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Abstract

We show that, in an optically dense medium having an inverted active atom number density periodically distributed
in space, it is possible, in a slab configuration, to enhance the forward-backward symmetric superradiance emission
efficiency if the periodicity reciprocal lattice vector obeys a Bragg’s-like condition for coupling the forward and
backward components of the active atoms polarization. We also show that the burst of superradiant light is emitted, in
this case, at an earlier time than that for a homogeneously distributed medium having the same average atomic number
density. Furthermore, this burst’s temporal duration is shown to be substantially shorter than that for the homogeneous
active atoms distribution. © 2001 Published by Elsevier Science B.V.
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1. Introduction

As a result of the high value of the reflectivity at
every point along the propagation path of a signal
in an optically dense resonant two-level medium
(ie. a4 < 1), both the forward and backward
waves need to be included in the analysis of
Maxwell equations for this problem. The simul-
taneous presence of the forward and backward
waves in this resonant gas results into situations
where resonator-like standing waves can develop
in the system without the need for end mirrors;
this situation can be realized when the pressure
broadening in a gas substantially exceeds the
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Doppler broadening, hence the name ‘“‘pressure-
induced resonators”. In particular, we have pre-
viously shown [1-3] that, in the superradiant
regime [4], an inverted system of such resonant
atoms radiates such that the atomic polarization
and the total field are eigenfunctions of the spatial
inversion operator with respect to the center of the
slab, for sample’s length in, what we called, the
symmetric sectors, and that an asymmetric tran-
sition domain separates two consecutive symmet-
ric sectors with opposite parity eigenvalues. We
have also found that, in the symmetric sectors, the
electromagnetic field distributions are similar to
those found in a slab resonant cavity, and that the
forward and backward emission fluxes are equal.

In this paper, we investigate the system’s sup-
erradiance dynamics if the active atoms number
density is periodically distributed. We show that,

0030-4018/01/$ - see front matter © 2001 Published by Elsevier Science B.V.

PII: S0030-4018(01)00992-0



88 J.T. Manassah, I. Gladkova | Optics Communications 189 (2001) 87-96

in the symmetric sectors, the superradiance emis-
sion efficiency can be further enhanced if the re-
ciprocal lattice vector of the active atoms periodic
distribution obeys a Bragg’s-like condition for
maximum coupling between the forward and
backward components of the polarization (for-
ward and backward components of polarization
refer to those quantities that are the source terms
for the forward and backward components of the
generated clectromagnetic field). Furthermore, we
show that:

(1) the burst of superradiant light, in the above
medium, is emitted at an earlier time than that
in a homogeneously distributed active medium
having the same average atomic number den-
sity, and that

(ii) the superradiant burst temporal duration is
substantially shorter here than that associated
with an active atom homogeneous distribution.

We solve the problem numerically by integrat-
ing the coupled Maxwell-Bloch integro-differential
coupled equations.

2. Maxwell-Bloch equations

The physical system that we analyze here is that
of a passive dielectric medium doped with active
atoms. In this atomic/dielectric medium system,
the total polarization consists of the sum of the
linear polarization due to the embedding dielectric
medium plus the resonant polarization due to the
two-level atomic system:

P =Py + P (1)

The linear polarization Pyr (where the subscript
NR stands for non-resonant, and R for resonant)
is given by:

PNR = OCS()EL (2)
where o is the medium linear susceptibility, and the
local (Lorentz) field Ey is given by [3]:

EL =FE+P/3¢ (3)

and where E is the Maxwell (macroscopic) field.
Using Egs. (1)-(3), the total polarization can be
written as [3,6]:

)

where Py is obtained from Bloch equations, eval-
uated with the local field, and not the Maxwell
field.

