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Abstract

We study a system consisting of two coupled optically dense slabs with the same resonant atoms but initially having
different degrees of inversion. We show that it is possible to modify the superradiant amplification characteristics of this
system by varying the distance between slabs; in particular, we show that the burst intensity, delay and width are
periodic functions of this distance with period equal to 4/2. This feature and others of the emitted radiation can be
explained by noting that a slab with resonant atoms in the ground state acts on the macroscopic level as a strong
absorber and therefore also as a reflector of incident radiation resonant with its active atoms. © 2001 Elsevier Science

B.V. All rights reserved.
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1. Introduction

The large value of the reflectivity at every
point along the propagation path of a signal, in
an optically dense resonant two-level medium (i.e.
ad < 1), necessitates that both the forward and
backward waves be included in the analysis of
Maxwell equations in this medium. The simulta-
neous presence of the forward and backward
waves results into situations where resonator-like
standing waves can develop in the sample with-
out the need for end mirrors; this situation can
be realized when the pressure broadening in a gas
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substantially exceeds the Doppler broadening,
hence the name ““pressure-induced resonators”.

Previously, we have shown [1-4] that, in the
superradiant regime [5], an inverted system of such
resonant atoms radiates optimally when in a given
standing-wave-like pattern. The atomic polariza-
tion and the total field are eigenfunctions of the
spatial inversion operator with respect to the cen-
ter of the slab, for sample’s length in, what we
called the symmetric sectors. An asymmetric tran-
sition domain separates two consecutive symmet-
ric sectors having opposite parity eigenvalues. In
the symmetric sectors, the electromagnetic field
spatial distributions are similar to those found in a
slab resonant cavity, and the forward and back-
ward emission fluxes are equal; while, in the
transition domains, the forward and backward
emissions are not equal.
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In this paper, we consider a system essentially
consisting of two slabs doped with the same reso-
nant atoms and study the effect of their coupling
on the superradiant amplification. In particular,
we investigate the dependence of the system’s
superradiance emission on the distance between
two slabs having the same resonant material but
which initially have different degrees of population
inversion. We show that the superradiant radia-
tion intensity, delay and temporal width are perio-
dic functions of the distance between the two
slabs. Macroscopically, these results are shown to
be a consequence of whether a standing-wave con-
figuration of the field develops in the region be-
tween the two slabs.

We solve the above problem numerically by
integrating the Maxwell-Bloch integro-differential
coupled equations describing the two-slab system.

We were motivated in conducting the present
study by our desire:

1. To satisfactorily analyze the interesting problem
of superradiant emission from a system consis-
ting of two subsystems that are physically sepa-
rated but coupled through the radiation field, in
particular whether any coherence develops be-
tween the subsystems; and

2. To develop the necessary computational tools
for the consideration of teleporting of an un-
known collective internal state from one atomic
ensemble to another only using coherent light
and under conditions when the quantum jumps
of individual atoms have negligible effect on the
dynamics of collective operators [6].

2. Maxwell-Bloch equations

The physical system that we analyze here is
that of a passive dielectric medium doped with
active atoms. We consider, specifically the geo-
metry whereby the sample’s doping profile is ap-
proximated by three distinct zones. The first and
third zones are heavily doped, while in the second
(middle) zone the density of the doping atoms is
zero (see Fig. 1).

In this atomic/dielectric medium system, the
total polarization consists of the sum of the linear

L1 L2 L3
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B =8, p=0 B=B,

Fig. 1. System’s initial configuration.

polarization due to the embedding dielectric me-
dium plus the resonant polarization due to the
two-level atomic system:

PZPNR+PR (1)

The linear polarization Pyr (Where the subscript
NR stands for non-resonant, and R for resonant)
is given by:

PNR = OCS()EL (2)

where o is the medium linear susceptibility, and the
local (Lorentz) field Ey is given by [7]:

EL=E + P/3g 3)

and where E is the Maxwell (macroscopic) field.
Using Egs. (1)—(3), the total polarization can be
written as:

i )

where Py is obtained from Bloch equations, evalu-
ated with the local field, and not the Maxwell
field.

