote
E(k0, k1,m) = Ek0(Ek1(m)). The experiment definition is as follows.

Exptdouble
A (n,σ )

1. The adversary A is invoked upon input 1n and outputs two keys k0 and k1 of length
n and two triples of messages (x0, y0, z0) and (x1, y1, z1), where all messages are
of the same length.

2. Two keys k′
0, k

′
1 ← G(1n) are chosen for the encryption scheme.

3. A is given the challenge ciphertext 〈E(k0, k
′
1, xσ ),E(k′

0, k1, yσ ),E(k′
0, k

′
1, zσ )〉 as

well as oracle access to E(·, k′
1, ·) and E(k′

0, ·, ·).5
4. A outputs a bit b, and this is taken as the output of the experiment.

Security under double encryption simply means that the adversary outputs 1 when σ = 0
with almost the same probability as it outputs 1 when σ = 1.

Definition 3. An encryption scheme (G,E,D) is secure under chosen double en-
cryption if for every nonuniform probabilistic polynomial-time machine A, every poly-
nomial p(·), and all sufficiently large n,

∣∣Pr
[
Exptdouble

A (n,1) = 1
] − Pr

[
Exptdouble

A (n,0) = 1
]∣∣ <

1

p(n)

We now show that any encryption scheme that is secure (i.e., has indistinguishable en-
cryptions) under chosen plaintext attacks is secure under chosen double-encryption. We
remark that all security here is in the nonuniform model (and so we assume security
under chosen plaintext attacks for nonuniform adversaries). It is well known that un-
der chosen plaintext attacks, security for a single message implies security for multiple
messages, see [7, Sect. 5.4], and we will thus assume this in our proof. For the sake of
completeness, we define the chosen-plaintext experiment for the case of multiple mes-

5 Note that in the ciphertexts that A receives, at least one of the keys used is unknown to A. In addition,

the oracle access here means that A can provide any k and m to E(·, k′
1, ·) and receive back E(k, k′

1,m);

likewise for E(k′
0, ·, ·).
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sages. In fact, we consider only the case of two messages, because this suffices for our
proof later.

Exptcpa
A (n,σ )

1. A key k ← G(1n) is chosen, and the adversary A is invoked with input 1n and
oracle access to Ek(·). The adversary A outputs two pairs of messages (x0, y0)

and (x1, y1).
2. The challenge ciphertexts c1 = Ek(xσ ) and c2 = Ek(yσ ) are computed.
3. A is given the pair (c1, c2) and continued oracle access to Ek(·)
4. A outputs a bit b, and this is taken as the output of the experiment.

The definition of security under chosen plaintext attacks is analogous to Definition 3,
except that Exptdouble

A is replaced with Exptcpa
A . We are now ready to state the lemma.

Lemma 4. Let (G,E,D) be a private-key encryption scheme that has indistinguish-
able encryptions under chosen plaintext attacks in the presence of nonuniform adver-
saries. Then (G,E,D) is secure under chosen double encryption.

Proof sketch. We do not provide a full proof of this lemma but rather a detailed
proof sketch only. The full proof can be derived from this sketch in a straightfor-
ward manner. In order to prove this lemma, we define a modified experiment, denoted
Exptmod

A (n,σ ), which is exactly the same as Exptdouble
A (σ ), except that the y part of

the challenge ciphertext does not depend on σ . That is, the challenge ciphertext equals
〈E(k0, k

′
1, xσ ),E(k′

0, k1, y0),E(k′
0, k

′
1, zσ )〉; note that xσ and zσ are encrypted as be-

fore, but y0 is always encrypted (even if σ = 1). Clearly,

Pr
[
Exptdouble

A (n,0) = 1
] = Pr

[
Exptmod

A (n,0) = 1
]

(5)

because in both cases, the encrypted values are x0, y0, and z0. We will prove that
for every nonuniform probabilistic polynomial-time adversary and for some negligible
function μ(·), the following two equations hold:

∣∣Pr
[
Exptmod

A (n,0) = 1
] − Pr

[
Exptmod

A (n,1) = 1
]∣∣ < μ(n) (6)

∣∣Pr
[
Exptmod

A (n,1) = 1
] − Pr

[
Exptdouble

A (n,1) = 1
]∣∣ < μ(n) (7)

Combining (5) to (7), we obtain that (G,E,D) is secure under chosen double encryp-
tion. We will prove (6); (7) is proven in an analogous way.

We begin by modifying Exptmod
A in the following way. First, we claim that indistin-

guishability holds even if the adversary A can choose k′
0 by itself. We can therefore let

A choose k0, k1, and k′
0. Given that this is the case, we need not generate E(k′

0, k1, y0)

as part of the challenge ciphertext (because given k′
0 and k1, A can compute it by itself).

For the same reason, we can remove the oracle E(k′
0, ·, ·) from the experiment. We

therefore need only to prove that (6) holds for the further modified experiment Exptmod′
A

defined as follows.
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Exptmod′
A (n,σ )

1. The adversary A is invoked upon input 1n and outputs three keys k0, k1, and k′
0 of

length n and two pairs of messages (x0, z0) and (x1, z1), where all messages are
of the same length.

2. A key k′
1 ← G(1n) is chosen for the encryption scheme.

3. A is given 〈E(k0, k
′
1, xσ ),E(k′

0, k
′
1, zσ )〉 and oracle access to E(·, k′

1, ·).
4. A outputs a bit b, and this is taken as the output of the experiment.

From what we have stated above, if we prove that the analogue of (6) holds for Exptmod′
A ,

then (6) itself clearly also holds. However, Exptmod′
A is now almost identical to Exptcpa

A .
The only differences are:

1. In Exptmod′
A the challenge ciphertext is first encrypted with k′

1 (the secret key) and
then with k0 or k′

0, whereas in Exptcpa
A the challenge ciphertext is encrypted with

the secret key only. However, this clearly does not matter because the adversary
knows k0 and k′

0 and so can compute this itself.

2. In Exptmod′
A the oracle given to the adversary is E(·, k′

1, ·), whereas in Exptcpa
A it

is Ek(·). However, since k and k′
1 play the same role as the secretly-chosen key,

it is clear that given oracle Ek′
1
(·), it is possible to efficiently emulate the oracle

E(·, k′
1, ·). Therefore, this also makes no difference.

We conclude that (6) follows from the security of (G,E,D) under chosen plaintext at-
tacks. As we have stated, (7) is proven in an analogous way, and thus we obtain that
(G,E,D) is also secure under chosen double encryption. This concludes the proof
sketch. �

3.2. Oblivious Transfer

As we have mentioned, the 1-out-of-2 oblivious transfer functionality is defined by
((x0, x1), σ ) �→ (λ, xσ ), where λ denotes the empty string. For the sake of self-
containment, we will briefly describe the oblivious transfer protocol of [6] that is se-
cure in the presence of semi-honest adversaries. Our description will be for the case
that x0, x1 ∈ {0,1}; when considering semi-honest adversaries, the general case can be
obtained by running the single-bit protocol many times in parallel.

Protocol 1 (Oblivious transfer [6]).

