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Abstract: In this paper we consider the problem of con-
structing a waveform with globally optimal ambiguity sur-
face properties in a region surrounding the main lobe. We
consider Hermite waveforms as the basis functions of our
construction algorithm and discuss the problem of minimiz-
ing the volume under the ambiguity surface over a certain
given region. In the case of a circular region, we show that
under some rather general assumptions, a Hermite waveform
of a certain order is a solution for this problem. We also con-
sider an application of this approach to the design of bandpass
signals with desired ambiguity profiles in the strip containing
the time-delay axis.

Keywords: radar waveform design, ambiguity function,
bandpass signals, Hermite waveform, nonlinear optimization.

1. Introduction

Waveform synthesis has been an important problem in radar
design since the publication of Woodward’s book [1], but
despite numerous attempts to solve it, the search for practi-
cal solutions to the synthesis problem remains a challenging
problem. The elegant paper of Wilcox [2] presents a mathe-
matically complete solution, provided that the desired ambi-
guity shape is given in analytical form, which is not the case
in any practical radar application. In practice, engineers have
a general idea of acceptable shape rather than the formulas
describing it, thus making Wilcox’s algorithm not applicable.
Moreover, in many situations, it is not even necessary to have
a certain shape for all the values of time and doppler delays
(the region where the ambiguity surface is desired to be small
depends on the particular radar application), and Wilcox’s al-
gorithm does not treat the situations where only part of the
ambiguity surface has to be approximated.
We have made an attempt in [3] to extend Wilcox’s classi-
cal results to the case of subregions ofR2 and have shown
that this generalization enables us to construct many promis-
ing new waveforms with desired ambiguity profiles in the re-
gions surrounding the main lobe. In this paper we continue
this work and consider an application of this approach to the
design of bandpass signals with desired ambiguity profiles in
the strip containing the time-delay axis.

2. Radar waveforms and their ambiguity functions

While considering a radar waveform, it is natural to describe
it by a square-integrable and normalized function of timeu(t)

that has finite timewidth and bandwidth, i.e.u(t), tu(t), and
fU(f) are all inL2

R and‖u(t)‖L2
R

= 1 (hereU(f) denotes
the Fourier transform ofu(t)). We will denote a class of func-
tions satisfying the above properties byW .
For each waveformu(t) ∈ W we define its ambiguity func-
tion by

χu(τ, ν) =

∞
∫

−∞

u
(

t− τ
2

)

u
(

t +
τ
2

)

e−j2πνt dt

The ambiguity function as well as the classW itself have
many remarkable properties (see [1, 4, 5], etc). In this section
we recall some of the fundamental results needed in our work
that first were obtained in the well-known paper by Wilcox
[2].
Let us consider a subclassW0 ⊂ W of waveforms having
their epoch and carrier frequencies both equal to zero, that is
< tu, u >L2

R
=< fU,U >L2

R
= 0, where

< g, h >L2
E

=
∫

E
g h dE, ‖g‖2L2

E
=< g, g >L2

E
.

It is possible to select a sequence of members ofW0

φ0(t), φ1(t), . . . , φm(t), . . . (1)

which is complete and orthonormal in the mean square sense.
Then, by the Riesz-Fischer theorem [6], eachu(t) ∈ W can
be represented as

u(t) = lim
N→∞

N
∑

m=0

amφm(t), (2)

wheream =< u, φm >L2
R

and lim
N→∞

N
∑

m=0
|am|2 = 1.

Sequence (1) induces the sequence of the cross-ambiguity
functions

ψmn(τ, ν) =

∞
∫

−∞

φm

(

t− τ
2

)

φn

(

t +
τ
2

)

e−j2πνt dt

which is also known to be orthonormal and complete inL2
R2 .

Hence, every ambiguity functionχu(τ, ν) can be expanded
in a series

χu(τ, ν) = lim
N→∞

N
∑

k=0

N
∑

m=0

bkmψkm(τ, ν)
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with bkm =< χu, ψkm >L2
R2

, lim
N→∞

N
∑

k=0

N
∑

m=0
|bkm|2 = 1.