Expressed in the above variables, the Clausius—
Mosotti equation takes the form:

1 +2a/3
— =
A 1—a/3 ©)
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where n,, the passive dielectric’s index of refrac-
tion, is assumed here to be real. (The Kramer—
Kronig relations, derived only on the assumption
of causality, require that Im(n;) # 0, however, we
will work in the spectral regime where this con-
tribution can be neglected over the propagation
lengths under consideration.)

The dynamics of the interaction of the electro-
magnetic field with the ensemble of active two-
level atom system is described by Bloch equations.
If we neglect the counter-rotating term in the
Hamiltonian, i.e. replacing the electromagnetic
real field (Ee™' 4 E*etioe’) by Ee~'<, where w, is
the carrier frequency, Bloch equations reduce to:

;gzz—b[Q%-ﬁg-%Z]+74x4—me (6)
=il g~ 1] + (1) )

where we are normalizing the dynamical variables
and coordinates as follows:

dET; p t
. v — L. U= .
4 T

A= AT
h ) d 9 2
Qo) = w00 Ty

¢ =

T2 =Yan s

p is the x—y components of the Bloch vector,
p = p. +1p,, n is the population difference between
the ground and excited states, w, is the active
atom resonant frequency, y, and y, are the longi-
tudinal and transverse decay rates, d is the atomic
transition dipole moment, 7, is the inhomoge-
neous dephasing time, and 4 is the detuning of a
particular group of atoms in the ensemble from the
single atom resonant frequency. The normalized
local field ¢, is given by:

R 88
O [y L Ty

x (8)

where B(Z) = p(z)d*T; /8hey and p(Z) is the spa-
tially dependent active atom number density. The
normalized Lorentz shift [8,9], neglecting quantum
corrections originating from the scattering ampli-
tude due to collision between atoms and that are
present in a gaseous medium, is then given for low
excitation by 44/3(1 — «/3).

The transverse relaxation decay rate consists of
three components. The first component is equal
to half the longitudinal relaxation constant. The
second contribution is due to the short range
dipole—dipole interaction [8,9] (which is very im-
portant here since the active atoms density is high
in an optically dense medium). The third contri-
bution is due to the interaction of the active atoms
with the different quantum modes of the dielectric
medium, and which may be controlled by cooling
the dielectric medium. Specifically:

2n

“/2:%1—&-(1.16)(1.15)(@)[3—#% ©)

The second term of Eq. (9) has an additional
factor of 1.16 to that of the standard gas pressure-
broadened expression for the line width. It corre-
sponds to the off-the-mass shell correction to the
scattering amplitude, which quantity should be
used in the computation of the atomic self-energy
when the active atoms are immobile and embedded
in a dielectric. This is equivalent, as was shown in
Ref. [9], to using the statistical theory results in
computing the spectral broadening of the excited
state due to the dipole—dipole interaction between
an excited and a ground state atom.
Maxwell wave equation is given by:

Cp_ L0 _ 8 /Oy
022 T AU?  (1+24/3) \oU? /5

where z = (wen/c)z, ¢ = 1/w.T,, and (y), repre-
sents the normalized polarizability averaged over
the inhomogeneous distribution, assumed here
Gaussian, and given by:

1 A

A =——=exp| — = 11
@ - oo (-5 i
To avoid the usual difficulties associated with
solving a second order differential equation (Eq.
(10)) when the forward and backward waves
are comparable in magnitude, we replace it by its
equivalent integral equation form [10-12]:

4
(1+2a/3)

x/oﬁ(é’)exp(i|2—2’|)<x(2’,Um,Z)MdZ’ (12)

(10)