• Inputs: P1 has x0, x1 ∈ {0,1}, and P2 has σ ∈ {0,1}.
• The protocol:

1. P1 randomly chooses a permutation-trapdoor pair (f, t) from a family of
enhanced trapdoor permutations.6 P1 sends f (but not the trapdoor t) to P2.

2. P2 chooses a random vσ in the domain of f and computes wσ = f (vσ ).
In addition, P2 chooses a random w1−σ in the domain of f , using the “en-
hanced” sampling algorithm (see Footnote 6). P2 sends (w0,w1) to P1.

6 Informally speaking, an enhanced trapdoor permutation has the property that it is possible to sample
from the range, so that given the coins used for sampling, it is still hard to invert the value. See [7, Appendix
C.1] for more details.
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3. P1 uses the trapdoor t and computes v0 = f −1(w0) and v1 = f −1(w1).
Then, it computes b0 = B(v0) ⊕ x0 and b1 = B(v1) ⊕ x1, where B is a hard-
core bit of f . Finally, P1 sends (b0, b1) to P2.

4. P1 computes xσ = B(vσ ) ⊕ bσ and outputs xσ .

The proof to the following theorem can be found in [7, Sect. 7.3.2].

Theorem 5. Assuming that (f, t) are chosen from a family of enhanced trapdoor per-
mutations, Protocol 1 securely computes the 1-out-of-2 oblivious transfer functionality
in the presence of static semi-honest adversaries.

Recall that since the oblivious transfer functionality is deterministic, it suffices to use
the simplified definition of (3) and (4). Thus, it is guaranteed that there exist simulators,
denoted SOT

1 and SOT
2 , that generate the appropriate views of parties P1 and P2, respec-

tively. We remark that simulator SOT
1 receives P1’s input (x0, x1) and outputs a full view

of P1 that includes the input (x0, x1), a random tape, and the incoming messages that
P1 expects to see in a real execution (of course, this view output by SOT

1 is only com-
putationally indistinguishable from a real view). Notice that P1 has no output in the
oblivious transfer functionality, and so SOT

1 receives only P1’s input. The simulator SOT
2

receives P2’s input σ and output xσ and outputs a view, as described above.

4. Yao’s Two-Party Protocol

We are now ready to describe the protocol. We begin by formally describing how the
garbled circuit is constructed. Then, we describe the protocol and prove its security.

4.1. The Garbled Circuit Construction

In this section, we describe the garbled circuit construction. Let C be a boolean circuit
that receives two inputs x, y ∈ {0,1}n and outputs C(x, y) ∈ {0,1}n (for simplicity, we
assume that the input length, output length, and the security parameter are all of the
same length n). We also assume that C has the property that if a circuit-output wire
comes from a gate g, then gate g has no wires that are input to other gates.7 (Likewise,
if a circuit-input wire is itself also a circuit-output, then it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C. The circuit
C is boolean, and therefore any gate is represented by a function g : {0,1} × {0,1} →
{0,1}. Now, let the two input wires to g be labeled w1 and w2, and let the output wire
from g be labeled w3. Furthermore, let k0

1, k1
1, k0

2, k1
2, k0

3, k1
3 be six keys obtained by

independently invoking the key-generation algorithm G(1n); for simplicity, assume that
these keys are also of length n. Intuitively, we wish to be able to compute k

g(α,β)

3 from kα
1

and k
β

2 , without revealing any of the other three values k
g(1−α,β)

3 , k
g(α,1−β)

3 , k
g(1−α,1−β)

3 .

7 This requirement is due to our labeling of gates described below; see Footnote 8. We note that this
assumption on C increases the number of gates by at most n.
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The gate g is defined by the following four values:

c0,0 = Ek0
1

(
Ek0

2

(
k
g(0,0)

3

))

c0,1 = Ek0
1

(
Ek1

2

(
k
g(0,1)

3

))

c1,0 = Ek1
1

(
Ek0

2

(
k
g(1,0)

3

))

c1,1 = Ek1
1

(
Ek1

2

(
k
g(1,1)

3

))

where E is from a private key encryption scheme (G,E,D) that has indistinguish-
able encryptions under chosen plaintext attacks and has an elusive efficiently verifiable
range; see Sect. 3.1. The actual gate is defined by a random permutation of the above
values, denoted as c0, c1, c2, c3; from here on we call them the garbled table of gate g.
Notice that given kα

1 and k
β

2 and the values c0, c1, c2, c3, it is possible to compute the

output of the gate k
g(α,β)

3 as follows. For every i, compute D
k
β
2
(Dkα

1
(ci)). If more than

one decryption returns a non-⊥ value, then output abort. Otherwise, define k
γ

3 to be the
only non-⊥ value that is obtained. (Notice that if only a single non-⊥ value is obtained,
then this will be k

g(α,β)

3 because it is encrypted under the given keys kα
1 and k

β

2 . Later
we will show that except with negligible probability, only one non-⊥ value is indeed
obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m be the
number of wires in the circuit C, and let w1, . . . ,wm be labels of these wires. These
labels are all chosen uniquely with the following exception: if wi and wj are both
output wires from the same gate g, then wi = wj (this occurs if the fan-out of g is
greater than one). Likewise, if an input bit enters more than one gate, then all circuit-
input wires associated with this bit will have the same label.8 Next, for every label wi ,
choose two independent keys k0

i , k
1
i ← G(1n); we stress that all of these keys are chosen

independently of the others. Now, given these keys, the four garbled values of each gate
are computed as described above, and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply
consist of the values (0, k0

i ) and (1, k1
i ), where wi is a circuit-output wire. (Alternatively,

output gates can just compute 0 or 1 directly. That is, in an output gate, one can define
cα,β = Ekα

1
(E

k
β
2
(g(α,β))) for every α,β ∈ {0,1}.)

The entire garbled circuit of C, denoted G(C), consists of the garbled table for each
gate and the output tables. We note that the structure of C is given, and the garbled
version of C is simply defined by specifying the output tables and the garbled table that
belongs to each gate. This completes the description of the garbled circuit.

8 This choice of labeling is not essential, and it is possible to provide unique labels for all wires. However,
in such a case, the table of a gate with fan-out greater than one will have to be redefined so that the keys of
all of the wires leaving the gate are encrypted. We chose this labeling because it seems to make for a simpler
gate definition. We note, however, that due to this choice, we must assume that if a gate g has an output wire
exiting from it, then it does not have another wire that exits it and enters another gate. As we have mentioned,
this increases the number of gates by at most n.
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Correctness We now claim that the above garbled circuit enables correct computation
of the function. That is, given the appropriate input strings and the garbled table for
each gate, it is possible to obtain the correct output. It is at this point that we use the
“special” properties of the encryption scheme described in Sect. 3.1.

Claim 6 (Correctness). Let x = x1 · · ·xn and y = y1 · · ·yn be two n-bit inputs for C.
Furthermore, let win1 , . . . ,winn be the labels of the circuit-input wires corresponding
to x, and let winn+1 , . . . ,win2n

be the labels of the circuit-input wires corresponding to
y. Finally, assume that the encryption scheme used to construct G(C) has an elusive
and efficiently verifiable range. Then, given the garbled circuit G(C) and the strings
k
x1
in1

, . . . , k
xn

inn
, k

y1
inn+1

, . . . , k
yn

in2n
, it is possible to compute C(x, y), except with negligible

probability.