The above quantities can be directly related to
the more familiar cases and quantities, through an
examination of Eq. (4). For example, in the ab-
sence of the embedding dielectric medium, we ob-
tain the atoms in vacuum result:

Pr
EL=FE+— 5
L + 36 (5)
and in the absence of resonant medium, we obtain

the Lorentz result:

1 oF
EL=F+-——— 6
- 3712 o ©)
which, of course, leads to the Clausius—Mosetti
equation:

e—1 1
at2 30
or
1 +2a/3
2
== 1 —a/3 @

where 7, is the passive dielectric’s index of ref-
raction which we assume here to be real. (The
Kramer—Kronig relations, derived only on the as-
sumption of causality, require that Im(n,) # 0,
however, we will work in the spectral regime where
this contribution can be neglected over the prop-
agation lengths under consideration.)

The dynamics of the interaction of the electro-
magnetic field with the ensemble of active two-
level atom system is described by Bloch equations.
If we neglect the counter-rotating term in the
Hamiltonian, i.e. replacing the electromagnetic
real field (Ee~'' + E*e*io!) by Ee7*<!, where w, is
the carrier frequency, Bloch equations reduce to:
oy ingy

% i@ R + A+ T+ ®
R R s ©)

where we are normalizing the dynamical variables
and coordinates as follows:
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dET; p 1
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A = ATy, Tao = YanyTss Qoo = 0005
p is the x—y components of the Bloch vector,

p = px +1ip,, n is the population difference between
the ground and excited states, wy is the active atom
resonant frequency, y, and 7y, are the longitudinal
and transverse decay rates, d is the atomic transi-
tion dipole moment, 7, is the inhomogeneous
dephasing time, and 4 is the detuning of a par-
ticular group of atoms in the ensemble from the
single atom resonant frequency. The normalized
local field ¢, is given by [3,6]:

¢ = i

(1—-1o

¢+3 T (10)

1
)
where B(z) = p(2)d*T; /8hey and p(Z) is the spa-
tially dependent active atom number density. The
normalized Lorentz shift [7,8], neglecting quantum
corrections originating from the scattering ampli-
tude due to collision between atoms and that are
present in a gaseous medium, is then given for low
excitation by 48/3(1 —a/3). The transverse re-
laxation decay rate consists of three components,
the first being half the longitudinal relaxation
constant; the second contribution is that due to the
short range dipole—dipole interaction [7,8], which
is very important here since the active atoms
density is high in an optically dense medium; and
the third contribution is that originating from the
interaction of the active atoms with the different
quantum modes of the dielectric medium and
which may be controlled by cooling the dielectric
medium, specifically:

7 2
B=1 4+ (116(115) (5 )B4 71 (1)
Note that the additional factor of 1.16, in the
second term, from the standard gas pressure
broadened expression for the line width, corre-
sponds to the off-the-mass shell correction to the
scattering amplitude, which quantity should be
used in the computation of the atomic self-energy
when the active atoms are immobile and embedded
in a dielectric. This is equivalent, as was shown in
Ref. [8], to using the statistical theory results in
computing the spectral broadening of the excited

state due to the dipole—dipole interaction between
as excited and a ground state atom.
Maxwell wave equation is given by:
o L, 8BS < o >
A

(12)

@ U (t243) \ov?

where z = ((wen,)/c)z, ¢ = 1/ Ty, and (x), rep-
resents the normalized polarizability averaged over
the inhomogeneous distribution, assumed here
Gaussian, and given by:

@)= exp( -2 1)
To avoid the usual difficulties associated with solv-
ing a second-order differential equation (Eq. (12))
when the forward and backward waves are com-

parable in magnitude, we replace it by its equiva-
lent integral equation form [9-12]:

) ) 4
¢(Zv U) = ¢in(z =0, Urel) 28 (IZ) + lm

x /OZ B(Z)exp (ifz — 2’|)<X(2’, Um,Z) >A dz
(14)

where L is the normalized sample length, and the
retarded normalized time is given, such that the
space—time doublet is defined as follows:

(Z,Uer) = (Z, U — ¢2) (15)

The mixed boundary and initial conditions for the
problem are:
0 U2
¢in(2 = 07 U) = ¢in exXp T a2 (16)
(t/T3)
where ¢) = XT;/(y/mt), and X is the incoming
pulse area; and

1z, U=07,4)=0 (17)

n(z,U=0",4)=—1 (18)

forallz > 0. U = 0~ refers to the time prior to the
incident external signal being switched on.