(]5(2, U) = qsin(z =0, Ur€l> CXp(lf) +1



224 J.T. Manassah, I. Gladkova | Optics Communications 196 (2001) 221-228

where L is the normalized sample length, and the
retarded normalized time is given, such that the
space-time doublet is defined as follows:

(Z,Upet) = (2, U — ¢2) (13)

The mixed boundary and initial conditions for

the problem are:
U2
3 ) (14)
(¢/T3)

where ¢ = XT;/(y/nt), and X is the incoming
pulse area; and

d)in(z = 07 U) = (]s?n exXp ( -

2EU=0",4)=0 (15)

(9<7 1 fof,_A):—l (16)
n(Ly <z L +L,+L,,U=0",4)=1
for z> 0. (U = 0~ refers to the time prior to the
incident external signal being switched-on.)

The doping profile is given by:

B0 <z<Ly) = By
BLi<z<Li+L)=0 _ (17)
ﬂ(L] + L, <z< L+ 1L, +L3) = BO

To mimic the electromagnetic field vacuum
fluctuations, we introduce an incoming pulse
from the left which duration is longer than any of
the relaxation times of the atomic system and
which area is equal to the rms of the field zero
modes.

For the clarity of the subsequent presentation,
we refer to the radiation emitted to the right as the
transmitted radiation, and that to the left as the
reflected radiation.

3. Results

To illustrate the substantial effects that the
distance of the second slab from the first slab can
have on the field spatio-temporal profile, we plot
in Fig. 2 this quantity for the cases that the dis-
tance between the slabs is equal respectively to
5.254 and 5.75/. The active atom density in the
two slabs is taken to be the same. The first slab’s
length is chosen so that in isolation its emission
pattern is typical of those belonging to what we

defined in Refs. [1-3] as a symmetric sector, i.e. the
transmitted and the reflected radiation profiles are
the same in every detail. Furthermore, the length
of the second slab is taken to be equal to that of
the first slab.

Examining the results from the above figures,
and comparing them to each other and to those
from an isolated slab, we note that:

1. For a distance between the slabs equal to a mul-
tiple of 4/2, the total reflected radiation flux in-
creased, as compared with the isolated slab, and
the position of the main peak and the width of
its temporal profile decreased.

2. For the distance between the slabs equal to
5.752, the total reflected signal flux is smaller,
the delay in the position of the main peak is
longer and the width of the temporal profile is
larger than the corresponding quantities for
the isolated slab.

3. The presence of the second slab greatly reduces
the transmitted signal, thus acting as absorber
with the resonant atoms near the closer surface
of the second slab being inverted.

4. The field’s amplitude follows Beer’s law in the
region close to the second slab’s face farthest
away from the first slab. This is a consequence
of having the length of the second slab being
equal to that of the first slab and therefore limi-
ting the degree to which the second slab can be
saturated by the radiation initially emitted from
the first slab. (At most half the flux is emitted to
the right and thus, under the present conditions,
exciting at most half the atoms of the second
slab.)

5. A standing-wave pattern in the field distribution
develops in the region between the two slabs’
closest faces, for the case that the separation be-
tween the slabs is a multiple of 4/2. This implies
that there are different phase relations be-
tween the direct backward field emitted from
the atoms of the first slab and the signal re-
flected from the second slab in the two cases
considered.

6. In addition to the main peak in the output
field temporal profile, secondary peaks develop
as a result of the Burnham—Chiao oscillations
[13].
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Fig. 2. The spatio-temporal 3D plot of the magnitude of the normalized field. (a) L; = 5.254; L, = 5.504; Ly = 5.254, B, = 10; n, = 1;
7 =1/26; 5p =0, (b) Ly = 5.254; L, = 5.75A; Ly = 5.257, By = 10; n, = 1; 5, = 1/26; 5 = 0.
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Having observed in the previous figure clear
macroscopic features that strongly suggest that
the second slab acts as a partially reflecting mir-
ror, we should test the quantitative validity of this
hypothesis by investigating the emission from the
system if the distance L, between the two slabs is
varied. We would expect that, if the above physical
picture is valid, due to the result that the field
emitted by a planar sheet of dipoles in phase is a
plane wave, to obtain periodic functions in the
distance between the slabs for the different quan-
tities specifying the reflected radiation.