Proof. We begin by showing that every gate can be “decrypted” correctly. Specifically,
let g be a gate with incoming wires w1,w2 and outgoing wire w3. Then, we show that
for every α,β ∈ {0,1}, given kα

1 and k
β

2 and the garbled table of g, it is possible to deter-

mine k
g(α,β)

3 , except with negligible probability. More formally, let c0, c1, c2, c3 be the

garbled table of gate g. We wish to find ci such that ci = Ekα
1
(E

k
β
2
(k

g(α,β)

3 )). We claim

that except with negligible probability, there exists a single i such that ci ∈ Rangen(k
α
1 )

and Dkα
1
(ci) ∈ Rangen(k

β

2 ). In other words, at most one of the values decrypts correctly
(from here on we use this informal term to mean what is formally described above).

This follows from the fact that the encryption scheme has an elusive range. Specifi-
cally, recall that the gate was constructed by first choosing independent values for the
gate-input and gate-output wires k0

1, k1
1, k0

2, k1
2, k0

3, k1
3 . Next, the values c0, c1, c2, and

c3 are computed. Now, assume that there are (at least) two values c such that for both
of them, c ∈ Range(kα

1 ) and Dkα
1
(c) ∈ Rangen(k

β

2 ); denote these two values ci and cj .

Without loss of generality, assume also that ci = Ekα
1
(E

k
β
2
(k

g(α,β)

3 )); i.e., assume that ci

should be correctly decrypted. There are two cases regarding cj :

1. cj = Ekα
1
(E

k
1−β
2

(z)) for z ∈ {k0
3, k1

3}:
By our assumption regarding cj , it follows that cj ∈ Range(kα

1 ) and Dkα
1
(cj ) ∈

Rangen(k
β

2 ). This means that E
k

1−β
2

(z) ∈ Rangen(k
β

2 ). Next, as mentioned above,

recall that k
1−β

2 , k0
3 , and k1

3 are all uniform and independent of k
β

2 . Therefore, we
can define a machine A that chooses two random keys k′, k′′ ← G(1n) and outputs
c = Ek′(k′′). The probability that c ∈ Range(k) for k ← G(1n) equals the proba-
bility that E

k
1−β
2

(z) ∈ Rangen(k
β

2 ) (recall that z ∈ {k0
3, k1

3}). Since the encryption

scheme (G,E,D) has an elusive range, we conclude that the probability that c ∈
Rangen(k) is negligible. Therefore, the probability that E

k
1−β
2

(z) ∈ Rangen(k
β

2 ) is

also negligible. This concludes this case.
2. cj = E

k1−α
1

(z) for z = Ek′(k′′) where k′ ∈ {k0
2, k1

2} and k′′ ∈ {k0
3, k1

3}:
In this case, we have that E

k1−α
1

(z) ∈ Rangen(k
α
1 ). Using the same arguments

as above and noticing once again that k1−α
1 , k′, and k′′ are all independent of kα

1 ,
we have that this case occurs also with at most negligible probability.
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Now, given that in every gate at most one ci decrypts correctly, we prove the claim.
In order to do this, we define that the key k is correct for wire wi if k = kα

i , where
α ∈ {0,1} is the value obtained on wire wi when computing the un-garbled circuit C

on inputs (x, y). By induction on the circuit, starting from the bottom and working up,
we show that for every wire, the correct key for the wire is obtained. This holds for the
circuit-input wires by the fact that the keys k

x1
in1

, . . . , k
xn

inn
, k

y1
inn+1

, . . . , k
yn

in2n
are given and

is the base case of the induction. Assume that it is true for a gate g with gate-input wires
wi and wj and let kα

i and k
β
j be the respective keys held for these wires. Then, by the

decryption procedure, it follows that the value k
g(α,β)

	 = D
k
β
j

(Dkα
i
(cα,β)) is obtained,

where w	 is the output wire of the gate.9 Furthermore, by the arguments shown above,
this is the only value that is decrypted correctly. Therefore, the correct key for the output
wire of gate g is also obtained. This concludes the inductive step.

It follows that the correct keys of the output wires of the circuit are obtained, except
with negligible probability. That is, the keys obtained for the circuit-output wires all
correspond to the output value C(x, y). Therefore, the value obtained after using the
output tables is exactly C(x, y), as required. �

Removing the Error Probability The above construction allows for a negligible prob-
ability of error. This is due to two possible events: (a) in some gate, more than one value
decrypts correctly, or (b) in some gate, the correct value does not decrypt correctly. As
we have mentioned in footnote 9, this second event can occur if the encryption scheme
has decryption errors. This problem can be removed by using a scheme without decryp-
tion errors (this is not a limitation because decryption errors can always be removed [5]).

Regarding the first event causing error, this can be overcome in one of two ways.
First, when constructing the circuit, it is possible to check that an error does not occur.
Then, if an error has occurred, it is possible to reconstruct the garbled circuit again,
repeating until no errors occur. (For this to work, we need to assume that the machine
that verifies if a value is in the range of a key runs in deterministic polynomial-time,
as is the case in our construction. Alternatively, it suffices to assume that it has only
a one-sided error and never returns 1 when a value is not in the range.) The problem
with this approach is that the construction of the circuit now runs in expected, and not
strict, polynomial-time. Another approach is to use explicit randomly permuted indices,
meaning that the decrypted values in the gates reveal exactly which item in the next
table is to be opened. This approach was described in [12].

4.2. Yao’s Two-Party Protocol

As we have seen above, given the keys that correspond to the correct input, it is possible
to obtain the correct output from the garbled circuit. Thus, the protocol proceeds by
party P1 constructing the garbled circuit and giving it to P2. Furthermore, P1 hands
P2 the keys that correspond to x = x1 · · ·xn. In addition, P2 must obtain the keys that
correspond to its input y = y1 · · ·yn. However, this must be done carefully, ensuring the
following:

9 This holds if there are no decryption errors (i.e., if for every k and every x, Dk(Ek(x)) = x). If there is
a negligible error in the decryption, then we will inherit a negligible error probability here.
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1. P1 should not learn anything about P2’s input string y.
2. P2 should obtain the keys corresponding to y and no others. (Otherwise, P2 could

compute C(x, y) and C(x, y′) for y′ �= y, in contradiction to the requirement that
C(x, y) and nothing else is learned.)

The above two problems are solved by having P1 and P2 run 1-out-of-2 oblivious trans-
fer protocols [6,13]. That is, for every bit of P2’s input, the parties run an oblivious
transfer protocol where P1’s input is (k0

n+i , k
1
n+i ) and P2’s input is yi . In this way,

P2 obtains the keys k
y1
n+1, . . . , k

yn

2n and only these keys. In addition, P1 learns nothing
about y. We are now ready to formally describe the protocol.

Protocol 2 (Yao’s two-party protocol).

