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Abstract

In this paper, we extend our modification of the waveform approximation technique proposed by Wilcox (1960) to the
case of the cross-ambiguity surface. This modification allows the design of a non-linear frequency modulated signal to be
transmitted by radar and a corresponding reference signal to be used by the matched filter. This pair is designed so that
the sidelobes of the cross-ambiguity surface are minimal in a specified region of interest.

1 Introduction

The ambiguity function of a waveformu(t) is defined by (Woodward, 1953)

χu(τ, ν) =

∞∫

−∞
u(t)u(t− τ) e−j2πνt dt, (1.1)

whereu(t) is assumed to be a function of time with unit energy. A radar waveform with ideal range-doppler characteristics
would produce an ambiguity surface that is zero everywhere except the origin. However, no finite energy signal gives rise
to such a surface (Cook & Bernfeld, 1967). Waveform synthesis has been an important problem in radar design since the
publication of the book (Woodward, 1953), but despite numerous attempts to solve it, the search for practical solutions
to the synthesis problem remains open. The fundamental paper of Wilcox (1960) presents a mathematically complete
solution (using Hilbert space techniques), provided that the desired ambiguity shape is given in analytical form, which
is not the case in any practical radar applications. In previous papers (Gladkova & Chebanov, 2004a-c) we have adapted
Wilcox’s method to the case of specified subregion ofR2 and have shown that this generalization enables us to construct
many promising new waveforms with desired ambiguity profiles in the regions surrounding the main lobe.

The optimization over a subregion ofR2 generalizes Wilcox’s approach, which optimizes over all ofR2. There are new
subtleties that appear with this approach, since we can seek, for example, to make an ambiguity small over some region,
which, if successful, will push the bulk of the function outside the region where we want it to be small. Obviously, this is
not possible if the region is all ofR2, because of the volume property of the ambiguity function.

We should note that one of the desired features of radar waveforms is constant amplitude (due to some radar hardware
limitations). This greatly complicates the design of waveforms with prescribed ambiguity surfaces. One of the possibilities
that allows the consideration of waveforms with variable amplitude is to work with a pair of waveforms (Levanon &
Mozeson, 2004): the transmitted signal of constant amplitude and the reference signal of arbitrary amplitude that is used
during the signal processing stage at the receiver. Thus we are interested in cross-ambiguity function

χutr,uref(τ, ν) =

∞∫

−∞
utr(t)uref(t− τ) e−j2πνt dt, (1.2)

whereutr(t) = u0e
jπw(t) is a transmitted frequency modulated signal anduref(t) = σ(t)ejπw(t) is a reference signal with

varying envelopeσ(t).

The focus of this paper is to consider the problem of sidelobe suppression of the cross-ambiguity surface over the given
region of interest. Thus we extend our approach introduced in (Gladkova & Chebanov, 2004a-c) to the case of designing
a pair of transmitted/reference waveforms with desired characteristics.



2 Optimization Problem

Since any waveformu(t) under consideration is a square-integrable function of time (that isu(t) ∈ L2
R), it can be

represented, by the Riesz-Fischer theorem (Riesz & Sz.-Nagy, 1955), as

u(t) = lim
N→∞

N∑
m=0

amφm(t), (2.1)

wheream =< u, φm >L2
R

, lim
N→∞

N∑
m=0

|am|2 = 1, and the sequence

φ0(t), φ1(t), . . . , φm(t), . . . (2.2)

constitutes an orthonormal basis inL2
R. In the above formulas and hereafter, we use the following notations:

< g, h >L2
E

=
∫

E

g h dE, ‖g‖2L2
E

=< g, g >L2
E
,

whereg, h ∈ L2
Rk andE ⊆ Rk for some positive integerk.

Assuming that some orthonormal basis (2.2) is fixed, our further consideration will be related to the classVN defined as
follows:

Definition 1. A function u(t) is in classVN ⇐⇒ u(t) =
N∑

m=0
amφm(t), such thatam = < u, φm >L2

R
andam ∈ SN ,

whereSN is theN -dimensional unit sphere:
N∑

m=0
|am|2 = 1.

Now, we can formulate the problem of findinguref ∈ VN , corresponding to a given transmitted signalutr(t), so that the
cross-ambiguity surface|χutr,uref(τ, ν)| has the prescribed shape in the given regionG. From a practical point of view, it
is desirable to construct waveforms producing surfaces which are very small everywhere in some (perhaps, quite large)
neighborhood of the origin and have a peak at that point. Based on this observation, we can formulate a waveform design
problem as follows:

Find a waveformuref(t) ∈ VN such that the cross-ambiguity surface|χutr,uref(τ, ν)| is the best approximation to the ideal
ambiguity surface in the mean square sense over some bounded regionG containing the origin, i.e.

arg min
uref∈VN

‖χutr,uref‖2L2
G

(2.3)

It should be noted here that the solution(s) of the non-linear problem (2.3) significantly depend on the choice of the region
G as well as basis functions{φk(t)}. In this paper we consider the orthonormal basis which is known in the literature as
the most energy concentrated basis in the space of bandlimited signals.