In our simulations, and in order to mimic the
onset of superradiant emission, we shall assume
that the atomic system is fully inverted and that
the incoming pulse area is that associated with the
rms value of the eclectromagnetic field vacuum
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fluctuations [13-18], and such that its duration is
longer than any of the relaxation times of the
atomic system.

For the active atom spatial distribution, we
assume that the profile is given by:

p(z) = B(1 = B cos(f;2)) (19)

where, in the usual convention, we refer to f5,, as
the amplitude of modulation and f; as the mod-
ulation lattice vector.

d=5.25

(a)

z/h

d=5.75

3. Results

Fig. 1 shows previously obtained results [1,2].
Specifically, we illustrate the behavior of the
atomic susceptibility for a homogeneous atomic
distribution in what is called the symmetric sec-
tors. Recall that in these sectors, the active atom
polarization is an eigenfunction of the spatial
parity operator, defined here as the inversion with
respect to the center of the slab. Furthermore, re-
call that the eigenvalues associated with these

d=5.26

(b)

imiz)

2/

d=5.75

Im(z)

055 ~" 01
0 T ‘/0.15

Fig. 1. The 3-D plot of the real and imaginary parts of the susceptibility of a system of initially fully inverted active atoms are plotted as
function of the normalized position and time. n, = 1; . = 10; B, = 0; 7, = 1/25; y, =0; ¢ = (10° rt)fl. (a) The real part of the
susceptibility at L = 5.254; (b) the imaginary part of the susceptibility at L = 5.25/; (c) the real part of the susceptibility at L = 5.757;
(d) the imaginary part of the susceptibility at L = 5.754.
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Fig. 2. The real and imaginary parts of the susceptibility are plotted as function of the normalized distance, at the time coordinate
corresponding to the outgoing superradiant signal’s peak. Same parameters as in Fig. 1.
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Fig. 3. The magnitude of the outgoing normalized field is plotted as function of the normalized time and compared for the cases of
homogeneous and fully modulated active atoms distributions. L = 5.254; n, = 1; f. = 10; f; = 44/21; 5, = 1/25; 5, = 0; ¢ = (105 )™
(@) B =0; (b) i, = 1.
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Fig. 4. Same as Fig. 3, with the following modifications: L = 5.251/n,; n, = 2. (a) fi,, = 0; (b) f,, = 1.
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Fig. 5. (a) The flux of the outgoing normalized field; (b) height of the main peak of the magnitude of the outgoing field; (c) the first
moment of the intensity of the outgoing field distribution; and (d) the second moment (standard deviation or width) of the intensity of
the outgoing field distribution, are plotted as function of the depth of modulation, for an atomic distribution with a phased matched
lattice vector. L = 5.254; n, = 1; B, = 10; f; = 44/21; 5, = 1/25; 5, = 0; ¢ = (10° m) .

eigenfunctions alternate between the values =+1,
for consecutive symmetric sectors. These proper-
ties are more clearly shown in Fig. 2, where we plot
the spatial dependence of the field temporal cross-
section at the value of time corresponding to the
position of the peak of the outgoing field distri-
bution, for the two different parity states, shown in
the previous figure. The standing wave structure
observed is due to having at each point in the
optically thick medium, the reflected electromag-
netic wave being of comparable magnitude to the
transmitted wave.

Having shown the standing wave feature in the
homogeneous medium, the question arises as to
whether by enhancing the coupling between the
forward and backward components of the atomic
polarization, we can increase the efficiency of the
superradiance, shortens the time required for the

onset of superradiance, and compress the duration
of the superradiant burst, while maintaining the
forward-backward symmetry in emission.