• Inputs: P1 has x ∈ {0,1}n, and P2 has y ∈ {0,1}n.
• Auxiliary input: A boolean circuit C such that for every x, y ∈ {0,1}n, it holds

that C(x, y) = f (x, y), where f : {0,1}n × {0,1}n → {0,1}n. We require that C

is such that if a circuit-output wire leaves some gate g, then gate g has no other
wires leading from it into other gates (i.e., no circuit-output wire is also a gate-
input wire). Likewise, a circuit-input wire that is also a circuit-output wire enters
no gates.

• The protocol:

1. P1 constructs the garbled circuit G(C), as described in Sect. 4.1, and sends
it to P2.

2. Let w1, . . . ,wn be the circuit-input wires corresponding to x, and let
wn+1, . . . ,w2n be the circuit-input wires corresponding to y. Then,
(a) P1 sends P2 the strings k

x1
1 , . . . , k

xn
n .

(b) For every i, P1 and P2 execute a 1-out-of-2 oblivious transfer protocol
in which P1’s input equals (k0

n+i , k
1
n+i ) and P2’s input equals yi .

The above oblivious transfers can all be run in parallel.
3. Following the above, P2 has obtained the garbled circuit and 2n keys corre-

sponding to the 2n input wires to C. Party P2 then computes the circuit, as
described in Sect. 4.1, obtaining f (x, y). P2 then sends f (x, y) to P1, and
they both output this value.

We now provide a formal proof that Protocol 2 securely computes the functionality f .
Our proof could be simplified by relying on a composition theorem, such as that found
in [7, Sect. 7.3.1]. However, for the sake of self-containment, we provide a direct proof
of the security of the protocol.

Theorem 7. Let f be a deterministic same-output functionality. Furthermore, assume
that the oblivious transfer protocol is secure in the presence of static semi-honest adver-
saries and that the encryption scheme has indistinguishable encryptions under chosen
plaintext attacks and has an elusive and efficiently verifiable range. Then, Protocol 2
securely computes f in the presence of static semi-honest adversaries.

Proof. Intuitively, since the oblivious transfer protocol is secure, party P2 receives
exactly one key per circuit-input wire. Then, by the security of the encryption scheme,
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it is only able to decrypt one value in each gate. Furthermore, it has no idea if the value
obtained in this decryption corresponds to 0 or to 1. Therefore, it learns nothing from
this computation, except for the output itself. We now formally prove this. Recall that
since we consider deterministic functionalities, we can use the simpler formulation of
security as stated in (3) and (4). We prove separately the cases where P1 is corrupted
and where P2 is corrupted.

A Simplifying Convention In the proof below, we will use the simulators SOT
1 and SOT

2
that exist for the oblivious transfer functionality in order to generate views for the cor-
rupted parties. In general, a view is represented as the party’s input followed by its
random tape and concluding with the series of incoming messages. In order to simplify
the presentation, we will present the view of a party in a different order. Specifically,
we will write the view of a party in Protocol 2—excluding the oblivious transfers—in
the usual way. However, the view of the party in the oblivious transfers is written in
full where it appears in the protocol transcript. That is, instead of splitting the view in
the oblivious transfers into input, random-tape, and incoming messages, the input and
random-tape are written together with the incoming messages. This clearly makes no
difference and is just to simplify notation (the standard way of writing the view of a
party can be received by a trivial transformation of the view that we write below).

Case 1—P1 is corrupted

Notice that P1’s view in an execution of π consists only of its view in the oblivious
transfer protocols and a single message that it receives from P2 at the end (that is sup-
posedly the output). By the security of the oblivious transfer protocol, P1’s view in the
oblivious transfer executions can be generated without knowing P2’s input. Further-
more, by the correctness of the construction of the garbled circuit (Claim 6), party P2
obtains the correct output f (x, y), except with negligible probability. Therefore, the
message that P1 receives from P2 at the end of a real protocol execution equals f (x, y),
except with negligible probability. A simulator that is given (x, f (x, y)) can therefore
simulate the complete view of P1 by first simulating its view in the oblivious transfers
and then writing f (x, y) at the end. The formal proof of this follows a rather standard
hybrid argument.

We begin by describing the simulator S1: Upon input (x, f (x, y)), simulator S1 uni-
formly chooses a random-tape rC for P1 and generates the garbled circuit that P1 would
generate with randomness rC . Then, let k0

n+1, k
1
n+1, . . . , k

0
2n, k

1
2n be the keys that corre-

spond to P2’s input in the constructed garbled circuit, and let SOT
1 be the simulator that is

guaranteed to exist for party P1 in the oblivious transfer protocol. For every i = 1, . . . , n,
simulator S1 invokes the simulator SOT

1 upon input (k0
n+i , k

1
n+i ) in order to obtain P1’s

view in the ith oblivious transfer (since P1 has no output from the oblivious transfer,
the simulator is invoked with its input only). Recall that the view generated by SOT

1 is
made up of the input (in this case (k0

n+i , k
1
n+i )), a random tape, and a transcript of mes-

sages received. As we have mentioned, we will place the entire view of the party in
the oblivious transfers together with the message transcript. In addition, S1 writes the
output f (x, y) that P1 expects to receive at the end of the execution from P2. We have
that S1 outputs

(
x, rC,SOT

1

(
k0
n+1, k

1
n+1

)
, . . . , SOT

1

(
k0

2n, k
1
2n

)
, f (x, y)

)
(8)
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This concludes the description of S1. We now prove that

{
S1

(
x,f (x, y)

)}
x,y∈{0,1}∗

c≡ {
viewπ

1 (x, y)
}
x,y∈{0,1}∗

where S1(x, f (x, y)) is as shown in (8), and π denotes Protocol 2. We first prove a
hybrid argument over the simulated views for the oblivious transfers. That is, we define
a hybrid distribution Hi in which the first i oblivious transfers are simulated and the last
n − i are real. Formally, let Hi(x, y, rC) denote the distribution

{(
x, rC,SOT

1

(
k0
n+1, k

1
n+1

)
, . . . , SOT

1

(
k0
n+i , k

1
n+i

)
,ROT

1

((
k0
n+i+1, k

1
n+i+1

)
, yi+1

)
, . . . ,

ROT
1

((
k0

2n, k
1
2n

)
, yn

)
, f (x, y)

)}

where ROT
1 ((k0

n+j , k
1
n+j ), yj ) denotes the real transcript from viewOT

1 ((k0
n+j , k

1
n+j ), yj ).

Notice that the keys k0
n+j , k

1
n+j here are as defined by the garbled circuit, when

generated with the random tape rC . Notice also that when rC is uniformly chosen,
Hn(x, y, rC) equals the distribution that appears in (8); i.e., it equals S1(x, f (x, y)).
Furthermore, H0(x, y, rC) is almost the same as viewπ

1 (x, y); the only difference is that
the last component of H0 equals f (x, y), whereas the last component of viewπ

1 (x, y) is
the message that P2 would send P1 in the last message of the protocol. For simplicity,
from here on we will assume that x, y, rC are all of the same length and, in particular,
are of length n.

