
Secret Sharing

CPT, 2006

Version 3

1 Introduction

In all secure systems that use cryptography in practice, keys have to be
protected by encryption under other keys when they are stored in a physically
insecure location. But the keys used for protection have to be protected
themselves, so no matter what we do, we cannot avoid having one or more
keys in our system that are only protected because they are stored in a
physically secure way. These are typically very high priority keys, such as
the secret key that a certification authority (CA) uses to create certificates.
Precisely because such a key is so important, it would be a disaster if it was
revealed to an adversary. But it would be equally bad if the key was lost and
could not be retrieved. In other words, there is a big need to keep such keys
secret and available at the same time.

This seemingly puts designers of security systems in a rather difficult
dilemma: to make sure that a key is not revealed to anyone, one is inclined
to store it only in a single, very secure location; while the need to make sure
the key is always available seems to imply that you should store the key in
as many different locations as possible. Secret sharing is a technique that
allows us to nevertheless address both of these concerns at the same time.

2 The Concept

A threshold secret sharing scheme is defined by a probabilistic algorithm S.
It takes as input a secret s chosen from some finite set S, and it outputs
n shares, i.e., bit strings s1, ..., sn. Finally, the secret sharing scheme comes
with a threshold t, a number with 0 < t < n. The idea is that if at most t

1



shares are known, then this reveals nothing about s, whereas any set of at
least t + 1 shares determine s uniquely. More precisely, we want:

Privacy: Take any subset I of the indices {1, 2, ..., n} of size at most t,
and run S on input some s ∈ S. Then the probability distribution of
{si| i ∈ I} is independent of s.

Correctness: Take any subset J of the indices {1, 2, ..., n} of size at least
t + 1, and run S on input some s ∈ S. Then s is uniquely determined
by {si| i ∈ J}, and in fact there is an efficient algorithm that computes
s from {si| i ∈ J}.

This concept was introduced by Shamir in 78, who also proposed the
implementation we describe below. If we had such a scheme, we could use it
to store one of the important keys we discussed earlier, by letting the key be
the secret, and store the n shares in different locations. An adversary would
have to get hold of at least t + 1 shares to steal the key, and on the other
hand, as long as we loose no more than n − t − 1 shares, there will still be
enough information to reconstruct the key. So this is a solution that is at
the same time robust against loss of information and information leakage.

3 An implementation

Assume we set S = Zp for some prime p, where p > n, and t is the threshold
value we want. Then we can describe the algorithm S proposed by Shamir:

1. Choose elements a1, ..., at ∈ Zp at random, and let f(x) be the polyno-
mial f(x) = s+a1x+a2x2+ ...+atx

t. In other words: choose a random
polynomial f(x) over Zp of degree at most t, such that f(0) = s.

2. Let the shares be defined by si = f(i) mod p for i = 1, ..., n.

This scheme has the properties we outlined above, simply because of a clas-
sical results on so called Lagrange interpolation:

Proposition 1 For any field F , and any set of pairs (x1, y1), ..., (xt+1, yt+1) ∈
F×F where the xi’s are distinct, there exists exactly one polynomial g(x) over

F of degree at most t, such that g(xi) = yi for i = 1...t + 1. All coefficients

of this polynomial can be efficiently computed from (x1, y1), ..., (xt+1, yt+1).

2



Proof. Note that the polynomial

gi(x) =
(x1 − x)(x2 − x) · · · (xi−1 − x)(xi+1 − x) · · · (xt+1 − x)

(x1 − xi)(x2 − xi) · · · (xi−1 − xi)(xi+1 − xi) · · · (xt+1 − xi)

satisfies gi(xi) = 1, gi(xj) = 0 for i 6= j, and has degree at most t. It follows
that

g(x) = y1g1(x) + ... + yt+1gt+1(x)

has the right properties. It follows directly by construction that g can be
efficiently computed. There can be only one solution, since if two different
polynomials g(x), g′(x) were both solutions, then g(x) − g′(x) would be a
non-zero polynomial of degree at most t with t+1 roots, which cannot exist.

4

This fact immediately implies correctness. It also implies privacy: we
will prove that any set of t shares give no information on the secret, this is
sufficient since of course less than t shares give even less information. So fix
any index set I of size t and any secret s. Let us call a polynomial relevant if it
evaluates to s in 0 and has degree at most t. Any relevant polynomial f leads
to a set of shares with indices in I, namely {f(i)| i ∈ I}. Conversely, consider
any potential set of shares A = {si| i ∈ I}. Could this set result from sharing
s? the answer is clearly yes, since by Lagrange interpolation, there is exactly
one relevant polynomial fA(x) that satisfies fA(0) = s and fA(i) = si for
i ∈ I. Since there are exactly pt relevant polynomials, and also pt potential
sets of shares with indices in I, we have a 1-1 correspondence between the
two. So since S chooses randomly between all relevant polynomials, we see
that sharing s results in all potential sets of shares A being equally likely.
This is true for any s and I, so privacy follows.

4 Some more general facts on secret sharing

Shamir’s scheme is very efficient in the sense that all shares have the same
size as the secret, measured in the number of bits you need to store them.
This is in fact optimal, by the following

Lemma 1 For every probability distribution with which the secret s is chosen,

and for any secret sharing scheme, the entropy of every share is at least the

entropy of the secret. In particular, an optimal encoding requires at least as

many bits to write down a share as to write down the secret.