We plot the different characteristics of the re-
flected radiation, in Fig. 3, on the interval 5.251 <
L, < 6.254; under the previous conditions of equal
slab length and having the atoms of the left slab
totally inverted while the second slab has origi-
nally all its atoms in the ground state. These figu-

1.4
°® °°
1.2 N " . '.
. . . .
1 L L] L] L]
5 . ° . .
“osle * e ¢
. ®e *
0.6
04 — .
5.4 5.6 5.8 6 6.2
Lz/k
1.6
.
5 1.4
)
a
£ i b
©
€12 4 ®
S . .
. .
_‘E‘ ° « ° .
8 1 ‘% o .o o
L] L] L] L]
e e q0
0.8 —

5.4 5.6 5.8 6 6.2
L2/7L

res summarize the main result of this paper: all
the functions characterizing the reflected signal are
periodic and have, as they should, period 1/2. (We
verified numerically this periodicity for distances
between the slabs extending up to 1004.) Fur-
thermore, we expect this periodicity to continue to
hold true, as long as the time for the light to travel
back and forth from the first slab to the second
slab is substantially shorter than the delay time of
the superradiance main peak, where the above
quasi-stationary analysis remains valid.

So far, and in all the above cases studied, we as-
sumed that the length of the second slab was equal
to that of the first slab. Next, we would like to exa-
mine what happens to the fluxes when the length of
the second slab is smaller than that of the first.

We plot in Fig. 4, the flux and the delay of the
main peak of the reflected signal, and in Fig. 5, the
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Fig. 3. The reflected field (i.e. at z = 0) characteristics are plotted as a function of L,. (The results are normalized to those of the single
slab with L, = L = 5.254.) L; = 5.254; Ly = 5.252; B, = 10; n, = 1; 9, = 1/26; 51 = 0. (a) Flux; (b) main peak height; (c) main peak

delay; (d) width of the temporal profile of |¢(z = 0, U)[*.
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Fig. 4. The reflected field characteristics are plotted as a func-
tion of L3. (The results are normalized to those of the single slab
with Ly =L =5.25)) Ly = 5.254; L, = 5.504; f, = 10; n, = 1;
7, = 1/26; 7; = 0. (a) Flux; (b) main peak delay.

flux of the transmitted signal as function of Ls, the
length of the second slab. We note that the en-
velope of each of the outgoing radiation fluxes
approaches respectively, for large L3, the asymp-
totic value corresponding to the result when the
second slab length is equal to the length of the
first slab. On the other hand, we observe that, for
smaller values of L3, the values of both outgoing
fluxes are modulated by a periodic function with
period 2/2, and the amplitude of these modula-
tions is decreasing with an increase in the value
of L3.
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Fig. 5. The transmitted field flux is plotted as a function of L;.
(The results are normalized to those of the single slab with
L, = L =5.25).) (Same parameters as those of Fig. 4.)

4. Conclusion

In this paper, we investigated superradiant
amplification from a system consisting of essen-
tially two optically dense slabs doped with two-
level resonant atoms and that are separated by a
region of zero doping. We showed that, if the two
slabs are of equal length, and that if initially one of
the slabs has all its atoms inverted, while, in the
other slab, the active atoms are all in the ground
state, then the superradiant burst intensity, the
delay of the main peak and the width of the field’s
temporal profile are all periodic functions of the
length of the inert region between the slabs with
period A/2. In summary, the maximum reflected
flux is obtained when a standing-wave configu-
ration in the region between the two slabs is
achieved.
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