We now prove that {H0(x, y, rC)} c≡ {Hn(x, y, rC)}. By contradiction, assume that
there exists a probabilistic polynomial-time distinguisher D and a polynomial p(·) such
that for infinitely many n’s (and x, y, rC ∈ {0,1}n),

∣∣Pr
[
D

(
H0(x, y, rC)

) = 1
] − Pr

[
D

(
Hn(x, y, rC)

) = 1
]∣∣ >

1

p(n)

It follows that there exists i such that for infinitely many x, y, rC ,

∣∣Pr
[
D

(
Hi(x, y, rC)

) = 1
] − Pr

[
D

(
Hi+1(x, y, rC)

) = 1
]∣∣ >

1

np(n)

We now use D to contradict the security of the oblivious transfer protocol. First,
notice that the only difference between Hi(x, y, rC) and Hi+1(x, y, rC) is that the
random-tape and transcript of the (i + 1)th oblivious transfer are according to
viewOT

1 ((k0
n+i+1, k

1
n+i+1), yi+1) in Hi and according to SOT

1 (k0
n+i+1, k

1
n+i+1) in Hi+1.

Furthermore, given x, y, rC, i, and a view v (which is either viewOT
1 ((k0

n+i+1, k
1
n+i+1),

yi+1) or SOT
1 (k0

n+i+1, k
1
n+i+1)), it is possible to construct a distribution H such that if v

is from viewOT
1 , then H = Hi(x, y, rC) and if v is from SOT

1 , then H = Hi+1(x, y, rC).
It therefore follows that for infinitely many inputs, it is possible to distinguish the view
of P1 in a real oblivious transfer execution from its simulated view with the same prob-
ability that it is possible to distinguish Hi(x, y, rC) from Hi+1(x, y, rC). However, this
contradicts the security of the oblivious transfer protocol. We therefore conclude that

{H0(x, y, rC)} c≡ {Hn(x, y, rC)}. (We remark that the distinguisher that we construct
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here is nonuniform because it needs to have x, y, rC , and i. For this reason, we de-
fined nonuniform indistinguishability; see the beginning of Sect. 2.) Until now, we have
shown that
{
S1

(
x,f (x, y)

)} c≡ {(
x, rC,ROT

1

((
k0
n, k

1
n

)
, y1

)
, . . . ,ROT

1

((
k0

2n, k
1
2n

)
, yn

)
, f (x, y)

)}
(9)

However, this does not quite suffice because we cannot just assume that P2 sends the
correct value f (x, y) to P1 in a real execution (notice that in the right-hand distribution
in (9), the last message received by P1 in the view is f (x, y)). We now show that

{(
x, rC,ROT

1

((
k0
n, k

1
n

)
, y1

)
, . . . ,ROT

1

((
k0

2n, k
1
2n

)
, yn

)
, f (x, y)

)}

c≡ {(
x, rC,ROT

1

((
k0
n, k

1
n

)
, y1

)
, . . . ,ROT

1

((
k0

2n, k
1
2n

)
, yn

)
,msg3(P2 → P1)

)}
(10)

where msg3(P2 → P1) denotes the message that P2 sends to P1 in Step 3 of the pro-
tocol. Notice that the only difference between these distributions is whether the last
component equals f (x, y) or the message sent by P2 to P1 in Step 3. Recall that this
message sent by P2 is exactly the output that it obtains from the garbled circuit. Now, by
Claim 6, the output obtained by P2 from the garbled circuit when P1 sends it the keys
corresponding to x and it receives the keys corresponding to y from the oblivious trans-
fers, equals f (x, y), except with negligible probability. By the security of the oblivious
transfer protocol, we have that P2 receives the keys corresponding to y, except with
negligible probability. (This follows immediately from the correctness condition, which
is implied by the definition of security.) Therefore, msg3(2 → 1) = f (x, y), except with
negligible probability, and (10) follows. Notice now that
{(

x, rC,ROT
1

((
k0
n, k

1
n

)
, y1

)
, . . . ,ROT

1

((
k0

2n, k
1
2n

)
, yn

)
,msg3(2 → 1)

)} ≡ {
viewπ

1 (x, y)
}

(11)
and so by combining (9) to (11) the proof of this case is concluded.

Case 2—P2 is corrupted

In this case, we construct a simulator S2 that is given input (y, f (x, y)) and generates
the view of P2 in Protocol 2. Notice that P2 expects to receive a garbled circuit, and so
S2 must generate such a circuit. Furthermore, this circuit must be such that P2 would
obtain f (x, y) when computing the circuit according to the protocol instructions. Of
course, S2 cannot just honestly generate the circuit, because it does not know x. (With-
out knowing x, it would not know which of the keys k0

1, k1
1, . . . , k0

n, k
1
n to hand to P2.) It

therefore generates a “fake” garbled circuit that always evaluates to f (x, y), irrespec-
tive of which keys are used. This is achieved by using gate tables in which all four
entries encrypt the same key, and therefore the values of the input wires do not affect
the value of the output wire. The crux of the proof is in showing that this circuit is
indistinguishable from the real garbled circuit that P2 receives in a real execution. In
order to show this, we use a hybrid argument. We first show that P2’s view in a real
execution of the protocol is indistinguishable from a hybrid distribution HOT(x, y) in
which the real oblivious transfers are replaced with simulated ones. Next, we consider
a series of hybrids Hi(x, y) in which one gate at a time is replaced in the real garbled
circuit. The hybrid distributions are such that H0(x, y) contains a real garbled circuit
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(and therefore equals HOT(x, y)). In contrast, distribution H|C|(x, y) contains the same
fake circuit constructed by S2 (and, as we will see, therefore equals S2(y, f (x, y))).
By a standard hybrid argument, it follows that a distinguisher between H0(x, y) and
H|C|(x, y) can be used to distinguish between two successive hybrids. However, the se-
curity of the encryption scheme that is used for generating the gate tables ensures that
neighboring hybrids are computationally indistinguishable. We conclude that H0(x, y)

is indistinguishable from H|C|(x, y), and so {S2(y, f (x, y))} c≡ {viewπ
2 (x, y)}.

We now formally describe S2. Simulator S2 begins by constructing a fake garbled
circuit, denoted G̃(C). This is accomplished as follows. For every wire wi in the circuit
C, simulator S2 chooses two random keys ki and k′

i . Next, the gates are computed: let g

be a gate with input wires wi,wj and output wire w	. Then, g contains encryptions of
the single key k	 under all four combinations of the keys ki, k

′
i , kj , k

′
j that are associated

with the input wires to g (in contrast, the key k′
	 is not encrypted at all). That is, S2

computes the following values:

c0,0 = Eki

(
Ekj

(k	)
)

c0,1 = Eki

(
Ek′

j
(k	)

)

c1,0 = Ek′
i

(
Ekj

(k	)
)

c1,1 = Ek′
i

(
Ek′

j
(k	)

)

and writes them in random order. This is carried out for all of the gates of the circuit. It
remains to describe how the output decryption tables are constructed. Denote the n-bit
output f (x, y) by z1 · · · zn (recall that this is part of S2’s input), and denote the circuit-
output wires by wm−n+1, . . . ,wm. In addition, for every i = 1, . . . , n, let km−n+i be the
(single) key encrypted in the gate from which wire wm−n+i left, and let k′

m−n+i be the
other key (as described above). Then, the output decryption table for wire wm−n+i is
given by [(0, km−n+i ), (1, k′

m−n+i )] if zi = 0 and [(0, k′
m−n+i ), (1, km−n+i )] if zi = 1.