Hermite waveforms defined as follows

un(t) =
21/4
√

n!
Hn(2

√
π t)e−πt2 , n = 0, 1, 2, . . . , (3)

whereHn(x) is thenth Hermite polynomial [2, 7], provide
a well-known and quite interesting example of the basis (1).
The ambiguity functions corresponding to theun(t) can be
expressed by

An(τ, ν) = e−π(τ2+ν2)/2Ln(π(τ2 + ν2)), (4)

whereLn(x) is thenth Laguerre polynomial. Since Hermite
waveforms give rise to a complete basis inL2

R, any wave-
form can be represented as an infinite linear combination (2).
Fig. 1 shows the first 1000 coefficientsam’s of this decom-
position for the chirp signal rect(t− 1

2 )ej 2π(100t2−100t). (To
be exact, figure 1 displays only coefficients with odd indices,
since the coefficients with even indices are all equal to zero
due to some properties of Hermite waveforms). As can be
seen from the figure, the coefficients withm > 500 are small
in absolute value and can be neglected in (2).
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Figure 1: First 1000 coefficientsam of the decomposition (2)
for chirp waveform

Thus, the infinite series (2) that is equal to the chirp wave-
form can be replaced by a finite sum of the first 500 terms,
giving us a very good approximation of the waveform as well
as its ambiguity function. This observation will be used in
the formulation of the optimization problem in the following
section.

3. Optimization Problem

The ideal radar waveform would produce an ambiguity func-
tion that is zero everywhere except the origin. Such a func-
tion (we will denote it byχopt(τ, ν)) would have ideal range-
doppler characteristics. However, since no finite energy sig-
nal gives rise to that surface [5, 8], of ideal ambiguity surface
somehow in order to get realizable waveforms with some op-
timal properties. For many purposes it is desirable to con-
struct a waveform producing a surface which is very small
everywhere in some (perhaps, quite large) neighborhood of
the origin and has a peak at that point. Therefore, a practical
version of the problem can be stated as follows:

Find a waveformu(t) ∈ W such that its ambiguity surface
|χu(τ, ν)| is the best approximation to the functionχopt(τ, ν)

in the mean square sense over some bounded 1-connected re-
gionG containing the origin.

In other words, we look foru(t) that minimizes‖χopt(τ, ν)−
|χu(τ, ν)|‖2L2

G
= ‖χu(τ, ν)‖2L2

G
. A variant of the above prob-

lem we discuss in this paper arises when we restrictu(t) to
a finite dimensional space. Namely, assuming that some or-
thonormal basis (1) is fixed, we define the sequence of classes
WN (N = 0, 1, . . .) as follows

DEFINITION. A function u(t) is in class WN (N =

0, 1, . . .) ⇐⇒ u(t) =
N
∑

m=0
amφm(t) such thatam = <

u, φm >L2
R

andam ∈ SN , whereSN is theN -dimensional

unit sphere:
N
∑

m=0
|am|2 = 1.

It is easy to see that the following lemma holds.

LEMMA 1. 1) W0 ⊂ W1 ⊂ W2 ⊂ . . . ; 2) WN ⊂ W, ∀N.

We should note that by considering the spaceWN instead
of W we are restricting our selection of possible solutions
for the problem of minimizing the ambiguity surface in some
given regionG. Nevertheless, as it was shown in the previ-
ous section,W500 contains a good approximation of the chirp
waveform with almost identical ambiguity functions. This
leads to thefinal modification of the optimization problem:

Find u(t) from the classWN with minimal ambiguity func-
tion in the least square sense in some given regionG, i.e.

arg min
u(t)∈WN

‖χu(τ, ν)‖2L2
G
. (5)

Finally, we remark that it can be shown that any so-
lution u(N)

∗ (t) of problem (5) is also a solution of
arg min
u(t)∈WN

‖χu(τ, ν)‖2L1
G

which simply means that the volume

under|χu(N)
∗
| overG is the smallest one compared with the

ambiguity surfaces produced by the other members ofWN .

4. Optimal solution in WN

Note that since, for anyu(t) ∈ WN , its ambiguity function
admits a representation of the form

χu(τ, ν) =
N

∑

i=0

N
∑

k=0

aiakψik(τ, ν),

one can write

‖χu(τ, ν)‖2L2
G

= Q(a) =
N

∑

i,k,m,n=0

cikmnaiakaman

where cikmn =< ψik(τ, ν), ψmn(τ, ν) >L2
G

. Thus, we
conclude that to solve problem (5) we have tofind am ∈
SN (m = 0, 1, . . . , N) minimizing the 4th order formQ(a).
At this point we restrict ourselves by considering problem
(5) for the case when the basis functions in (1) are Hermite
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waveforms (3). The following theorem states a very interest-
ing optimal property of Hermite waveforms:

THEOREM. Let r > 0 be some arbitrarily chosen real num-
ber andG be the circular region:G = {(τ, ν) : τ2+ν2 ≤ r}.
Let also N be a fixed nonnegative integer. Then theN th Her-
mite waveform (3) is a solution of problem (5) among all the
waveforms fromWN .