3 Prolate spheroidal functions

We now specialize to the case where the orthonormal basis (2.2) consists of prolate spheroidal wave functions. The
elegant standard reference for these functions is (Slepian, 1983), from which we now recall their definition and a few
basic properties.

Consider the following optimization problem:

maximize

∫ T/2

−T/2
u2(t) dt

∫∞
−∞ u2(t) dt

, (3.1)

for all functions inL2
R whose amplitude spectra vanish for|ν| > W , i.e. in the space of bandlimited signalsBW .

Solutions (prolate spheroidal functions) of (3.1) satisfy an integral equation with kernelsin(πWT (t − t′))/(π(t − t′)),
i.e. ∫ 1

−1

sin(πWT (t− t′))
π(t− t′)

ψ(t′) dt′ = λψ(t), |t| > 1 (3.2)

and also satisfy a second order linear ordinary differential equation

d

dt
(1− t2)

dψ

dt
+ (χ− (πWT )2t2)ψ = 0. (3.3)



The symmetric kernel of (3.2) is positive definite, therefore (3.2) has solutions inL2
(−1,1) only for a discrete set of real

positive values ofλ, which we will denoteλ0 ≥ λ1 ≥ λ2 ≥ · · · , with the corresponding eigenfunctionsψ0(t), ψ1(t),
ψ2(t), · · · that can be chosen to be real and orthogonal on(−1, 1). They are also complete inL2

(−1,1). The left hand side
of (3.2) is well defined for allt ∈ R, soψn(t) can be defined onR and normalized to unit energy there. Thenλn is the
fraction of the energy ofψn that lies in the interval(−1, 1). Prolate spheroidal wave functions have many remarkable
properties and can provide a very useful set of bandlimited signals that can be defined as follows (Slepian, 1983):

SupposeW > 0 andT > 0 are given. Defineφn(t) =
√

2
T ψn

(
2t
T

)
.

Then

• φn(t) ∈ BW

•
T/2∫
−T/2

φn(t)φm(t)dt = λnδmn

•
∞∫
−∞

φn(t)φm(t) dt = δmn

• theφn(t) are complete inBW for t ∈ R

• theφn(t) are complete inL2
(−T/2,T/2)

• among signals inBW , φn(t) is the most concentrated
signal that is orthogonal toφ0(t), φ1(t), . . . , φn−1(t)
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Figure 1:φn(t) for some values ofn.

4 Numerical results

In what follows, our calculations with prolate spheroidal wave functions will be carried using Matlab’s Signal Processing
Toolbox programdpss and the minimization problem (2.3) is solved numerically using Matlab’s Optimization Toolbox
function fmincon. Next we will consider a numerical solutions of the minimization problem (2.3) for the special case
when the regionG is [−T,−ε T ] ∪ [ε T, T ]× [−1/T, 1/T ], i.e. a union of two strips along the time-delay axis that does
not include anε neighborhood of the main lobe. The choice ofε is not arbitrary, it affects the solution of the optimization
problem (in the example considered belowε was chosen to be 1/256). The linear frequency modulated waveform (chirp)
was chosen as the initial approximation of the transmitted signalutr(t).

Figure 2 illustrates the ambiguity surface in the vicinity of the main lobe. The cross-section in logarithmic scale is depicted
in figure 3. The height of the main lobe is 0.8233 and all sidelobes in the considered regionG are below−42dB. The
phasew(t) and the envelopeσ(t) are illustrated in the figure 4.
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Figure 2: Partial cross-ambiguity surface with suppressed sidelobes.
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Figure 3: Autocorrelation function (in dB) for0 < τ < T
(top) and0 < τ < T/8 (bottom)
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Figure 4: Envelopeσ(t) (top) and phasew(t) (bottom) of
waveformsutr(t) = u0e

jπw(t) anduref(t) = σ(t)ejπw(t).

Conclusion

The inverse problem of finding a waveform corresponding to the prescribed ambiguity surface is one of the most chal-
lenging problems remaining open for over 5 decades. It is even more complicated if one wants to find a practical solution
imposed by some hardware limitations. For example when signal desired to be of constant amplitude, compactly sup-
ported, bandlimited, and with low sidelobes of the ambiguiy surface. Such signals do not exist and therefore some
trade-offs are inevitable. One of the possible trade-offs is to consider a pair of signals (instead of one), a transmitted
and reference signal, and a part of the cross-ambiguity surface which depends on the particlar application (rather than
the whole surface). This formulation is a focus of our paper and we have presented an approach that is based on the
projection of the transmitted signal onto an appropriate orthonormal basis and approximating the reference signal with
desired cross-ambiguity surface by a finite number of basis waveforms.
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