This completes the description of the construction of the fake garbled circuit G̃(C).
(Notice that the keys km−n+1, . . . , km decrypt to z1 · · · zn = f (x, y) exactly.)

Next, S2 generates the view of P2 in the phase where it obtains the keys. First, in
the simulated view, it sets the keys that P2 receives from P1 in Step 2 of Protocol 2 to
be k1, . . . , kn. (Recall that w1, . . . ,wn are the circuit-input wires associated with P1’s
input x and that the keys for these wires are k1, k

′
1, . . . , kn, k

′
n. Here, S2 takes the keys

k1, . . . , kn. However, it could have taken k′
1, . . . , k

′
n or any other combination, and this

would make no difference.) Next, let SOT
2 be the simulator that is guaranteed to exist

for the oblivious transfer protocol. Then, for every i = 1, . . . , n, simulator S2 invokes
the simulator SOT

2 upon input (yi, kn+i ) in order to obtain P2’s view in the ith oblivious
transfer. (Here yi and kn+i are P2’s respective input and output in the ith oblivious
transfer. As above, we use the keys kn+1, . . . , k2n associated with the input wires for y.
However, this choice is arbitrary, and we could have used k′

n+1, . . . , k
′
2n or any other

combination.) Recall that the view generated by SOT
2 is made up of the input (in this case

yi ), a random tape, and a transcript of messages received. Recall also that by convention,
we place the entire view in the oblivious transfer (including the random-tape) together.
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We therefore have that S2 outputs
(
y, G̃(C), k1, . . . , kn, S

OT
2 (y1, kn+1), . . . , S

OT
2 (yn, k2n)

)

This concludes the description of S2. We now prove that

{
S2

(
y,f (x, y)

)}
x,y∈{0,1}∗

c≡ {
viewπ

2 (x, y)
}
x,y∈{0,1}∗

First, observe that
{
viewπ

2 (x, y)
}

≡ {(
y,G(C), k

x1
1 , . . . , kxn

n ,ROT
2

((
k0
n+1, k

1
n+1

)
, y1

)
, . . . ,ROT

2

((
k0

2n, k
1
2n

)
, yn

))}

where ROT
2 ((k0

n+i , k
1
n+i ), yi) denotes the real transcript from viewOT

2 ((k0
n+i , k

1
n+i ), yi).

We also denote the hybrid distribution where the real oblivious transfers are replaced by
simulated ones by

HOT(x, y) = (
y,G(C), k

x1
1 , . . . , kxn

n , SOT
2

(
y1, k

y1
n+1

)
, . . . , SOT

2 (yn, k
yn

2n)
)

We stress that in the hybrid distribution HOT, the garbled circuit G(C) that appears is
the real one and not the fake one. We first claim that

{
HOT(x, y)

}
x,y∈{0,1}∗

c≡ {
viewπ

2 (x, y)
}
x,y∈{0,1}∗ (12)

The only difference between the distributions in (12) is due to the fact that simulated
views of the oblivious transfers are provided instead of real ones. Indistinguishability
therefore follows from the security of the oblivious transfer protocol. The formal proof
of this is almost identical to the case that P1 is corrupted and is therefore omitted.

Next, we consider a series of hybrid experiments Hi(x, y) in which one gate at a
time is replaced in the real garbled circuit G(C) until the result is the fake garbled
circuit G̃(C). Before we do this, we consider an alternative way of constructing the
fake garbled circuit G̃(C). This alternative construction uses knowledge of both inputs
x and y but results in exactly the same fake garbled circuit as that constructed by S2 that
is given only y and f (x, y). (This is therefore just a mental experiment or a different
description of S2. Nevertheless, it is helpful in describing the proof.)

The alternative construction works by first traversing the circuit from the circuit-input
wires to the circuit-output wires and labeling all keys as active or inactive. Intuitively,
a key is active if it is used in order to compute the garbled circuit upon input (x, y);
otherwise it is inactive. Formally, a key kα

a that is associated with wire wa is active
if when computing the nongarbled circuit C on input (x, y), the bit that is obtained
on wire wa equals α. As expected, an inactive key is just any key that is not active.
Now, the alternative construction of G̃(C) works by first constructing the real garbled
circuit G(C). Next, using knowledge of both x and y, all keys in G(C) are labeled
active or inactive (given x and y, it is possible to compute C(x, y) and obtain the real
values on each wire). Finally, G̃(C) is obtained by replacing each gate g as follows:
Let wa be the wire that exits gate g. Then, recompute g by encrypting the active key
on wire wa with all four combinations of the (active and inactive) keys that are on
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the wires that enter g. This completes the alternative construction. We claim that the
circuit obtained in this alternative construction is identically distributed to the circuit
constructed by S2(x, f (x, y)). First, in both constructions, all gates contain encryptions
of a single key only. Second, in both constructions, the order of the ciphertexts in each
gate is random. Finally, in both constructions, the output decryption tables yield the
same result (i.e., exactly f (x, y)). This last observation is due to the fact that in the
alternative construction, the output decryption table decrypts active keys to f (x, y),
and these active keys are the only ones encrypted in the gates from which the circuit-
output wires exit. Likewise, in the circuit G̃(C), the only keys encrypted in the gates
from which the circuit-output wires exit are the keys that decrypt to f (x, y).

Before proceeding, we order the gates g1, . . . , g|C| of the circuit C as follows: if
the input wires to a gate g	 come from gates gi and gj , then i < 	 and j < 	; this is
called a topological sort of the circuit. We are now ready to define the hybrid experiment
Hi(x, y).

Hybrid experiment Hi(x,y). In this experiment the view of P2 in the oblivious trans-
fers is generated in exactly the same way as in HOT(x, y). However, the garbled cir-
cuit is constructed differently. As in the alternative construction of G̃(C), the first
step is to construct the real garbled circuit G(C) and then use x and y in order to
label all keys in G(C) as active or inactive. Next, the first i gates g1, . . . , gi are mod-
ified as in the alternative construction. That is, let wa be the wire that exits gate gj

for 1 ≤ j ≤ i. Then, recompute gj by encrypting the active key on wire wa with all
four combinations of the (active and inactive) keys that are on the wires that enter gj .
The remaining gates gi+1, . . . , g|C| are left unmodified and are therefore as in the real
garbled circuit G(C).

We claim that the distribution {H0(x, y)} equals {HOT(x, y)}. This follows from the
fact that the only difference is that in H0(x, y) the keys are labeled active or inactive.
However, since nothing is done with this labeling, there is no difference in the resulting
distribution. Next, notice that in H|C|(x, y), the circuit that appears in the distribution is
exactly the fake garbled circuit G̃(C) as constructed by S2. This follows immediately
from the fact that in H|C| all gates are replaced, and so the circuit obtained is exactly
that of the full alternative construction described above.