ThePROOFof the theorem is omitted here for brevity and can
be found in full in [9].
The waveformu20(t) is depicted in fig. 2 (top) and a cross-
section of the corresponding ambiguity surface is presented
in fig. 2 (bottom).
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Figure 2: Hermite waveformu20(t) and arbitrary cross-
section passing through the origin for its ambiguity surface

The ambiguity surface produced by a Hermite waveform has
circular symmetry (see (4)), that is, its graph is a surface of
revolution. So, to imagine the entire surface it is enough to
know only one of the cross-sections passing through the ori-
gin. All others are exactly the same.
It follows from the above theorem that the ambiguity surface
of the N th Hermite waveform provides the best (among all
the members ofWN ) approximation of the ideal ambiguity
surface in the mean square sense overanycircular region cen-
tered at the origin. Therefore, the largerN we will choose,
the better approximation of the ideal shape we will obtain
(this fact is illustrated in fig. 2 and 3).
We should note at this point, that Hermite waveforms and
their other various optimal properties have been known in
the radar community for a long period of time [2, 7], but
have not been extensively used for practical needs of radar
design. One of the reasons is that the few sidelobes (for each
of the signal from this family) are relatively high and their
level does not become lower with an increase ofN . To il-
lustrate this phenomenon, we have displayed in fig. 4 the
cross-section of the ambiguity surface in the vicinity of the
main lobe for four different Hermite waveforms. As it can
be seen from the figure, whenN increases, thekth sidelobe
(k = 1, 2, . . .) of the Hermite ambiguity surface approaches

the origin, becomes more narrow, and, unfortunately, pre-
serves the same height. This property holds for all Hermite
waveforms, not only for those depicted in fig. 4, thus mak-
ing the Hermite family of waveforms not suitable for most
applications.
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Figure 3: Hermite waveformu160(t) and arbitrary cross-
section passing through the origin for its ambiguity surface
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Figure 4: Sidelobe level of ambiguity surface for different
Hermite waveforms

We should remark that the sidelobe problem is unfortunate
but not surprising, since the optimization problem (5) has
been formulated in terms of minimal volume under the sur-
face. Reformulation of the problem (5) in terms of themax-
norm (orL∞G -norm) that would guarantee the lowest level of
sidelobes in the selected regionG is, obviously, one way to
address the issue of high sidelobes, but in this case the prob-
lem becomes more complicated and remains open.
However, we have recently shown in [3], that the replace-
ment of the selected regionG, rather than norm (or ba-
sis functions) can lead to acceptable solutions. In [3] we
consider the minimization problem (5) over a circular ring
G0 = {(τ, ν) : r2

0 ≤ τ2 + ν2 ≤ r2} and show that appropri-
ate choice of the inner radiusr0 enables us to find a solution
of (5) with low sidelobe level of its ambiguity shape not only
overG0, but for the wholeG. We should also note that the
resulting waveforms as well as their ambiguity functions de-
pend significantly onN andr and the question regarding a
general solution of this problem remains open.
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5. Applications to bandpass signals

In this section we discuss one of the possible applications of
the theory presented in this paper for design of radar wave-
forms with acceptable range-doppler characteristics.
We will discuss in what follows the construction of band-
pass signal that has good ambiguity profiles along the time-
delay axis, i.e. when the regionG of interest is chosen as
GT = {(τ, ν) : |τ | ≤ T, |ν| ≤ ν∗} and the signals(t) is of
constant amplitude and finite support, i.e.

s(t) = rect

(

t
T

)

ejπθ(t), (6)

whereT is a signal’s duration andθ(t) is its phase. We will
assume here that the phase functionθ(t) satisfies conditions
that allows(t) to belong to classW .
The parameterν∗ that determines the width of the stripGT

and the time duration parameterT of the signals(t) should
be selected depending on the application of interest. Both of
these parameters, obviously, have an effect on the solution(s)
of the problem (5) as well as on the sidelobe levels of the
resulting ambiguity surface.
It is evident that the classW contains signals of both
constant and nonconstant amplitude, while any of its sub-
classesWN consists of only waveforms with varying ampli-
tude. Although our theory is developed to work with finite-
dimensional subclasses ofW which do not contain bandpass
signals, it was mentioned earlier and illustrated for the case of
the chirp waveform thatWN contain acceptable approxima-
tions of signals with constant amplitude. Therefore, we will
restrict the classWN to a subset of signals with envelopes
that are ‘close’ to rect(t/T ) and conduct the search for the
solution of problem (5) subject to these additional constrains.
The facts that are necessary for construction of this subclass
are given by the following statements which we mention here
without proof (see [9] for details).

LEMMA 2. Thekth (k = 0, 1, 2, . . .) time moment of a signal
(6) equals2bk, where

bk =

{

(T/2)k+1/(k + 1), if k is even,
0, if k is odd.