3



Proof. Suppose the entropy of the secret is l bits. Without loss of
generality, assume we look at the first share s1. Take some set of shares A
such that A is insufficient to determine s, but A ∪ {s1} is sufficient. Then,
by the privacy property, given A you have 0 bits of information on s. But
given A and s, you have l bits of information. Thus by being told s1, you
learn l bits of information, so the entropy of s1 must be at least that large.

4

Sometimes you want a more general solution than what threshold secret
sharing can provide. Suppose you are protecting a password s that gives
access to executing a particular critical operation in some system, and you
have 4 persons in the game, A, B, C and D. Suppose further that you want
that in order to carry out the operation, you want agreement from at least
{A, B} or {B, C} or {C, D} (but {A, D} is not considered sufficient). The
sets we listed here as approved, plus all larger sets are called the qualified sets.
Shamir’s solution cannot handle this, because it would give access to all pairs
of players. What we can do, however, is to share s ∈ Zp “independently”
in each of the minimal qualified sets: we choose s1, s

′

1, s2, s
′

2,s3, s
′

3 randomly
in Zp such that si + s′i = s for i = 1, 2, 3. Then we give s1 to A, s′1, s2 to
B, s′2, s3 to C and s′3 to D. This clearly satisfies that the qualified sets can
easily find s, but unqualified sets have no information.

This is a special case of general secret sharing: we are given a so called
access structure Γ, namely a family of subsets of {1, ..., n}. Subsets in Γ
correspond to subsets of shares we want to be sufficient to find the secret, so
for this to make sense, such a family must be monotone, that is, A ∈ Γ, A ⊂ B
implies B ∈ Γ: if players in A together know enough information to find the
secret, then of course players in a larger set also know enough. A perfect

secret sharing scheme S for Γ satisfies:

Privacy: Take any subset I 6∈ Γ and run S on input some s ∈ S. Then the
probability distribution of {si| i ∈ I} is independent of s.

Correctness: Take any subset J ∈ Γ and run S on input some s ∈ S. Then
s is uniquely determined by {si| i ∈ J}, and in fact there is an efficient
algorithm that computes s from {si| i ∈ J}.

Of course, threshold secret sharing as above is a special case. Using the
idea we saw of sharing the secret independently for each (minimal) qualified
set, one can easily prove:

4



Theorem 1 There exists a perfect secret sharing scheme for every monotone

access structure.

However, the idea behind the proof does not lead to an efficient scheme,
since there may be a very large number of qualified sets: if for instance, we
define a set to be qualified if it has at least n/2 elements, then the number
of such sets is exponential in n, and each “shareholder” would receive an
exponential number of values as his share, namely one value for each set he
is a member of. By contrast, since this is a threshold situation, we could
instead have used Shamir’s idea and every share would have been the same
size as the secret. One can show that it is not possible to handle all access
structures efficiently in the sense that the shares are at most a polynomial
factor larger than the secret, but it is an open question to characterize those
structures that can be handled efficiently.

5 Exercises

Exercise 1 Assume that a secret x ∈ Zp has been shared with threshold t
using Shamir’s secret sharing scheme, as (x1, . . . , xn). I.e. there are n servers

S1, . . . , Sn and server Si holds the share xi, and there exists a polynomial

f(X) ∈ Zp[X] of degree at most t such that f(0) = x and f(i) = xi for

i = 1, . . . , n. Let a ∈ Zp be some value known by all servers.

Prove that if each server Si locally computes zi = axi mod p, then (z1, . . . , zn)
is a Shamir secret sharing with threshold t of the secret z = ax mod p.
I.e. prove that there exists a polynomial h(X) ∈ Zp[X] of degree at most

t such that h(0) = z and h(i) = zi for i = 1, . . . , n.

Exercise 2 Assume that secrets x, y ∈ Zp has been shared with threshold t
using Shamir’s secret sharing scheme, as (x1, . . . , xn) respectively (y1, . . . , yn).
I.e. server Si holds the shares xi and yi and there exist polynomials f(X),
g(X) ∈ Zp[X], each of degree at most t, such that f(0) = x and g(0) = y
and f(i) = xi and g(i) = yi for i = 1, . . . , n.

Prove that if each server Si locally computes zi = xi + yi mod p, then

(z1, . . . , zn) is a Shamir secret sharing with threshold t of the secret z =
x + y mod p. I.e. prove that there exists a polynomial h(X) ∈ Zp[X] of

degree at most t such that h(0) = z and h(i) = zi for i = 1, . . . , n.

5



Exercise 3 Assume that secrets x, y ∈ Zp has been shared with threshold t
using Shamir’s secret sharing scheme, as in the Exercise 2, and assume now

in addition that t < n/2.
Prove that if each server Si locally computes zi = xiyi mod p, then (z1, . . . , zn)

is a Shamir secret sharing with threshold 2t of the secret z = xy mod p.
I.e. prove that there exists a polynomial h(X) ∈ Zp[X] of degree at most 2t
such that h(0) = z and h(i) = zi for i = 1, . . . , n.

6