We wish to show that {H0(x, y)} c≡ {H|C|(x, y)}. Intuitively, this follows from the
indistinguishability of encryptions. Specifically, the only difference between H0 and
H|C| is that the circuit in H0 is made up of gates that contain encryptions of active and
inactive keys, whereas the circuit in H|C| is made up of gates that contain encryptions
of active keys only. Since only active keys are seen by P2 during the computation of the
garbled circuit, the difference between H0 and H|C| cannot be detected.

We prove that {H0(x, y)} c≡ {H|C|(x, y)} using a hybrid argument. That is, as-
sume that there exists a nonuniform probabilistic polynomial-time distinguisher D

and a polynomial p(·) such that for infinitely many n (and values x, y ∈ {0,1}n),
|Pr[D(H0(x, y)) = 1] − Pr[D(H|C|(x, y)) = 1]| > 1/p(n). Then, it follows that there
exists i such that |Pr[D(Hi−1(x, y)) = 1]−Pr[D(Hi(x, y)) = 1]| > 1/|C|p(n). We use
D and x, y, i in order to construct a nonuniform probabilistic polynomial-time distin-
guisher AE for the encryption scheme (G,E,D). The high-level idea here is for AE to
receive some ciphertexts from which it will construct a partially real and partially fake
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garbled circuit G′(C). However, the construction will be such that if the ciphertexts
received were of one “type,” then the resulting circuit is according to Hi−1(x, y). How-
ever, if the ciphertexts received were of another “type,” then the resulting circuit is ac-
cording to Hi(x, y). In this way, the ability to successfully distinguish Hi−1(x, y) from
Hi(x, y) yields the ability to distinguish ciphertexts, in contradiction to the security of
the encryption scheme. We now formally prove the above intuition, using Lemma 4 that
states that (G,E,D) is secure under chosen double encryption.

A Concrete Case First, let us consider the concrete case where gi is an OR gate and
where wires wa and wb enter gi , and wire wc exits gi . Furthermore, assume that the
wires wa and wb enter gate gi and no other gate. Finally, assume that when the inputs to
the circuit are x and y, the wire wa obtains the bit 0, and the wire wb obtains the bit 1.
Then, it follows that the keys k0

a and k1
b are active, and the keys k1

a and k0
b are inactive

(we mark the inactive keys in bold in order to distinguish them from the active ones).
Likewise, the key k1

c is active (because gi(0,1) = 0 ∨ 1 = 1), and the key k0
c is inactive.

The difference between a real garbled gate gi and a fake garbled gate gi is with respect
to the encrypted values. Specifically, the real garbled OR gate gi contains the following
values:

Ek0
a

(
Ek0

b

(
k0
c

))
, Ek0

a

(
Ek1

b

(
k1
c

))
, Ek1

a

(
Ek0

b

(
k1
c

))
, Ek1

a

(
Ek1

b

(
k1
c

))
(13)

In contrast, the fake garbled OR gate gi contains the following values, which are all
encryptions of the active value k1

c (recall that the input to gi equals 0 and 1, and so the
output is 1):

Ek0
a

(
Ek0

b

(
k1
c

))
, Ek0

a

(
Ek1

b

(
k1
c

))
, Ek1

a

(
Ek0

b

(
k1
c

))
, Ek1

a

(
Ek1

b

(
k1
c

))
(14)

Thus, in this concrete case, the indistinguishability between the gates depends on the
indistinguishability of a single encryption (of k0

c versus k1
c ) under the inactive key k0

b .
(In other cases, the indistinguishability may depend on both inactive keys k1

a and k0
b and

may depend on more than one encryption under a key; see the general case below.) It
is not difficult to show here that indistinguishability follows directly from the chosen-
plaintext security of the encryption scheme E with key k0

b . Nevertheless, it follows
immediately from the definition of Exptdouble

A and security under chosen double encryp-
tion (see Definition 3 in Sect. 3.1). Specifically, we construct a nonuniform probabilistic
polynomial-time machine AE for Exptdouble

AE
such that

∣∣Pr
[
Exptdouble

AE
(n,1) = 1

] − Pr
[
Exptdouble

AE
(n,0) = 1

]∣∣ ≥ 1

|C|p(n)

Upon input 1n, machine AE outputs keys k0
a, k

1
b ← G(1n) and message triples

(k0
c , k

1
c , k

1
c ) and (k1

c , k
1
c , k

1
c ). By the experiment Exptdouble, two keys are chosen. For

the sake of consistency, we denote them k1
a and k0

b . Then, machine AE receives either
the ciphertexts

〈
Ek0

a

(
Ek0

b

(
k0
c

))
,Ek1

a

(
Ek1

b

(
k1
c

))
,Ek1

a

(
Ek0

b

(
k1
c

))〉
(15)
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or the ciphertexts

〈
Ek0

a

(
Ek0

b

(
k1
c

))
,Ek1

a

(
Ek1

b

(
k1
c

))
,Ek1

a

(
Ek0

b

(
k1
c

))〉
(16)

depending on whether σ = 0 (the first case) or σ = 1 (the second case); note that the
only difference is that in the first case the first plaintext is k0

c and in the second case the
first plaintext is k1

c . Denote the ciphertexts received by AE by (c1, c2, c3). Now, AE first
computes the value c = Ek0

a
(Ek1

b
(k1

c )); it can do this by itself because it knows both k0
a

and k1
b , as well as k1

c . Next, given c, AE generates the tuple 〈c1, c, c3, c2〉. The important
point to notice here is that if AE received the ciphertexts in (15), then 〈c1, c, c3, c2〉 is
identical to the ciphertexts in (13). On the other hand, if AE received the ciphertexts in
(16), then 〈c1, c, c3, c2〉 is identical to the ciphertexts in (14). Therefore, if it is possible
to distinguish between the gates in (13) and (14) with nonnegligible probability, then
AE can succeed in Exptdouble

AE
with nonnegligible probability, in contradiction to the

security of the encryption scheme.
This does not yet suffice because we must still show how AE can generate the rest

of the Hi−1 or Hi distributions. Notice that AE knows the active keys that enter gi

(because it chooses them itself) but does not know the inactive keys. We therefore show
that the distributions can be constructed without knowledge of the inactive keys k1

a and
k0

b . In order to show this, we distinguish between two cases:

1. Case 1—wb is a circuit-input wire: In this case, the keys associated with wire wb

do not appear in any gates gj for j < i. However, keys that are associated with
circuit-input wires do appear in the distributions Hi−1 and Hi : the keys k

xi

i appear
directly, and the keys k

yi

n+i are used to generate the view of P2 in the oblivious
transfers. Nevertheless, notice that the keys used here are all active. Therefore,
AE can construct the distributions, as required. We note that AE uses the keys k0

c

and k1
c that it receives in its experiment in order to construct the gates into which

wire wc enters.
2. Case 2—wb is not a circuit-input wire: In this case, the keys associated with wire

wb can appear only in the gate gj from which wb exits. However, by our ordering
of the gates, j < 	. Therefore, in both Hi−1 and Hi , gate gj contains encryp-
tions of the active key k0

b only. It follows that AE can construct the rest of the
distribution, as required. (Again, as above, AE uses the keys k0

c and k1
c in this

construction.)