LEMMA 3. If u(t) ∈ W has akth time moment, then

∞
∫

−∞

tk|u(t)|2dt =
∞
∑

m=0

∞
∑

n=0

c(k)
mnRe{aman}, (7)

whereai’s are the coefficients of expansion (2) over the basis
of Hermite waveforms and

c(k)
mn =







√
(n+1)(n+2)...(n+k)

(2
√

π)k , if m = n + k,

0, otherwise.

From lemmas 2 and 3 we can derive the following

COROLLARY. If s(t) ∈ W is a bandpass signal and{ai}
are its coefficients of expansion (2) over basis (3), then, for
k = 1, 2, . . .,

∞
∑

m=0

∞
∑

n=0

c(k)
mnRe{aman} = 2bk. (8)

We should remark that for the finite-dimensional caseWN ,
formula (7) becomes

∞
∫

−∞

tk|u(t)|2dt ≈ 2
N

∑

m=0

m
∑

n=0

c(k)
mnRe{aman}.

and the system of equations (8) should be replaced by the
following system of inequalities

∣

∣

∣

∣

∣

N
∑

m=0

m
∑

n=0

c(k)
mnRe{aman} − bk

∣

∣

∣

∣

∣

< εk, (9)

Now we define a class˜WN to be a subset ofWN consisting
of waveforms satisfying the system of constrains (9). We use
˜WN as our new feasible set in problem (5) performing op-
timization overGT . Note that the way we have defined the
class˜WN does not restrict all its elements to the projection
of a set of bandpass signals ontoWN . By (9), we restrict our
attention only to members ofWN whose envelopes are ”rel-
atively close” to the shape of a rectangular pulse with prede-
fined time support. Numerical analysis we have conducted
shows that, for large values ofN , the class˜WN contains a
variety of waveforms with excellent ambiguity profiles in the
region of interest. Once such a waveform is found, we force
it to be of a constant amplitude with the same phase which is
justified by the following lemma.

LEMMA 4. Let s1(t) ands2(t) be the members of the class
W such thats1(t) is represented by (6) and

s2(t) =
(

rect

(

t
T

)

+ µ(t)
)

ejπθ(t),

where‖µ(t)‖L2
R
≤ ε, ε > 0 is a small real number. Then,

‖ |χs1(τ, ν)| − |χs2(τ, ν)| ‖L2
GT

≤ 2ε
√

Tν∗(2
√

T + ε).

Lemma 4 states that if boths1(t) ands2(t) have the same
phase and their amplitudes are similar in the mean square
sense, we should not expect much of a difference between
their ambiguity profiles. Therefore, due to Lemma 4 and the
definition of the class˜WN , forcing of the envelope to be con-
stant in our case does not lead to essential degradation of am-
biguity profiles in doppler-delay plane.
Figures 5-8 illustrate the procedure described above, where
s∗(t) is the numerical solution of problem (5) in the subspace
˜W1000 over regionGT = {(τ, ν) : |τ | ≤ T, |ν| ≤ 1/(8T )}.

RADAR 2004 - International Conference on Radar Systems



0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

m

| a
m

 |

Figure 5: Coefficientsam of the signals∗(t) from ˜W1000
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Figure 6: Phaseθ(t) (bottom) of the signals∗(t) from ˜W1000
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Figure 7: Autocorrelation functions of both the (amplitude
modulated) signals∗(t) from ˜W1000 (top) and the corre-
sponding bandpass signal (bottom)

6. Conclusion

In this paper we discuss a new approach to one of the most
challenging problems of the radar waveform design - the con-
struction of waveforms with optimal ambiguity characteris-
tics in a chosen a priori region surrounding the main lobe.
Our approach is based on the projection of the signal onto
an appropriate orthonormal basis in the space of radar wave-
forms and approximating the signal with desired ambiguity
properties by a finite number of basis waveforms. In this pa-
per we consider the well-known Hermite waveforms as the
basis functions and discuss the problem of minimizing the
volume under the ambiguity surface over a certain given re-
gion. In the case of a circular region, we show that under
some rather general assumptions, a Hermite waveform of a
certain order is a solution for this problem. We also consider

an application of this approach to the design of bandpass sig-
nals with desired ambiguity profiles in the strip containing
the time-delay axis.

Figure 8: Partial ambiguity plot of the bandpass signal corre-
sponding tos∗(t) (zoom onGT )

Finally, we should remark that this work (along with [3] and
[9]) is only a beginning and should be carried out further to
develop general algorithms for the construction of realizable
waveforms with optimal characteristics. In particular, some
of the remaining issues outlined in this paper are difficult and
remain open.
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