An analysis of Figs. 1 and 2 and other values of
the sample length, lead us to the conclusion that if
we select the sample length such that it is at the
center of the symmetric sectors, i.e. for the values:

(2}1’! + 1))L0
4n,
where /o is the radiation wavelength in vacuum,

the values of f; that would maintain the forward-
backward symmetry in emission are given by:
4(m+1) 4m

fe=tmrny ™ =G

L= (20a)

(20b)

In Fig. 3, using the above obtained values of f;,
we show the temporal profile of the output field for
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no and full modulation. As can be noted, all of
the above three goals have been achieved. Fur-
thermore, the temporal lobes, due to the Burn-
ham-Chiao oscillations [19] have been greatly
suppresed. In Fig. 4, we illustrate the case where
even multiple lobes suppression is also achieved.
The first value of fi;, as specified in Eq. (20b), gives
slightly better results than those from the second
value. We will use the value f;=4(m+1)/
(2m + 1) in the following figures.

The effect of the depth of the modulation on the
flux of either the transmitted (forward) or reflected
(backward) output radiation, the height of the
principal peak of the temporal profile, the super-
radiance delay (or first moment of the temporal
distribution) and the standard deviation of the
intensity temporal distribution (roughly the tem-
poral width of the superradiant burst energy den-

2500

2000 * o

1500 x" o0

Flux
*
*
o

* 0
1000 * 0

500 *o

sity) are plotted in Fig. 5. The main global features
observed in Fig. 3 are shown, as expected, to fol-
low a continuous and monotonic variation with an
increase in the depth of modulation.

Next, we investigate the coherence length in this
system when Eq. (20) is satisfied. We investigate
the global features considered above for different
length of the sample. In Fig. 6, we compare the
main features of the superradiant burst for the
homogeneous medium and for the fully modulated
active atom distribution for different length of the
sample. We observe that the features found pre-
viously hold for all values of length considered,
hence we have long range coherence in the system,
as would be expected. Furthermore, it should be
noted that contrary to what happens in the ho-
mogeneous medium, where the number of Burn-
ham—Chow oscillations increase with the length of
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Fig. 6. (a) The flux of the outgoing normalized field; (b) height of the main peak of the magnitude of the outgoing field; (c) the first
moment of the intensity of the outgoing field distribution; and (d) the second moment (standard deviation or width) of the intensity of
the outgoing field distribution, are plotted as function of the sample length and compared for the zero and fully modulated distri-
butions, for an atomic distribution with a phased matched lattice vector. (O) f,, = 0; (¥) S, = 1. L= (2m+1)/4)2; n, = 1; B, = 10;

Br=4(m+1)/2m+1); 5, = 1/25; 5, = 0; ¢ = (10° 7).
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Fig. 7. The standard deviation of the temporal profile of the intensity of the outgoing field is plotted as function of f.. L = 5.25;

ne=1; B, = 10; B = 44/21; 5, = 1/25; 5, = 0; ¢ = (10° m) "

the sample, in the present system these are atten-
uated, while the central lobe continues to com-
press.

Finally, we examine the dependence of the
temporal width of the electromagnetic field inten-
sity profile as function of /., the average value of f§
over a spatial period. As the atomic pressure
broadening spectral width depends linearly on S,
and as the spatial periodicity in the active atom
density dampens the Burnham—Chiao oscillation
and thus exclude any contribution that they may
add to the intensity standard deviation, we should
expect that the temporal width of the superradiant
burst to decrease inversely with .. Fig. 7 shows
the numerical results dependence. They follow
closely the previous predictions.

4. Conclusion

In this paper, we investigated superradiant
amplification from a system consisting of an en-
semble of inverted resonant atoms in an optically
dense medium with an active atom number density
distribution that is spatially periodic. We showed

that, with a judicious choice of the periodicity re-
ciprocal lattice, we can maintain the forward-
backward symmetry in emission while we vary
qualitatively the shape, delay and flux of the su-
perradiant burst. The resulting superradiant pulse
can be made cleaner and leaner.
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