Now, as we have shown above, if AE participates in Exptdouble
AE

(n,0), then the gate
gi is constructed as for a real garbled circuit. In contrast, if AE participates in
Exptdouble

AE
(n,1), then the gate gi is constructed as for a fake garbled circuit. The only

dependence between the gate gi and the rest of the distribution Hi−1 or Hi is with re-
spect to the keys k0

c and k1
c ; however, these are known to AE and used appropriately. We

therefore conclude that if AE participates in Exptdouble
AE

(n,0), then it generates a distri-

bution H that equals Hi−1(x, y). In contrast, if it participates in Exptdouble
AE

(n,1), then it
generates a distribution H that equals Hi(x, y). Distinguisher AE concludes by running
machine D on the distribution H and outputting whatever D does. By the contradict-
ing assumption, machine D distinguishes Hi−1(x, y) from Hi(x, y) with probability
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1/|C|p(n). That is, we have that for infinitely many n,

∣
∣Pr

[
Exptdouble

AE
(n,0) = 1

] − Pr
[
Exptdouble

AE
(n,1) = 1

]∣∣

= ∣∣Pr
[
D

(
Hi−1(x, y)

) = 1
] − Pr

[
D

(
Hi(x, y)

) = 1
]∣∣ >

1

|C|p(n)

in contradiction to the security of the encryption scheme. It follows that {H0(x, y)} c≡
{H|C|(x, y)}. Having proven the argument with respect to a concrete case, we now move
to the general case.

The General Case Let gi be an arbitrary gate, let wa and wb be the wires entering gi ,
and let wc be the wire that exits gi . Furthermore, let α and β be the respective values
obtained on wa and wb in C(x, y). Note that this means that kα

a and k
β
b are active, and

k1−α
a and k

1−β
b are inactive. Then, the real garbled gate gi contains the following values

(in random order):

Ekα
a

(
E

k
β
b

(
k
gi(α,β)
c

))
, Ekα

a

(
E

k
1−β
b

(
k
gi(α,1−β)
c

))
,

(17)
Ek1−α

a

(
E

k
β
b

(
k
gi(1−α,β)
c

))
, Ek1−α

a

(
E

k
1−β
b

(
k
gi(1−α,1−β)
c

))

In contrast, the fake garbled gate gi contains the following values, which are all encryp-
tions of the active value k

gi(α,β)
c :

Ekα
a

(
E

k
β
b

(
k
gi(α,β)
c

))
, Ekα

a

(
E

k
1−β
b

(
k
gi(α,β)
c

))
,

(18)
Ek1−α

a

(
E

k
β
b

(
k
gi(α,β)
c

))
, Ek1−α

a

(
E

k
1−β
b

(
k
gi(α,β)
c

))

Thus, the indistinguishability between the gates depends on the indistinguishability of
encryptions under the inactive keys k1−α

a and k
1−β
b . As above, we use Exptdouble and

security under chosen double encryption. The gate is generated in exactly the same
way here as in the concrete case. Now, in the restricted case that both wires wa and
wb enter the gate gi only, it is possible to proceed in the same way as in the concrete
case above. However, in the more general case, wires wa and wb may enter multiple
gates ga

i1
, . . . , ga

ij
and gb

i1
, . . . , gb

i	
, respectively. In this case, AE cannot construct the

rest of the circuit given only the active keys, because the inactive keys k1−α
a and k

1−β
b

are used in more than one gate. (We stress that in order to prove the indistinguishability
of the neighboring hybrid Hi−1 and Hi , it is crucial that AE is not given these inactive
keys. Therefore, it cannot construct these other gates itself.) This is solved by using the
special chosen-plaintext attack of Exptdouble. Recall that in Exptdouble, the adversary has
access to oracles E(·, k′

1, ·) and E(k′
0, ·, ·), where k′

0 = k1−α
a and k′

1 = k
1−β
b . Here, this

means that the adversary can ask for encryptions under these inactive keys, as needed
for constructing all of the other gates ga

i1
, . . . , ga

ij
and gb

i1
, . . . , gb

i	
that use them. Once

again, we have that in Exptdouble
AE

(n,0) the distribution generated by AE is exactly that
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of Hi−1(x, y), whereas in Exptdouble
AE

(n,1) the distribution generated by AE is exactly
that of Hi(x, y). Therefore, as above, we conclude that Hi−1(x, y) is indistinguishable

from Hi(x, y), and so {H0(x, y)} c≡ {H|C|(x, y)}.

Concluding the Proof Having proven that {H0(x, y)} c≡ {H|C|(x, y)}, we obtain that

{(
y, G̃(C), k

x1
1 , . . . , kxn

n , SOT
2

(
y1, k

y1
n+1

)
, . . . , SOT

2

(
yn, k

yn

2n

))}

c≡ {(
y,G(C), k

x1
1 , . . . , kxn

n , SOT
2

(
y1, k

y1
n+1

)
, . . . , SOT

2

(
yn, k

yn

2n

))}

= {
HOT(x, y)

}
(19)

Notice that the first distribution in (19) looks almost the same as the distribution
{S2(y, f (x, y))}. The only difference is that in S2(y, f (x, y)) the keys k1, . . . , kn,

kn+1, . . . , k2n are used instead of the keys k
x1
1 , . . . , k

xn
n , k

y1
n+1, . . . , k

yn

2n. That is, the keys
that S2 takes for the circuit-input wires have no correlation to the actual input (un-
like in a real execution). However, in the fake garbled circuit G̃(C), there is no dif-
ference between ki and k′

i because all combinations of keys are used to encrypt the
same (active) key. Thus, the distribution over the keys k1, . . . , kn, kn+1, . . . , k2n and
k
x1
1 , . . . , k

xn
n , k

y1
n+1, . . . , k

yn

2n are identical in the fake garbled-circuit construction. (No-
tice that there is not even a distinction between k0

i and k1
i in the fake garbled circuit.

Nevertheless, one could define k0
i = ki and k1

i = k′
i , and the result would still be that

the distributions are identical.) We therefore obtain that the first distribution in (19) is
actually identical to the distribution {S2(y, f (x, y))}, and so

{
S2

(
y,f (x, y)

)}
x,y∈{0,1}∗

c≡ {
HOT(x, y)

}
x,y∈{0,1}∗

Recalling that, by (12), {HOT(x, y)} c≡ {viewπ
2 (x, y)}, we conclude that

{
S2

(
y,f (x, y)

)}
x,y∈{0,1}∗

c≡ {
viewπ

2 (x, y)
}
x,y∈{0,1}∗

as required. �

By Theorem 5 it is possible to securely compute the oblivious transfer functionality as-
suming the existence of enhanced trapdoor permutations. Furthermore, secure encryp-
tion schemes as required in Theorem 7 can be constructed from one-way functions and
so also from enhanced trapdoor permutations. Finally, recall that given a secure protocol
for deterministic same-output functionalities, it is possible to obtain a secure protocol
for arbitrary probabilistic functionalities. Combining these facts with Theorem 7, we
obtain the following corollary:

Corollary 8. Let f = (f1, f2) be a probabilistic functionality. Then, assuming the
existence of enhanced trapdoor permutations, there exists a constant-round protocol
that securely computes f in the presence of static semi-honest adversaries.
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